高等数学上册复习
高等数学(同济第七版)(上册)-知识点

高等数学(同济第七版)上册-知识点总结第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim0=→x xx 公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e)(!2)1(...!4!21cos 2242n nn x o n x x x x +-+++-= )()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在. 6.利用导数定义求极限)()(lim)()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→基本公式)()()(lim0'000x f xx f x x f x =∆-∆+→∆(如果存在)7.利用定积分定义求极限基本格式⎰∑==∞→11)()(1lim dx x f n kf n n k n (如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。
高等教育数学[同济第六版](上册)期末复习重点
期末复习重点](https://img.taocdn.com/s3/m/5594ae27f18583d0496459dc.png)
第一章:1、极限(夹逼准则)2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1 为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列 {xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列 1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列 1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。
大一高数上所有知识点总结

大一高数上所有知识点总结一、函数与极限1. 函数的概念与性质1.1 函数的定义1.2 函数的性质2. 极限的概念与性质2.1 极限的定义2.2 极限存在的充分条件2.3 极限的性质及四则运算法则3. 无穷小量与无穷大量3.1 无穷小量的概念与性质3.2 无穷大量的概念与性质4. 极限的计算4.1 用夹逼准则求极限4.2 用无穷小量比较求极限4.3 用洛必达法则求极限4.4 用泰勒公式求极限二、导数与微分1. 导数的概念与求导法则1.1 导数的概念1.2 导数的计算与求导法则1.3 隐函数的导数1.4 高阶导数2. 函数的微分与高阶导数2.1 函数的微分2.3 高阶导数的概念与计算3. 函数的增减性与凹凸性3.1 函数的单调性3.2 函数的最值与最值存在条件3.3 函数的凹凸性及拐点三、函数的应用1. 泰勒公式在误差估计中的应用2. 函数的极值及其应用3. 函数的图形与曲线的切线方程4. 收敛性与闭区间紧性的概念及应用四、不定积分1. 不定积分的概念与性质1.1 不定积分的定义1.2 不定积分的性质1.3 不定积分的基本公式2. 不定积分的计算2.1 一些特殊函数的不定积分2.2 有理函数的不定积分2.3 有理三角函数的不定积分2.4 特殊的不定积分解法五、定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的性质2. 定积分的几何应用2.1 定积分与曲线下面积2.2 定积分与旋转体的体积计算2.3 定积分与空间几何体的体积计算六、微分方程1. 微分方程的概念与基本性质1.1 微分方程的定义1.2 微分方程的基本性质2. 常微分方程的解法2.1 一阶微分方程的解法2.2 二阶微分方程的解法2.3 高阶微分方程的解法3. 微分方程在物理问题中的应用3.1 弹簧振动问题3.2 电路的动态特性问题3.3 理想气体的状态方程问题七、多元函数微积分1. 多元函数的概念与性质1.1 多元函数的定义1.2 多元函数的导数与偏导数1.3 多元函数的微分2. 多元函数的极值与条件极值2.1 多元函数的极值点2.2 多元函数的条件极值点3. 二重积分与三重积分3.1 二重积分的概念与性质3.2 二重积分的计算3.3 三重积分的概念与性质3.4 三重积分的计算4. 重积分在几何与物理中的应用4.1 重积分与平面图形的面积计算4.2 重积分与曲面旋转体的体积计算4.3 重积分与空间物体的质量与重心计算八、无穷级数1. 数项级数的概念与性质1.1 数项级数的概念1.2 数项级数收敛的充分条件1.3 数项级数的审敛法2. 幂级数2.1 幂级数的概念与性质2.2 幂级数的收敛域2.3 幂级数在收敛域上的一致收敛性3. 函数项级数3.1 函数项级数的概念与性质3.2 函数项级数收敛的判别法3.3 函数项级数的一致收敛性以上是大一高数的知识点总结,总结了函数与极限、导数与微分、函数的应用、不定积分、定积分、微分方程、多元函数微积分、无穷级数等内容。
大一上高数期末知识点总结

大一上高数期末知识点总结高等数学作为大学本科工科专业的一门基础课程,对于学生的综合素质和理解能力有着重要的培养作用。
大一上学期的高等数学课程主要包括了以下几个重要的知识点,本文将对这些知识点进行总结和概括,帮助大家回顾和巩固。
一、实数与数列1. 实数的分类和性质:实数的分类有有理数和无理数两类,其中有理数又可以分为整数、有限小数和无限循环小数。
实数的性质有封闭性、有序性和稠密性等。
2. 数列的概念与性质:数列是具有顺序排列的一串数字的集合,常见的数列有等差数列和等比数列。
数列的性质包括通项公式、前n项和、公差(差值)和比值等。
二、极限与连续1. 极限的概念与性质:极限是数列中随着项数无限增加而逼近的某个固定值,是研究函数连续性的基本工具。
极限的性质包括唯一性、局部有界性和保号性等。
2. 函数的极限:函数的极限可以是无穷大、无穷小或是有限值,函数极限存在的条件包括左极限和右极限相等等。
3. 连续与间断:函数在某一点处连续,意味着函数在该点附近的取值没有跳跃或断层,是一种平滑的状态。
函数的间断包括可去间断、跳跃间断和第一类间断等。
三、导数与微分1. 导数的概念与计算:导数表示函数在某一点的瞬时变化率或斜率,是刻画函数变化快慢的重要工具。
导数的计算包括基本导数公式、求导法则和高阶导数等。
2. 微分的概念与应用:微分是导数与自变量变化量的乘积,微分的几何意义是函数图像在某一点的切线斜率。
微分在近似计算、优化问题和微分方程等方面应用广泛。
四、不定积分与定积分1. 不定积分的概念与计算:不定积分是求函数的原函数的逆运算,不定积分的结果称为原函数或不定积分。
不定积分的计算基于基本积分表和积分法则,需要注意积分常数的添加。
2. 定积分的概念与应用:定积分是计算函数在某一区间上的累计变化量或面积的工具,可以解决曲线长度、曲线面积等问题。
定积分的计算基于定积分的定义和积分法则,包括定积分的换元法和分部积分法等。
以上是大一上学期高等数学的重要知识点总结,这些知识点是后续学习高等数学的基础,对于理解和掌握后续课程非常重要。
高等数学复习资料大全

高等数学复习资料大全高等数学复习资料大全一、函数的极限1、函数极限的定义:当函数f(x)在x趋近于某一值时,函数值无限接近于某一确定的数值A,则称A为函数f(x)在x趋近于这一值时的极限。
2、函数极限的性质:(1)唯一性:若极限存在,则唯一。
(2)局部有界性:在极限附近的函数值有界。
(3)局部保号性:在极限附近,函数值的符号保持不变。
(4)归结原则:若在某一区间内,f(x)恒等于A,则A为f(x)在该区间内的极限。
3、极限的四则运算:设、存在,则、也存在,且、、、。
4、复合函数的极限:设、存在,且g(x)在u=a处连续,则、存在,且、。
5、无穷小与无穷大:(1)无穷小:若当x趋近于某一值时,函数f(x)的极限为0,则称f(x)为当x趋近于这一值时的无穷小。
(2)无穷大:若当x趋近于某一值时,函数f(x)的绝对值无限增大,则称f(x)为当x趋近于这一值时的无穷大。
6、两个重要极限:(1)sin x / x = 1 (x趋近于0);(2)(1+k)^ x / kx = e^k (k为常数且k趋近于0)。
二、导数与微分1、导数的定义:设y=f(x),若增量 / 趋于0时,之间的比值也趋于0,则称f(x)在处可导,称此比值为f(x)在处的导数。
2、导数的几何意义:函数在某一点处的导数就是曲线在该点处的切线的斜率。
3、微分的定义:设y=f(x),若函数的增量可以表示为,其中A不依赖于,则称在处可微分,为f(x)在处的微分。
4、导数与微分的关系:若函数在某一点处可导,则在该点处必可微分;反之,若函数在某一点处可微分,则在该点处不一定可导。
5、导数的计算方法:(1)四则运算导数公式;(2)复合函数的导数;(3)隐函数求导法;(4)对数求导法;(5)高阶导数。
三、不定积分1、不定积分的定义:设f(x)是一个函数,是一个常数,则对f(x)进行积分所得的结果称为f(x)的不定积分,记为或。
2、不定积分的性质:(1)线性性质:和都存在,且;(2)恒等性质:都存在,且。
武汉大学《高等数学》复习提纲

高数上册复习考试2013年1月1日第一章 函数与极限一、函数1.认识一些常用函数和初等函数。
2.求函数的自然定义域。
二、极限1.极限的计算(1)善于恒等化简和极限的四则运算法则 (2)常用的计算方法 (a )常用极限0lim =∞→n a n ,)1(0lim <=∞→q q n n ,1lim =∞→n n n ,)0(1lim >=∞→a a n n ,e n f n f n =⎥⎦⎤⎢⎣⎡+∞→)()(11lim(∞→)(n f ),[]e n g n g n =+∞→)(1)(1lim (0)(→n g ), )()(sin limn f n f n ∞→ = 1 (0)(→n f )。
(b )一些常用的处理方法(i)分子分母都除以n 的最高次幂。
例如:3562366742n n n n n n −+++ = 343116117142n n n n −+++,3562346742n n n n n n −+++ = 34321161171412nn n n n −+++ 43432523nn n n n ++++ =433215121131nn n n ++++(ii)根号差的消除。
例如:)(n f -)(n g =)()()()(n g n f n g n f +−,3)()()(n g n f n h − =()()()()()()()()[][]235343332233345)()()()()()()()()()()()()(n g n f n g n g n f n g n f n g n f n g n f n f n h −⎥⎦⎤⎢⎣⎡+++++(iii)指数函数的极限。
)()(lim n v n n u ∞→ = [])(lim )(lim n v n n n u ∞→∞→ (都存在))(lim ,0)(lim n v n u n n ∞→∞→>。
(iv)利用指数函数的极限。
(完整word版)大一上学期高数复习要点

大一上学期高数复习要点同志们,马上就要考试了,考虑到这是你们上大学后的第一个春节,为了不影响阖家团圆的气氛,营造以人文本,积极向上,相互理解的师生关系,减轻大家学习负担,以下帮大家梳理本学期知识脉络,抓住复习重点;1.主要以教材为主,看教材时,先把教材看完一节就做一节的练习,看完一章后,通过看小结对整一章的内容进行总复习。
2.掌握重点的知识,对于没有要求的部分可以少花时间或放弃,重点掌握要求的内容,大胆放弃老师不做要求的内容。
3.复习自然离不开大量的练习,熟悉公式然后才能熟练任用。
结合课后习题要清楚每一道题用了哪些公式。
没有用到公式的要死抓定义定理!一.函数与极限二.导数与微分三.微分中值定理与导数的应用四.不定积分浏览目录了解真正不熟悉的章节然后有针对的复习。
一函数与极限熟悉差集对偶律(最好掌握证明过程)邻域(去心邻域)函数有界性的表示方法数列极限与函数极限的区别收敛与函数存在极限等价无穷小与无穷大的转换夹逼准则(重新推导证明过程)熟练运用两个重要极限第二准则会运用等价无穷小快速化简计算了解间断点的分类零点定理本章公式:两个重要极限:二.导数与微分熟悉函数的可导性与连续性的关系求高阶导数会运用两边同取对数隐函数的显化会求由参数方程确定的函数的导数洛必达法则:利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:①在着手求极限以前,首先要检查是否满足或型,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限 .②洛必达法则可连续多次使用,直到求出极限为止.③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等.曲线的凹凸性与拐点:注意:首先看定义域然后判断函数的单调区间求极值和最值利用公式判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号)四.不定积分:(要求:将例题重新做一遍)对原函数的理解原函数与不定积分1 基本积分表基本积分表(共24个基本积分公式)不定积分的性质最后达到的效果是会三算两证(求极限,求导数,求积分)(极限和中值定理的证明),一定会取得满意的成绩!高数高频易错点1.求极限请注意自变量趋向什么。
高数大一上知识点详细总结

高数大一上知识点详细总结高等数学是大一上学期的一门重要课程,它是理工科学生必修的一门基础课程。
本文将从微积分、数列与级数、函数与极限三个方面对高等数学大一上学期的知识点进行详细总结。
一、微积分1. 函数与极限a. 函数的概念:函数是一种映射关系,将一个自变量映射到一个因变量上。
常见的函数类型有线性函数、多项式函数、指数函数、对数函数等。
b. 极限的定义:极限是函数在某一点或无穷远点的趋势。
通过极限的计算,可以求得函数在某一点处的导数、积分等。
c. 极限的性质:极限具有唯一性、有界性、保序性等性质,这些性质在计算过程中非常重要。
2. 导数与微分a. 导数的定义:导数是函数在某一点处的斜率,表示函数在该点的变化率。
b. 导数的计算方法:常见的导数计算方法有利用定义计算、使用导数的性质(和、差、积、商规则)、使用特殊函数的导数公式等。
c. 微分的定义:微分是函数在某一点处的线性逼近,是导数与自变量增量的乘积。
3. 积分与不定积分a. 积分的概念:积分是导数的逆运算,表示函数在一定区间上的累积效应。
b. 不定积分的计算方法:常见的不定积分计算方法有基本积分公式、代换法、分部积分法等。
c. 定积分的概念:定积分是函数在一定区间上的面积,可以用积分的特性进行计算。
二、数列与级数1. 数列a. 数列的概念:数列是按照一定规律排列的一组数。
b. 数列的极限:数列的极限反映了数列中数值的趋势。
常见的极限有有界数列、单调有界数列、数列的收敛与发散等。
c. 数列的计算方法:常见的数列计算方法有通项公式、递推公式等。
2. 级数a. 级数的概念:级数是数列部分和的无穷累加。
b. 级数的收敛与发散:级数的收敛性表示级数的和是否有限,发散性表示级数的和为无穷大。
c. 常见的级数判定方法:常见的级数判定方法有比较判别法、比值判别法、根值判别法等。
三、函数与极限1. 函数的性质与图像a. 函数的奇偶性:奇函数满足$f(-x)=-f(x)$,偶函数满足$f(-x)=f(x)$。