拓扑学复习题与参考答案精讲

合集下载

点集拓扑学期末考试练习题(含答案)

点集拓扑学期末考试练习题(含答案)

点集拓扑学期末考试一、单项选择题(每题1分)1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c e φ=T ② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③ {,,{},{,}}X a a b φ=T ④ {,,{},{},{},{},{}}X a b c d e φ=T 答案:③2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{}}X a a b c φ=T ② {,,{},{,},{,}}X a a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:② 3、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c d φ=T ② {,,{,,},{,,}}X a b c a b d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{}}X a b φ=T答案:① 4、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X b c a b φ=T ② {,,{},{},{,},{,}}X a b a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:② 5、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{,},{,,}}X a b a c d φ=T ② {,,{,},{,,}}X a b a c d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{},{,}}X a c a c φ=T答案:④ 6、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X a b b c φ=T ② {,,{,},{,}}X a b b c φ=T③ {,,{},{,}}X a a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:③ 7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ ② X ③ {}b ④ {,,}b c d答案:④8、 已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =( )①φ ② X ③ {}b ④ {,,}b c d 答案:④9、 已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {}a ④ {}b 答案:②10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =( )①φ ② X ③ {}a ④ {}b 答案:④11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {,}a b ④ {,,}b c d 答案:②12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =( )①φ ② X ③ {,}a c ④ {,,}b c d 答案:④13、设{,,,}X a b c d =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集个数( ) ① 1 ② 2 ③ 3 ④ 4 答案:②14、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 1 ② 2 ③ 3 ④ 4 答案:②15、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 0 ② 1 ③ 2 ④ 3 答案:①16、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( )① 0 ② 1 ③ 2 ④ 3 答案:③17、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为( ) ① 1 ② 2 ③ 3 ④ 4 答案:④18、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,X 的既开又闭的非空真子集个数( ) ① 1 ② 2 ③ 3 ④ 4 答案:②19、在实数空间中,有理数集Q 的内部Q 是( )① φ ② Q ③ R -Q ④ R 答案:①20、在实数空间中,有理数集Q 的边界()Q ∂是( )① φ ② Q ③ R -Q ④ R 答案:④. 21、在实数空间中,整数集Z 的内部Z 是( )① φ ② Z ③ R -Z ④ R 答案:①22、在实数空间中,整数集Z 的边界()Z ∂是( )① φ ② Z ③ R -Z ④ R 答案:②23、在实数空间中,区间[0,1)的边界是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:③24、在实数空间中,区间[2,3)的边界是( )① φ ② [2,3] ③ {2,3} ④ (2,3) 答案:③25、在实数空间中,区间[0,1)的内部是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:④26、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B ⋃=⋃③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ③27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ①28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()d A B A B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ (())()d d A A d A ⊂⋃ 答案: ④29、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是()① ()d A φ= ② ()d A X A =-③ ()d A A = ④ ()d A X = 答案:①30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是( ) ① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X A =-③ 若A={12,x x },则()d A X = ④ 若A X ≠, 则()d A X ≠ 答案:④. 31、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是( ) ① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X =③ 若A={12,x x },则()d A X A =- ④ 若12{,}A x x =,则()d A A = 答案:①32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是( ) ① { X ,φ,{c },{d },{c ,d },{a ,b ,c }} ② {X ,φ,{c },{d },{c ,d }}③ { X ,φ,{c },{a ,b ,c }} ④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }} 答案:①33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T 是X 的拓扑,则( )是T 的基.① {{,}|{}}B p x x X p =∈- ② {{}|}B x x X =∈③ {{,}|}B p x x X =∈ ④ {{}|{}}B x x X p =∈- 答案:③34、 设{,,}X a b c =,则下列X 的拓扑中( )以{,,{}}S X a φ=为子基.① { X , φ,{a },{a ,c }} ② {X , φ,{a }}③ { X , φ,{a },{b },{a ,b }} ④ {X ,φ }答案:②35、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:③36、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:④37、实数空间R 中的任一单点集是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭 答案:②38、实数空间R 的子集A ={1,21,31 ,41,……},则A =( )①φ ② R ③ A ∪{0} ④ A 答案:③39、在实数空间R 中,下列集合是闭集的是( )① 整数集 ② [)b a , ③ 有理数集 ④ 无理数集 答案:①40、在实数空间R 中,下列集合是开集的是( )① 整数集Z ② 有理数集③ 无理数集 ④ 整数集Z 的补集Z '答案:④41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是( )① 1 ② 2 ③ 3 ④ 4 答案:④42、已知{,}X a b =,则X 上的所有可能的拓扑有( )① 1个 ② 2个 ③ 3个 ④ 4个 答案:④43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个① 3 ② 5 ③ 7 ④ 9 答案:④44、设(,)T X 为拓扑空间,则下列叙述正确的为 ( )①T , T X φ∈∉ ② T ,T X φ∉∈③当T T '⊂时,T T U U '∈∈ ④ 当T T '⊂时,T T U U '∈∈ 答案:③45、在实数下限拓扑空间R 中,区间[,)a b 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭 答案:③46、设X 是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭 答案:②47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A 的拓扑为( ) ① {,{2},{1,2}}φ=T ② {,,{1},{2},{1,2}}T X φ=③ {,,{1},{2}}T A φ= ④ {,,{1},{2}}T X φ= 答案:③48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A 的拓扑为( ) ① {,{1},{3},{1,3}}T φ= ② {,,{1}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ= 答案:②49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A 的拓扑为( ) ① {,{3},{2,3}}φ=T ② {,,{2},{3}}T A φ=③ {,,{2},{3},{2,3}}T X φ= ④ {,,{3}}T X φ= 答案:②50、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( ) ① {,{1}}T φ= ② {,,{1,2}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ= 答案:①51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,}T A φ=③ {,,{2}}T X φ= ④ {,,{1,2}}T X φ= 答案:②52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( ) ① {,{2},{1,2}}T φ= ② {,{},{1,3}}T X φ=③ {,,{3}}T X φ= ④ {,{3}}T φ= 答案:④53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为( )① {,}T Z φ= ② ()T P Z = ③ T Z = ④ {}T Z = 答案:②54、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④55、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.2P 是X 到2X 的投射,则2P 是( ) ① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④56、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.3P 是X 到3X 的投射,则3P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④57、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.4P 是X 到4X 的投射,则4P 是( ) ① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④58、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.5P 是X 到5X 的投射,则5P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④59、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.6P 是X 到6X 的投射,则6P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④60、设1X 和2X 是两个拓扑空间,12X X ⨯是它们的积空间,1A X ⊂,2B X ⊂,则有( ) ① A B A B ⨯≠⨯ ② A B A B ⨯=⨯ ③()A B A B ⨯≠⨯ ④ ()()()A B A B ∂⨯=∂⨯∂答案:②61、有理数集Q 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对 答案:①62、整数集Z 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对答案:①63、无理数集是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对答案:①64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z 为( )①不连通子集 ② 连通子集 ③ 闭集 ④ 开集答案:②65、设12,X X 是平庸空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是平庸空间③ 平庸空间 ④ 不连通空间答案:③66、设12,X X 是离散空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是离散空间③ 平庸空间 ④ 连通空间答案:①67、设12,X X 是连通空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是连通空间③ 平庸空间 ④ 连通空间答案:④68、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对答案:④69、实数空间R 中的不少于两点的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 以上都不对答案:③70、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 区间或一点答案:④71、下列叙述中正确的个数为( )(Ⅰ)单位圆周1S 是连通的; (Ⅱ){0}R -是连通的(Ⅲ)2{(0,0)}R -是连通的 (Ⅳ)2R 和R 同胚① 1 ② 2 ③ 3 ④ 4答案:②二、填空题(每题1分)1、设{,}X a b =,则X 的平庸拓扑为 ;答案:{,}T X φ=2、设{,}X a b =,则X 的离散拓扑为 ;答案:{,,{},{}}T X a b φ= 3、同胚的拓扑空间所共有的性质叫 ; 答案:拓扑不变性质4、在实数空间R 中,有理数集Q 的导集是___________. 答案: R5、)(A d x ∈当且仅当对于x 的每一邻域U 有 答案: ({})U A x φ⋂-≠6、设A 是有限补空间X 中的一个无限子集,则()d A = ;答案:X7、设A 是有限补空间X 中的一个无限子集,则A = ;答案:X8、设A 是可数补空间X 中的一个不可数子集,则()d A = ;答案:X9、设A 是可数补空间X 中的一个不可数子集,则A = ;答案:X10、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{2}11、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:{1}12、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 答案:{1}13、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:φ14、设{,,}X a b c =,则X 的平庸拓扑为 ;答案:{,}T X φ=15、设{,,}X a b c =,则X 的离散拓扑为 答案:{,,{},{},{},{,},{,},{,}}T X a b c a b a c b c φ=16、设{1,2,3}X =,X 的拓扑{,,{2},{3},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:{3}17、设{1,2,3}X =,X 的拓扑{,,{1},{3},{1,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{1}18、:f X Y →是拓扑空间X 到Y 的一个映射,若它是一个单射,并且是从X 到它的象集()f X 的一个同胚,则称映射f 是一个 .答案:嵌入19、:f X Y →是拓扑空间X 到Y 的一个映射,如果它是一个满射,并且Y 的拓扑是对于映射f 而言的商拓扑,则称f 是一个 ;答案:商映射20、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个开集U 的象集()f U 是Y 中的一个开集,则称映射f 是一个 答案:开映射21、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个闭集U 的象集()f U 是Y 中的一个闭集,则称映射f 是一个 答案:闭映射22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个 答案:不连通空间25、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ; 答案:连通子集26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个 ;答案:在连续映射下保持不变的性质27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个 ;答案:可商性质28、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ;答案:有限可积性质29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;答案:不连通空间.三.判断(每题4分,判断1分,理由3分)1、.从离散空间到拓扑空间的任何映射都是连续映射( ) 答案:√理由:设X 是离散空间,Y 是拓扑空间,:f X Y →是连续映射,因为对任意A Y ⊂,都有1)f A X -⊂(,由于X 中的任何一个子集都是开集,从而1()f A -是X 中的开集,所以:f X Y →是连续的.2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )答案:× 理由:因为(1)12, T T 是X 的拓扑,故∈φ,X T 1,∈φ,X T 2,从而∈φ,X 12 T T ⋂; (2)对任意的∈B A ,T 1⋂T 2,则有∈B A ,T 1且∈B A ,T 2,由于T 1, T 2是X 的拓扑,故∈⋂B A T 1且∈⋂B A T 2,从而∈⋂B A T 1⋂T 2;(3)对任意的21T T T ⋂⊂',则21,T T T T ⊂'⊂',由于T 1, T 2是X 的拓扑,从而 U ∈T ’U ∈T 1, U ∈T ’U ∈T 2,故 U ∈T ’U ∈ T 1⋂T 2;综上有T 1⋂T 2也是X 的拓扑.3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )答案:√ 理由:设:f X Y →是任一满足条件的映射,由于Y 是平庸空间,它中的开集只有,Y φ,易知它们在f 下的原象分别是,X φ,均为X 中的开集,从而:f X Y →连续.4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )答案:√ 理由:设p 为X 中的任何一点,因为离散空间中每个子集都是开集, 所以{}p 是X 的开子集,且有{}{}()p A p φ-=,即()p d A ∉,从而 ()d A φ=.5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )答案:× 理由:设{}A y =,则对于任意,x X x y ∈≠,x 有唯一的一个邻域X ,且有()y X A x ∈⋂-,从而()X A x φ⋂-≠,因此x 是A 的一个凝聚点,但对于y 的唯一的邻域X ,有()X A y φ⋂-=,所以有()d A X A φ=-≠.6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )答案:√ 理由:对于任意,x X ∈因为A 包含多于一点,从而对于x 的唯一的邻域X ,且有()X A x φ⋂-≠,因此x 是A 的一个凝聚点,即()x d A ∈,所以有()d A X =.7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )答案:√理由:设X 是一个不连通空间,设,A B 是X 的两个非空的隔离子集使得A B X ⋃=,显然A B φ=,并且这时有:()()B B X B A B B B =⋂=⋂⋃⋂=从而B 是X 的一个闭子集,同理可证A 是X 的一个闭子集,这就证明了,A B 满足,A B A B X φ⋂=⋃=.8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )√ 理由:这是因为若设A 是X 中的一个既开又闭的非空真子集,令B A '=,则,A B 都是X 中的非空闭子集,它们满足A B X ⋃=,易见,A B 是隔离子集,所以拓扑空间X 是一个不连通空.五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂. 答案:对于任意()x d A ∈,设U 是x 的任何一个邻域,则有({})U A x φ⋂-≠,由于A B ⊂,从而({})({})U B x U A x φ⋂-⊃⋂-≠,因此()x d B ∈,故()()d A d B ⊂.2、设,,X Y Z 都是拓扑空间.:f X Y →, :g Y Z →都是连续映射,试说明:g f X Z →也是连续映射.答案:设W 是Z 的任意一个开集,由于:g Y Z →是一个连续映射,从而1()g W -是Y 的一个开集,由:f X Y →是连续映射,故11(())f g W --是X 的一开集,因此 111()()(())g f W f g W ---=是X 的开集,所以:g f X Z →是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集. 答案:对于x A '∀∈,则x A ∉,由于A 是一个闭集,从而x 有一个邻域U 使得({})U A x φ⋂-=,因此U A φ⋂=,即U A '⊂,所以对任何x A '∈,A '是x 的一个邻域,这说明A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集. 答案:设x A ∉,则x A '∈,由于A '是一个开集,所以A '是x 的一个邻域,且满足A A φ'⋂=,因此x A ∉,从而A A ⊃,即有A A =,这说明A 是一个闭集.5、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T .答案:]}}1[],0{[]},0{[,,{Y φ= T6、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T . 答案:{,,{[3]},{[2],[3]}}T Y φ=7、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T . 答案:{,,{[1]},{[1],[1]}}T Y φ=--8、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[2],[1],[2]}Y =-,试写出Y 的商拓扑T . 答案:{,,{[2]},{[2],[1]}}T Y φ=--9、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[3]}Y =,试写出Y 的商拓扑T . 答案:{,,{[3]},{[2],[3]}}T Y φ=10、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[4]}Y =,试写出Y 的商拓扑T . 答案:{,,{[4]},{[2],[4]}}T Y φ=11、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[1],[2],[4]}Y =-,试写出Y 的商拓扑T . 答案:{,,{[4]},{[2],[4]}}T Y φ=六、证明题(每题8分)1、设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射.则()f X 是Y 的一个连通子集. 证明:如果()f X 是Y 的一个不连通子集,则存在Y 的非空隔离子集,A B 使得()f X A B =⋃ …………………………………………… 3分于是11(),()f A f B --是X 的非空子集,并且:111111111(()())(()())(()())(()())(()())f A f B f B f A f A f B f B f A f A B A B φ---------⋂⋃⋂⊂⋂⋃⋂=⋂⋃⋂=所以11(),()f A f B --是X 的非空隔离子集 此外,1111()()()(())f A f B f A B f f X X ----⋃=⋃==,这说明X 不连通,矛盾.从而()f X 是Y 的一个连通子集. ………………………… 8分2、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的开集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.证明:因为B A ,是X 的开集,从而Y B Y A ⋂⋂,是子空间Y 的开集.又因B A Y ⋃⊂中,故)()(Y B Y A Y ⋂⋃⋂= ………………… 4分由于Y 是X 的连通子集,则Y B Y A ⋂⋂,中必有一个是空集. 若Φ=⋂Y B ,则A Y ⊂;若Φ=⋂Y A ,则B Y ⊂………………… 8分3、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的闭集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.证明:因为B A ,是X 的闭集,从而Y B Y A ⋂⋂,是子空间Y 的闭集.又因B A Y ⋃⊂中,故)()(Y B Y A Y ⋂⋃⋂= ………………… 4分由于Y 是X 的连通子集,则Y B Y A ⋂⋂,中必有一个是空集. 若Φ=⋂Y B ,则A Y ⊂;若Φ=⋂Y A ,则B Y ⊂………………… 8分4、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个连通子集. 证明:若Z 是X 的一个不连通子集,则在X 中有非空的隔离子集,A B 使得Z A B =⋃.因此Y A B ⊂⋃ ………………………………… 3分由于Y 是连通的,所以Y A ⊂或者Y B ⊂,如果Y A ⊂,由于Z Y A ⊂⊂,所以Z B A B φ⋂⊂⋂=,因此 B Z B φ=⋂=,同理可证如果Y B ⊂,则A φ=,均与假设矛盾.故Z 也 是X 的一个连通子集. …………………………………………………………………… 8分5、设{}Y γγ∈Γ是拓扑空间X 的连通子集构成的一个子集族.如果Y γγφ∈Γ≠,则Y γγ∈Γ是X 的一个连通子集.证明:若Y γγ∈Γ是X 的一个不连通子集.则X 有非空的隔离子集,A B 使得Y A B γγ∈Γ=⋃………………………………………… 4分任意选取x Y γγ∈Γ∈,不失一般性,设x A ∈,对于每一个γ∈Γ,由于Y γ连通,从而Y Aγγ∈Γ⊂及B φ=,矛盾,所以Y γγ∈Γ是连通的. ………………………………………… 8分6、设A 是拓扑空间X 的一个连通子集,B 是X 的一个既开又闭的集合.证明:如果A B φ⋂≠,则A B ⊂.证明:若B X =,则结论显然成立.下设B X ≠,由于B 是X 的一个既开又闭的集合,从而A B ⋂是X 的子空间A 的一个既开又闭的子集………………………………… 4分由于A B φ⋂≠及A 连通,所以A B A ⋂=,故A B ⊂.………… 8分7、设A 是连通空间X 的非空真子集. 证明:A 的边界()A φ∂≠.证明:若()A φ∂=,由于()A A A --'∂=⋂,从而()()()()A A A A A A A A A A φ------'''''=⋂=⋂⋂⋃=⋂⋃⋂,故, A A '是X 的隔离子集 ………………………………………… 4分 因为A 是X 的非空真子集,所以A 和A '均非空,于是X 不连通,与题设矛盾.所以()A φ∂≠. ……………………………………………… 8分。

《拓扑学》作业参考答案

《拓扑学》作业参考答案
R-拓扑T 以B 为基。 (2) a,b R, a b, (a, b) - k B ,
{(a,b) K | a,b R, a b}T ,而 (a,b) K | a,bR (a,b) | a,bR K
因此 R K T
=R k
11. 设A 是 Y 的任意一个开覆盖 (A T ),则A {Y '}是X 的一个开覆盖, 由 X 的紧致性知 {U1, ,Un} A {Y '}是X 的开覆盖, 从而{U1, ,Un} {Y '} A 是Y 的开覆盖,也是A 的有限子覆盖,故 Y 是紧致子集。
n
令U {U x1 , ,U x n }, V Vxi
i 1
则 A U, F V , U Y ,且U,V T
18. y A,则y x,由T2性知 U y , Vy T , U y Vy s, y.x U y, y Vy 又{Vy | y A}是A 的开覆盖,A 为紧改子集。
{Vy1 , ,Vyn } {Vy | y A}, s.t. {Vy1 , ,Vyn } A
VT1
(2)由T * 的定义知 ( X *,T *) 中的闭集为 P( X ) 中的有限集和任一含有 的集合。 对于任意 x X * ,及闭集 F, x F 。 ( a ) x , 则 F 必 为 P( X ) 中 有 限 集 , 因 此 X * F为T * 中 的 元 素 , F 亦 为 T * 中 元 素 , 故 X * F, F T * ( X * F ) F , x X * F, F F ( b ) x X ,则{x} 为 开 集 , 再 取 U {x}' X * {x}则U 亦 为 开 集 , 故 {x}, {x}' T , 使 得 x {x}, F X * {x}, {x} ( X * {x}) ,故 ( X *,T*) 是正则空间。

拓扑习题及答案

拓扑习题及答案

拓扑习题及答案拓扑学是数学中的一个分支,研究的是空间的性质和变形。

在拓扑学中,习题是帮助我们理解和掌握基本概念和定理的重要工具。

在本文中,我将为大家提供一些拓扑学的习题及其答案,希望能够帮助大家更好地理解这门学科。

1. 问题:什么是拓扑空间?答案:拓扑空间是一个集合,其中包含一些特定的子集,这些子集被称为开集,满足一些特定的性质。

拓扑空间中的开集可以用来描述集合中元素之间的相互关系。

2. 问题:什么是连通性?答案:在拓扑空间中,如果存在一条路径将空间中的任意两点连接起来,那么这个空间就是连通的。

换句话说,连通性描述了空间中不存在分离的部分。

3. 问题:什么是紧致性?答案:在拓扑空间中,如果空间中的任意开覆盖都可以找到有限个开集作为子覆盖,那么这个空间就是紧致的。

紧致性描述了空间中的元素有限性质。

4. 问题:什么是同胚?答案:在拓扑学中,如果两个拓扑空间之间存在一个双射函数,并且这个函数和其逆函数都是连续的,那么这两个空间就是同胚的。

同胚关系描述了两个空间之间的拓扑性质相同。

5. 问题:什么是拓扑不变量?答案:拓扑不变量是指在同胚变换下保持不变的性质。

例如,欧拉数是一个拓扑不变量,它描述了一个拓扑空间中的曲面的特征。

6. 问题:什么是连续映射?答案:在拓扑学中,如果一个函数将一个拓扑空间中的开集映射到另一个拓扑空间中的开集,那么这个函数就是连续的。

连续映射描述了空间中元素之间的连续性。

7. 问题:什么是同伦等价?答案:在拓扑学中,如果两个拓扑空间中的映射可以通过连续变形相互转化,那么这两个空间就是同伦等价的。

同伦等价关系描述了空间中的元素可以通过连续变形相互转化。

通过以上几个习题及其答案,我们可以初步了解拓扑学的基本概念和性质。

拓扑学作为一门抽象的数学学科,其应用范围非常广泛。

例如,在计算机科学中,拓扑学可以用来描述网络的结构和连接方式;在物理学中,拓扑学可以用来研究物质的性质和相变;在生物学中,拓扑学可以用来研究分子的结构和相互作用等等。

拓扑试题及答案

拓扑试题及答案

拓扑试题及答案一、选择题(每题2分,共10分)1. 拓扑空间中,任意两个开集的并集还是开集,这是拓扑空间的哪个公理?A. 任意并集公理B. 有限并集公理C. 有限交公理D. 任意交公理答案:A2. 连续映射的定义是?A. 映射的逆映射是连续的B. 映射的原像与像的连续性一致C. 映射的像与原像的连续性一致D. 映射的原像与像的连续性不一致答案:B3. 在拓扑学中,一个空间的基是什么?A. 空间中所有开集的集合B. 空间中所有闭集的集合C. 空间中所有单点集的集合D. 空间中所有有限集的集合答案:A4. 拓扑空间中,一个集合的闭包是指什么?A. 集合本身B. 集合的内部C. 包含集合的所有极限点D. 集合的外部答案:C5. 什么是紧致性?A. 空间中任意开覆盖都有有限子覆盖B. 空间中任意闭覆盖都有有限子覆盖C. 空间中任意开覆盖都有无限子覆盖D. 空间中任意闭覆盖都有无限子覆盖答案:B二、填空题(每题2分,共10分)1. 如果拓扑空间X的任意开覆盖都有一个有限子覆盖,则称X是________。

答案:紧致的2. 拓扑空间中,如果一个映射是连续的,那么它的逆映射也是________。

答案:连续的3. 在拓扑空间X中,如果存在一个开集U包含点x,使得x是U的极限点,则称x是X的________。

答案:累积点4. 拓扑空间X的基B,如果X中任意开集都可以表示为B中开集的并集,则称B是X的一个________。

答案:基5. 如果拓扑空间X的任意子集的闭包都是闭集,则称X是________。

答案:T1空间三、简答题(每题5分,共20分)1. 请简述什么是拓扑空间?答案:拓扑空间是一个集合X,配合一个定义在其上的拓扑结构,这个结构由X的子集构成,满足任意并集公理、有限交公理和空集与全集为开集的条件。

2. 什么是连续映射?答案:连续映射是指在拓扑空间X和Y之间定义的映射f,对于Y中的任意开集V,其原像f^(-1)(V)在X中也是开集。

考研拓扑学试题及答案

考研拓扑学试题及答案

考研拓扑学试题及答案一、选择题(每题3分,共30分)1. 在拓扑学中,一个集合的子集被称为开集,如果它是全空间的开集。

以下哪个选项不是开集的特征?A. 包含空集B. 任意两个开集的交集是开集C. 任意有限个开集的并集是开集D. 任意无限个开集的并集不是开集2. 拓扑空间中的一个基本性质是连续性。

以下哪个选项不是连续函数的特征?A. 函数的逆像是开集B. 函数的值域是开集C. 函数的图像是连续的曲线D. 函数在其定义域内连续3. 以下哪个命题是正确的?A. 有限个连通空间的不交并仍然是连通的B. 任意个连通空间的不交并是连通的C. 任意个连通空间的并集是连通的D. 有限个连通空间的并集是连通的4. 在拓扑空间中,一个点的闭包是指包含该点的最小闭集。

以下哪个说法是错误的?A. 闭包是闭集B. 闭包包含该点的所有邻域C. 闭包是唯一的D. 闭包可能是开集5. 以下哪个选项不是紧空间的特征?A. 任意开覆盖都有有限子覆盖B. 任意序列都有收敛的子序列C. 任意闭区间是紧的D. 任意闭集在空间中是紧的6. 拓扑空间中的分离公理是描述空间中点和子集之间关系的一种性质。

以下哪个选项是错误的?A. T0空间中,每个点由其闭包唯一确定B. T1空间中,每个点由其开核唯一确定C. T2空间中,任意两个不同点都由不相交的开集分离D. T3空间中,任意闭集和任意开集都由不相交的开集分离7. 以下哪个命题是错误的?A. 任意两个拓扑空间的乘积空间是豪斯多夫空间B. 任意两个豪斯多夫空间的乘积空间是豪斯多夫空间C. 任意两个紧致空间的乘积空间是紧致的D. 任意两个可数紧空间的乘积空间是可数紧的8. 以下哪个选项不是局部紧空间的特征?A. 每个点都有一个紧致的邻域B. 空间本身是紧致的C. 每个点都有一个开集邻域,其闭包是紧致的D. 每个点都有一个紧致子集作为其邻域9. 以下哪个命题是正确的?A. 任意两个拓扑空间的和空间是豪斯多夫空间B. 任意两个豪斯多夫空间的和空间是豪斯多夫空间C. 任意两个紧致空间的和空间是紧致的D. 任意两个可数紧空间的和空间是可数紧的10. 在拓扑空间中,一个点的导集是指所有包含该点的序列的极限点的集合。

最新点集拓扑学期末考试练习题(含答案)

最新点集拓扑学期末考试练习题(含答案)

最新点集拓扑学期末考试练习题(含答案)一、单项选择题(每题1分)1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c e φ=T ② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③ {,,{},{,}}X a a b φ=T ④ {,,{},{},{},{},{}}X a b c d e φ=T 答案:③2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{}}X a a b c φ=T ② {,,{},{,},{,}}X a a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:② 3、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c d φ=T ② {,,{,,},{,,}}X a b c a b d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{}}X a b φ=T答案:① 4、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X b c a b φ=T ② {,,{},{},{,},{,}}X a b a b a c φ=T `③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:② 5、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{,},{,,}}X a b a c d φ=T ② {,,{,},{,,}}X a b a c d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{},{,}}X a c a c φ=T答案:④ 6、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X a b b c φ=T ② {,,{,},{,}}X a b b c φ=T③ {,,{},{,}}X a a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:③ 7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ ② X ③ {}b ④ {,,}b c d答案:④8、 已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =( )①φ ② X ③ {}b ④ {,,}b c d 答案:④9、 已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {}a ④ {}b 答案:②10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =( )①φ ② X ③ {}a ④ {}b 答案:④11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {,}a b ④ {,,}b c d 答案:②12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =( )①φ ② X ③ {,}a c ④ {,,}b c d 答案:④13、设{,,,}X a b c d =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集个数( ) ① 1 ② 2 ③ 3 ④ 4 答案:②14、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 1 ② 2 ③ 3 ④ 4 答案:②15、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 0 ② 1 ③ 2 ④ 3 答案:①16、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( ) ① 0 ② 1 ③ 2 ④ 3 答案:③17、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为( ) ① 1 ② 2 ③ 3 ④ 4 答案:④18、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,X 的既开又闭的非空真子集个数( ) ① 1 ② 2 ③ 3 ④ 4 答案:②19、在实数空间中,有理数集Q 的内部Q o 是( )① φ ② Q ③ R -Q ④ R 答案:①20、在实数空间中,有理数集Q 的边界()Q ∂是( )① φ ② Q ③ R -Q ④ R 答案:④21、在实数空间中,整数集Z 的内部Z o 是( )① φ ② Z ③ R -Z ④ R 答案:①22、在实数空间中,整数集Z 的边界()Z ∂是( )① φ ② Z ③ R -Z ④ R 答案:②23、在实数空间中,区间[0,1)的边界是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:③24、在实数空间中,区间[2,3)的边界是( )① φ ② [2,3] ③ {2,3} ④ (2,3) 答案:③25、在实数空间中,区间[0,1)的内部是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:④26、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B ⋃=⋃③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ③27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ①28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()d A B A B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ (())()d d A A d A ⊂⋃ 答案: ④29、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是() ① ()d A φ= ② ()d A X A =-③ ()d A A = ④ ()d A X = 答案:①30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X A =-③ 若A={12,x x },则()d A X = ④ 若A X ≠, 则()d A X ≠ 答案:④31、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是( ) ① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X =③ 若A={12,x x },则()d A X A =- ④ 若12{,}A x x =,则()d A A = 答案:①32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是( ) ① { X ,φ,{c },{d },{c ,d },{a ,b ,c }} ② {X ,φ,{c },{d },{c ,d }} ③ { X ,φ,{c },{a ,b ,c }} ④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }} 答案:①33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T 是X 的拓扑,则( )是T 的基.① {{,}|{}}B p x x X p =∈- ② {{}|}B x x X =∈③ {{,}|}B p x x X =∈ ④ {{}|{}}B x x X p =∈- 答案:③34、 设{,,}X a b c =,则下列X 的拓扑中( )以{,,{}}S X a φ=为子基.① { X , φ,{a },{a ,c }} ② {X , φ,{a }}③ { X , φ,{a },{b },{a ,b }} ④ {X ,φ }答案:②35、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:③36、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:④37、实数空间R 中的任一单点集是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭 答案:②38、实数空间R 的子集A ={1,21,31 ,41,……},则A =( )①φ ② R ③ A ∪{0} ④ A 答案:③39、在实数空间R 中,下列集合是闭集的是( )① 整数集 ② [)b a , ③ 有理数集 ④ 无理数集 答案:①40、在实数空间R 中,下列集合是开集的是( )① 整数集Z ② 有理数集③ 无理数集 ④ 整数集Z 的补集Z '答案:④41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是( )① 1 ② 2 ③ 3 ④ 4 答案:④42、已知{,}X a b =,则X 上的所有可能的拓扑有( )① 1个 ② 2个 ③ 3个 ④ 4个 答案:④43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个① 3 ② 5 ③ 7 ④ 9 答案:④44、设(,)T X 为拓扑空间,则下列叙述正确的为 ( )①T , T X φ∈∉ ② T ,T X φ∉∈③当T T '⊂时,T T U U '∈∈U ④ 当T T '⊂时,T T U U '∈∈I 答案:③ 45、在实数下限拓扑空间R 中,区间[,)a b 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭 答案:③46、设X 是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭 答案:②47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A 的拓扑为( ) ① {,{2},{1,2}}φ=T ② {,,{1},{2},{1,2}}T X φ=③ {,,{1},{2}}T A φ= ④ {,,{1},{2}}T X φ= 答案:③48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A 的拓扑为( ) ① {,{1},{3},{1,3}}T φ= ② {,,{1}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ= 答案:②49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A 的拓扑为( ) ① {,{3},{2,3}}φ=T ② {,,{2},{3}}T A φ=③ {,,{2},{3},{2,3}}T X φ= ④ {,,{3}}T X φ= 答案:②50、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( ) ① {,{1}}T φ= ② {,,{1,2}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ= 答案:①51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,}T A φ=③ {,,{2}}T X φ= ④ {,,{1,2}}T X φ= 答案:②52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( ) ① {,{2},{1,2}}T φ= ② {,{},{1,3}}T X φ=③ {,,{3}}T X φ= ④ {,{3}}T φ= 答案:④53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为( )① {,}T Z φ= ② ()T P Z = ③ T Z = ④ {}T Z = 答案:②54、设126X X X X =⨯⨯⨯L 是拓扑空间126,,,X X X L 的积空间.1P 是X 到1X 的投射,则1P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④55、设126X X X X =⨯⨯⨯L 是拓扑空间126,,,X X X L 的积空间.2P 是X 到2X 的投射,则2P 是( ) ① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④56、设126X X X X =⨯⨯⨯L 是拓扑空间126,,,X X X L 的积空间.3P 是X 到3X 的投射,则3P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④57、设126X X X X =⨯⨯⨯L 是拓扑空间126,,,X X X L 的积空间.4P 是X 到4X 的投射,则4P 是( ) ① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④58、设126X X X X =⨯⨯⨯L 是拓扑空间126,,,X X X L 的积空间.5P 是X 到5X 的投射,则5P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④59、设126X X X X =⨯⨯⨯L 是拓扑空间126,,,X X X L 的积空间.6P 是X 到6X 的投射,则6P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④60、设1X 和2X 是两个拓扑空间,12X X ⨯是它们的积空间,1A X ⊂,2B X ⊂,则有( ) ① A B A B ⨯≠⨯ ② A B A B ⨯=⨯ ③()A B A B ⨯≠⨯o o o ④ ()()()A B A B ∂⨯=∂⨯∂答案:②61、有理数集Q 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对 答案:①62、整数集Z 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对答案:①63、无理数集是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对答案:①64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z 为( ) ①不连通子集 ② 连通子集 ③ 闭集 ④ 开集答案:②65、设12,X X 是平庸空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是平庸空间③ 平庸空间 ④ 不连通空间答案:③66、设12,X X 是离散空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是离散空间③ 平庸空间 ④ 连通空间答案:①67、设12,X X 是连通空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是连通空间③ 平庸空间 ④ 连通空间答案:④68、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对答案:④69、实数空间R 中的不少于两点的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 以上都不对答案:③70、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 区间或一点答案:④71、下列叙述中正确的个数为( )(Ⅰ)单位圆周1S 是连通的; (Ⅱ){0}R -是连通的(Ⅲ)2{(0,0)}R -是连通的 (Ⅳ)2R 和R 同胚① 1 ② 2 ③ 3 ④ 4答案:②二、填空题(每题1分)1、设{,}X a b =,则X 的平庸拓扑为 ;答案:{,}T X φ=2、设{,}X a b =,则X 的离散拓扑为 ;答案:{,,{},{}}T X a b φ= 3、同胚的拓扑空间所共有的性质叫 ; 答案:拓扑不变性质4、在实数空间R 中,有理数集Q 的导集是___________. 答案: R5、)(A d x ∈当且仅当对于x 的每一邻域U 有 答案: ({})U A x φ⋂-≠6、设A 是有限补空间X 中的一个无限子集,则()d A = ;答案:X7、设A 是有限补空间X 中的一个无限子集,则A = ;答案:X8、设A 是可数补空间X 中的一个不可数子集,则()d A = ;答案:X9、设A 是可数补空间X 中的一个不可数子集,则A = ;答案:X10、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{2}11、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:{1}12、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 答案:{1}13、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:φ14、设{,,}X a b c =,则X 的平庸拓扑为 ;答案:{,}T X φ=15、设{,,}X a b c =,则X 的离散拓扑为 答案:{,,{},{},{},{,},{,},{,}}T X a b c a b a c b c φ=16、设{1,2,3}X =,X 的拓扑{,,{2},{3},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:{3}17、设{1,2,3}X =,X 的拓扑{,,{1},{3},{1,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{1}18、:f X Y →是拓扑空间X 到Y 的一个映射,若它是一个单射,并且是从X 到它的象集()f X 的一个同胚,则称映射f 是一个 .答案:嵌入19、:f X Y →是拓扑空间X 到Y 的一个映射,如果它是一个满射,并且Y 的拓扑是对于映射f 而言的商拓扑,则称f 是一个 ;答案:商映射20、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个开集U 的象集()f U 是Y 中的一个开集,则称映射f 是一个 答案:开映射21、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个闭集U 的象集()f U 是Y 中的一个闭集,则称映射f 是一个 答案:闭映射22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个 答案:不连通空间25、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ; 答案:连通子集26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个 ;答案:在连续映射下保持不变的性质27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个 ;答案:可商性质28、若任意1n ≥个拓扑空间12,,,n X X X L ,都具有性质P ,则积空间12n X X X ⨯⨯⨯L 也具有性质P ,则性质P 称为 ;答案:有限可积性质29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;答案:不连通空间.三.判断(每题4分,判断1分,理由3分)1、.从离散空间到拓扑空间的任何映射都是连续映射( ) 答案:√理由:设X 是离散空间,Y 是拓扑空间,:f X Y →是连续映射,因为对任意A Y ⊂,都有1)f A X -⊂(,由于X 中的任何一个子集都是开集,从而1()f A -是X 中的开集,所以:f X Y →是连续的.2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )答案:× 理由:因为(1)12, T T 是X 的拓扑,故∈φ,X T 1,∈φ,X T 2,从而∈φ,X 12 T T ⋂; (2)对任意的∈B A ,T 1⋂T 2,则有∈B A ,T 1且∈B A ,T 2,由于T 1, T 2是X 的拓扑,故∈⋂B A T 1且∈⋂B A T 2,从而∈⋂B A T 1⋂T 2;(3)对任意的21T T T ⋂⊂',则21,T T T T ⊂'⊂',由于T 1, T 2是X 的拓扑,从而Y U ∈T ’U ∈T 1, Y U ∈T ’U ∈T 2,故Y U ∈T ’U ∈ T 1⋂T 2;综上有T 1⋂T 2也是X 的拓扑.3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )答案:√ 理由:设:f X Y →是任一满足条件的映射,由于Y 是平庸空间,它中的开集只有,Y φ,易知它们在f 下的原象分别是,X φ,均为X 中的开集,从而:f X Y →连续.4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )答案:√ 理由:设p 为X 中的任何一点,因为离散空间中每个子集都是开集, 所以{}p 是X 的开子集,且有{}{}()p A p φ-=I ,即()p d A ∉,从而 ()d A φ=.5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )答案:× 理由:设{}A y =,则对于任意,x X x y ∈≠,x 有唯一的一个邻域X ,且有()y X A x ∈⋂-,从而()X A x φ⋂-≠,因此x 是A 的一个凝聚点,但对于y 的唯一的邻域X ,有()X A y φ⋂-=,所以有()d A X A φ=-≠.6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )答案:√ 理由:对于任意,x X ∈因为A 包含多于一点,从而对于x 的唯一的邻域X ,且有()X A x φ⋂-≠,因此x 是A 的一个凝聚点,即()x d A ∈,所以有()d A X =.7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )答案:√理由:设X 是一个不连通空间,设,A B 是X 的两个非空的隔离子集使得A B X ⋃=,显然A B φ=I ,并且这时有:()()B B X B A B B B =⋂=⋂⋃⋂=从而B 是X 的一个闭子集,同理可证A 是X 的一个闭子集,这就证明了,A B 满足,A B A B X φ⋂=⋃=.8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )√ 理由:这是因为若设A 是X 中的一个既开又闭的非空真子集,令B A '=,则,A B 都是X 中的非空闭子集,它们满足A B X ⋃=,易见,A B 是隔离子集,所以拓扑空间X 是一个不连通空. 五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂.答案:对于任意()x d A ∈,设U 是x 的任何一个邻域,则有({})U A x φ⋂-≠,由于A B ⊂,从而({})({})U B x U A x φ⋂-⊃⋂-≠,因此()x d B ∈,故()()d A d B ⊂.2、设,,X Y Z 都是拓扑空间.:f X Y →, :g Y Z →都是连续映射,试说明:g f X Z →o 也是连续映射.答案:设W 是Z 的任意一个开集,由于:g Y Z →是一个连续映射,从而1()g W -是Y 的一个开集,由:f X Y →是连续映射,故11(())f g W --是X 的一开集,因此 111()()(())g f W f g W ---=o 是X 的开集,所以:g f X Z →o 是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集. 答案:对于x A '∀∈,则x A ∉,由于A 是一个闭集,从而x 有一个邻域U 使得({})U A x φ⋂-=,因此U A φ⋂=,即U A '⊂,所以对任何x A '∈,A '是x 的一个邻域,这说明A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集. 答案:设x A ∉,则x A '∈,由于A '是一个开集,所以A '是x 的一个邻域,且满足A A φ'⋂=,因此x A ∉,从而A A ⊃,即有A A =,这说明A 是一个闭集.5、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T .答案:]}}1[],0{[]},0{[,,{Y φ= T 6、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T . 答案:{,,{[3]},{[2],[3]}}T Y φ= 7、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T . 答案:{,,{[1]},{[1],[1]}}T Y φ=-- 8、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[2],[1],[2]}Y =-,试写出Y 的商拓扑T . 答案:{,,{[2]},{[2],[1]}}T Y φ=-- 9、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[3]}Y =,试写出Y 的商拓扑T . 答案:{,,{[3]},{[2],[3]}}T Y φ= 10、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[4]}Y =,试写出Y 的商拓扑T . 答案:{,,{[4]},{[2],[4]}}T Y φ= 11、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[1],[2],[4]}Y =-,试写出Y 的商拓扑T . 答案:{,,{[4]},{[2],[4]}}T Y φ= 六、证明题(每题8分)1、设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射.则()f X 是Y 的一个连通子集. 证明:如果()f X 是Y 的一个不连通子集,则存在Y 的非空隔离子集,A B 使得()f X A B =⋃ …………………………………………… 3分于是11(),()f A f B --是X 的非空子集,并且:111111111(()())(()())(()())(()())(()())f A f B f B f A f A f B f B f A f A B A B φ---------⋂⋃⋂⊂⋂⋃⋂=⋂⋃⋂= 所以11(),()f A f B --是X 的非空隔离子集 此外,1111()()()(())f A f B f A B f f X X ----⋃=⋃==,这说明X 不连通,矛盾.从而()f X 是Y 的一个连通子集. ………………………… 8分2、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的开集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.证明:因为B A ,是X 的开集,从而Y B Y A ⋂⋂,是子空间Y 的开集. 又因B A Y ⋃⊂中,故)()(Y B Y A Y ⋂⋃⋂= ………………… 4分由于Y 是X 的连通子集,则Y B Y A ⋂⋂,中必有一个是空集. 若Φ=⋂Y B ,则A Y ⊂;若Φ=⋂Y A ,则B Y ⊂………………… 8分3、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的闭集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.证明:因为B A ,是X 的闭集,从而Y B Y A ⋂⋂,是子空间Y 的闭集. 又因B A Y ⋃⊂中,故)()(Y B Y A Y ⋂⋃⋂= ………………… 4分由于Y 是X 的连通子集,则Y B Y A ⋂⋂,中必有一个是空集. 若Φ=⋂Y B ,则A Y ⊂;若Φ=⋂Y A ,则B Y ⊂………………… 8分4、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个连通子集. 证明:若Z 是X 的一个不连通子集,则在X 中有非空的隔离子集,A B 使得Z A B =⋃.因此Y A B ⊂⋃ ………………………………… 3分由于Y 是连通的,所以Y A ⊂或者Y B ⊂,如果Y A ⊂,由于Z Y A ⊂⊂,所以Z B A B φ⋂⊂⋂=,因此 B Z B φ=⋂=,同理可证如果Y B ⊂,则A φ=,均与假设矛盾.故Z 也 是X 的一个连通子集. …………………………………………………………………… 8分 5、设{}Y γγ∈Γ是拓扑空间X 的连通子集构成的一个子集族.如果Y γγφ∈Γ≠I ,则Y γγ∈ΓU 是X 的一个连通子集. 证明:若Y γγ∈ΓU 是X 的一个不连通子集.则X 有非空的隔离子集,A B 使得Y A B γγ∈Γ=⋃U ………………………………………… 4分任意选取x Y γγ∈Γ∈I,不失一般性,设x A ∈,对于每一个γ∈Γ,由于Y γ连通,从而Y Aγγ∈Γ⊂U 及B φ=,矛盾,所以Y γγ∈ΓU 是连通的. ………………………………………… 8分6、设A 是拓扑空间X 的一个连通子集,B 是X 的一个既开又闭的集合.证明:如果A B φ⋂≠,则A B ⊂.证明:若B X =,则结论显然成立. 下设B X ≠,由于B 是X 的一个既开又闭的集合,从而A B ⋂是X 的子空间A 的一个既开又闭的子集………………………………… 4分由于A B φ⋂≠及A 连通,所以A B A ⋂=,故A B ⊂.………… 8分 7、设A 是连通空间X 的非空真子集. 证明:A 的边界()A φ∂≠. 证明:若()A φ∂=,由于()A A A --'∂=⋂,从而()()()()A A A A A A A A A A φ------'''''=⋂=⋂⋂⋃=⋂⋃⋂,故, A A '是X 的隔离子集 ………………………………………… 4分因为A 是X 的非空真子集,所以A 和A '均非空,于是X 不连通,与题设矛盾.所以()A φ∂≠. ……………………………………………… 8分下为点集拓扑学考试的辨析题和证明题,解答是本人自己写的,可能有错误或者不足,希望对大家的考试有帮助.二、辨析题(每题5分,共25分,正确的说明理由,错误的给出反例) 1、拓扑空间中有限集没有聚点. 答:这个说法是错误的.反例:{}c b a X ,,= ,规定拓扑 {}{}a X ,,φτ=,则当{}a A =时,b 和c 都是A 的聚点.因为b 和c 的领域只有X一个,它包含a ,a 不是A 的聚点,因为{}φ=a A \.2、欧式直线1E 是紧致空间. 答:这个说法是错误的.反例:对1E 而言,有开覆盖(){}+∈-=Z n n n |,μ,而对于该开覆盖没有有限子覆盖. 3、如果乘积空间Y X ⨯道路连通,则X 和Y 都是道路连通空间.答:这个说法是正确的.证明:对于投射有()X Y X P =⨯1,()Y Y X P =⨯2,由投射是连续的,又知Y X ⨯是道路连通,从而像也是道路连通空间,所以X和Y 都是道路连通空间.4、单位闭区间I 与1S 不同胚. 答:这个说法是正确的.下面用反证法证明,反设I 与1S 同胚,则⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛→⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧21\21\2:21\2|1f S f 也是同胚映射,⎭⎬⎫⎩⎨⎧21\I不连通,则 ⎭⎬⎫⎩⎨⎧21\1S 不连通,故矛盾,所以单位闭区间I 与1S 不同胚. 5、紧致性具有可遗传性质.答:这个说法是错误的.反例 :[]1,0紧致但()1,0不紧致.三、证明题(每题10分,共50分)1、规定[)111,0\:E E f →为()⎩⎨⎧≥-<=110,x x x x x f ,证明f 是连续映射,但不是同胚映射. 证明:由于f 限制在()0,∞-与()+∞,1上连续,由粘接引理,f连续.但1-f 不连续,如()0,∞-是[)1,0\1E的闭集,但()()()()()()()0,0,0,11∞-=∞-=∞---f f不是1E 的闭集,所以f不是同胚映射.2、证明:Hausdorff 空间的子空间也是Hausdorff 空间. 证明:设X 是Hausdorff 空间,Y 是X的任一子空间,需证Y 是Hausdorff 空间.Y y x ∈∀,,由X是Hausdorff 空间,所以存在y x ,在X的开邻域U 、V 使得φ=⋂V U,YU ⋂是x在Y 中开邻域,YV ⋂是y在Y 中开邻域,()()φ=⋂⋂=⋂⋂⋂Y V U Y V Y U ,故Y 是Hausdorff 空间.3、证明:从紧致空间到Hausdorff 空间的连续双射是同胚. 证明:要证明XY f →-:1连续,只需证f是闭映射,设A 是X 的闭子集紧致,所以A 是紧致的.又因为紧致空间在连续映射下的像也紧致,所以()A f 是Y 的紧致子集,又由于Hausdorff 空间的紧致子集是闭集,所以()A f 是Y 的闭集.4、设0X 是X的既开又闭的子集,A 是X的连通子集,则或者φ=⋂0X A 或者0X A ⊂.证明:0X A ⋂是A 的既开又闭的子集,由于A 连通,则或者φ=⋂0X A 或者A X A =⋂0即0X A ⊂.5、证明:道路连通性具有可乘性质.证明:设()00,y x 是()11,y x 是Y X ⨯中两点,X 和Y 都是道路连通,则有X 中道路a ,以10,x x 为起始点,又有Y 中道路b ,以10,y y 为起始点,作Y X ⨯中道路c为:()()()()t b t a t c ,=,I t ∈∀,则c 连接()00,y x 和()11,y x ,所以道路连通性具有可乘性质.。

试题集:拓扑学初步

试题集:拓扑学初步

1.在拓扑空间中,下列哪项不是开集的定义?o A. 开集是拓扑空间中的一个集合,它属于该空间的拓扑。

o B. 开集是所有点的邻域。

o C. 开集是所有点的闭包。

o D. 开集是包含在它自身的邻域内的集合。

参考答案: C. 开集是所有点的闭包。

解析: 开集的定义是它属于拓扑空间的拓扑,即它是一个邻域,包含在它自身的邻域内,但开集不是所有点的闭包,闭包是开集的补集的补集。

2.下列哪项不是拓扑空间的定义?o A. 一个集合和它的子集族,其中包含空集和全集。

o B. 任意多个开集的并集仍然是开集。

o C. 有限多个开集的交集仍然是开集。

o D. 任意多个闭集的并集仍然是闭集。

参考答案: D. 任意多个闭集的并集仍然是闭集。

解析: 拓扑空间的定义包括集合和它的子集族,其中包含空集和全集,任意多个开集的并集和有限多个开集的交集仍然是开集,但任意多个闭集的并集不一定是闭集。

3.在拓扑学中,下列哪项不是连续函数的定义?o A. 对于函数f的定义域中的任意开集,其像集也是开集。

o B. 对于函数f的值域中的任意开集,其原像集也是开集。

o C. 函数f在其定义域的每一点都是连续的。

o D. 函数f在其值域的每一点都是连续的。

参考答案: A. 对于函数f的定义域中的任意开集,其像集也是开集。

解析: 连续函数的定义是对于函数f的值域中的任意开集,其原像集也是开集,函数在其定义域的每一点都是连续的,但函数f的定义域中的开集的像集不一定是开集。

4.下列哪项不是紧致空间的定义?o A. 紧致空间中的任意开覆盖都有有限子覆盖。

o B. 紧致空间中的所有序列都有收敛子序列。

o C. 紧致空间中的所有连续函数都有界。

o D. 紧致空间中的所有连续函数都有最大值和最小值。

参考答案: B. 紧致空间中的所有序列都有收敛子序列。

解析: 紧致空间的定义是任意开覆盖都有有限子覆盖,所有连续函数都有界和最大最小值,但紧致空间中的所有序列不一定都有收敛子序列。

拓扑学基础复习题

拓扑学基础复习题

《拓扑学基础》复习题单项选择题下列有关连续映射:f X Y →正确的是( B )A 、对X 中的任意开集U ,有()f U 是Y 中的一个开集B 、Y 中的任何一个闭集B ,有1()fB -是X 中的一个闭集C 、Y 中的任何一个子集A ,有11()()f A f A --⊂ D 、若f 还是一一映射,则f 是一个同胚映射设X 是一个拓扑空间,A X ⊂,则()A ∂=( D )A 、A A -'⋂B 、00A A ''⋃C 、0()A ∂D 、()X A ∂-下列拓扑性质中,没有继承性的是( D )A 、1T 空间B 、2T 空间C 、3T 空间D 、4T 空间下列有关实数空间 ,不正确的是( D )A 、它满足第一可数性公理B 、它满足第二可数性公理C 、它的任何一个子空间都满足第二可数性公理D 、它的任何一个子空间都是连通的 设A 是度量空间(,X ρ)中的一个非空子集,则下列命题错误的是( C )A 、()x d A ∈当且仅当(,{})0x A x ρ-=B 、()x d A ∈当且仅当(,)0x A ρ=C 、对x A ∀∈,且有(,)B x A εφ⋂≠,则A 为X 中的一个开集D 、x A ∈当且仅当(,)0x A ρ=填空题若拓扑空间X 有一个可数稠密子集,则称 是一个 可分空间 。

拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映下的象所具有,则称这个性质是一个 在连续映射下保持不变的性质 。

实数空间 中的有理数集Q ,则()d Q = 。

设Y 是拓扑空间(,)X J 的一个子空间,则Y 的拓扑为 |Y J 。

实数空间 的一个基是 {(,)|,a b a b ∈ 且}a b < 。

设X 是一个拓扑空间,D X ⊂,若D 是X 的一个稠密子集,则D = X 。

设X 是一个拓扑空间,C 是X 的一个连通分支,则C = C 。

名词解释紧致空间:设X 是一个拓扑空间,如果X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个紧致空间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点集拓扑学练习题一、单项选择题(每题2分)1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑. ① {,,{},{,},{,,}}X a a b a c e φ=T② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③ {,,{},{,}}X a a b φ=T④ {,,{},{},{},{},{}}X a b c d e φ=T2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑. ① {,,{},{,},{}}X a a b c φ=T ② {,,{},{,},{,}}X a a b a c φ=T ③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T3、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑. ① {,,{},{,},{,,}}X a a b a c d φ=T ② {,,{,,},{,,}}X a b c a b d φ=T ③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{}}X a b φ=T4、设{,,}X a b c =,下列集族中,( )是X 上的拓扑. ① {,,{},{},{,}}X b c a b φ=T ② {,,{},{},{,},{,}}X a b a b a c φ=T ③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T5、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑. ① {,,{,},{,,}}X a b a c d φ=T ② {,,{,},{,,}}X a b a c d φ=T ③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{},{,}}X a c a c φ=T6、设{,,}X a b c =,下列集族中,( )是X 上的拓扑. ① {,,{},{},{,}}X a b b c φ=T ② {,,{,},{,}}X a b b c φ=T ③ {,,{},{,}}X a a c φ=T ④ {,,{},{},{}}X a b c φ=T7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ ② X ③ {}b ④ {,,}b c d8、 已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =( )①φ ② X ③ {}b ④ {,,}b c d9、 已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {}a ④ {}b10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =( )①φ ② X ③ {}a ④ {}b11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {,}a b ④ {,,}b c d12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =( )①φ ② X ③ {,}a c ④ {,,}b c d13、设{,,,}X a b c d =,拓扑{,,{},{,,}X a b c d φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 1 ② 2 ③ 3 ④ 414、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1 ② 2 ③ 3 ④ 415、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 0 ② 1 ③ 2 ④ 316、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( )① 0 ② 1 ③ 2 ④ 317、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为( )① 1 ② 2 ③ 3 ④ 418、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1 ② 2 ③ 3 ④ 419、在实数空间中,有理数集Q 的内部Q 是( )① φ ② Q ③ R -Q ④ R20、在实数空间中,有理数集Q 的边界()Q ∂是( )① φ ② Q ③ R -Q ④ R21、在实数空间中,整数集Z 的内部Z 是( )① φ ② Z ③ R -Z ④ R22、在实数空间中,整数集Z 的边界()Z ∂是( )① φ ② Z ③ R -Z ④ R23、在实数空间中,区间[0,1)的边界是( )① φ ② [0,1] ③ {0,1} ④ (0,1)24、在实数空间中,区间[2,3)的边界是( )① φ ② [2,3] ③ {2,3} ④ (2,3)25、在实数空间中,区间[0,1)的内部是( )① φ ② [0,1] ③ {0,1} ④ (0,1)26、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( ) ① ()()()d A B d A d B ⋃=⋃ ② A B A B ⋃=⋃③ ()()()d A B d A d B ⋂=⋂ ④ A A =27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( ) ① ()()()d A B d A d B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ A A =28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()d A B A B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ (())()d d A A d A ⊂⋃29、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是( ) ① ()d A φ= ② ()d A X A =-③ ()d A A = ④ ()d A X =30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X A =- ③ 若A={12,x x },则()d A X = ④ 若A X ≠, 则()d A X ≠31、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X = ③ 若A={12,x x },则()d A X A =- ④ 若12{,}A x x =,则()d A A =32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是( )① { X ,φ,{c },{d },{c ,d },{a ,b ,c }}② {X ,φ,{c },{d },{c ,d }}③ { X ,φ,{c },{a ,b ,c }}④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }}33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T 是X 的拓扑,则( )是T 的基.① {{,}|{}}B p x x X p =∈- ② {{}|}B x x X =∈③ {{,}|}B p x x X =∈ ④ {{}|{}}B x x X p =∈-34、 设{,,}X a b c =,则下列X 的拓扑中( )以{,,{}}S X a φ=为子基.① { X , φ,{a },{a ,c }} ② {X , φ,{a }}③ { X , φ,{a },{b },{a ,b }} ④ {X ,φ }35、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭36、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭37、实数空间R 中的任一单点集是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭38、实数空间R 的子集A ={1,21,31 ,41,……},则A =( ) ①φ ② R ③ A ∪{0} ④ A39、在实数空间R 中,下列集合是闭集的是( )① 整数集 ② [)b a , ③ 有理数集 ④ 无理数集40、在实数空间R 中,下列集合是开集的是( )① 整数集Z ② 有理数集③ 无理数集 ④ 整数集Z 的补集Z '41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是( )① 1 ② 2 ③ 3 ④ 442、已知{,}X a b =,则X 上的所有可能的拓扑有( )① 1个 ② 2个 ③ 3个 ④ 4个43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个① 3 ② 5 ③ 7 ④ 944、设(,)T X 为拓扑空间,则下列叙述正确的为 ( ) ①T , T X φ∈∉ ② T ,T X φ∉∈③当T T '⊂时,T T U U '∈∈ ④ 当T T '⊂时,T T U U '∈∈45、在实数下限拓扑空间R 中,区间[,)a b 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭46、设X 是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A的拓扑为( )① {,{2},{1,2}}φ=T ② {,,{1},{2},{1,2}}T X φ= ③ {,,{1},{2}}T A φ= ④ {,,{1},{2}}T X φ=48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A的拓扑为( )① {,{1},{3},{1,3}}T φ= ② {,,{1}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ=49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A的拓扑为( )① {,{3},{2,3}}φ=T ② {,,{2},{3}}T A φ=③ {,,{2},{3},{2,3}}T X φ= ④ {,,{3}}T X φ=50、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( )① {,{1}}T φ= ② {,,{1,2}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ=51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,}T A φ=③ {,,{2}}T X φ= ④ {,,{1,2}}T X φ=52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,{},{1,3}}T X φ= ③ {,,{3}}T X φ= ④ {,{3}}T φ=53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为( )① {,}T Z φ= ② ()T P Z =③ T Z = ④ {}T Z =54、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射55、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.2P 是X 到2X 的投射,则2P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射56、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.3P 是X 到3X 的投射,则3P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射57、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.4P 是X 到4X 的投射,则4P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射58、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.5P 是X 到5X 的投射,则5P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射59、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.6P 是X 到6X 的投射,则6P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射60、设1X 和2X 是两个拓扑空间,12X X ⨯是它们的积空间,1A X ⊂,2B X ⊂,则有( ) ① A B A B ⨯≠⨯ ② A B A B ⨯=⨯③()A B A B ⨯≠⨯ ④ ()()()A B A B ∂⨯=∂⨯∂61、有理数集Q 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对62、整数集Z 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对63、无理数集是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z 为( )①不连通子集 ② 连通子集 ③ 闭集 ④ 开集65、设12,X X 是平庸空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是平庸空间③ 平庸空间 ④ 不连通空间66、设12,X X 是离散空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是离散空间③ 平庸空间 ④ 连通空间67、设12,X X 是连通空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是连通空间③ 平庸空间 ④ 连通空间68、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对69、实数空间R 中的不少于两点的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 以上都不对70、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 区间或一点71、下列叙述中正确的个数为( )(Ⅰ)单位圆周1S 是连通的; (Ⅱ){0}R -是连通的 (Ⅲ)2{(0,0)}R -是连通的 (Ⅳ)2R 和R 同胚① 1 ② 2 ③ 3 ④ 472、实数空间R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理 ③ 既满足第一又满足第二可数性公理 ④ 以上都不对73、整数集Z 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理 ③ 既满足第一又满足第二可数性公理 ④ 以上都不对74、有理数集Q 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理 ③ 既满足第一又满足第二可数性公理 ④ 以上都不对75、无理数集作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对76、正整数集Z +作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理 ③ 既满足第一又满足第二可数性公理 ④ 以上都不对77、负整数集Z -作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理 ③ 既满足第一又满足第二可数性公理 ④ 以上都不对 78、2维欧氏间空间2R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理 ③ 既满足第一又满足第二可数性公理 ④ 以上都不对 79、3维欧氏间空间3R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理 ③ 既满足第一又满足第二可数性公理 ④ 以上都不对80、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ② 连通性③ 离散性 ④ 第一可数性公理81、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ② 连通性③ 第二可数性公理 ④ 平庸性82、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ② 可分性③ 第二可数性公理 ④ 离散性83、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ② 可分性③ 离散性 ④ 第二可数性公理84、设X 是一个拓扑空间,若对于,,x y X x y ∀∈≠,均有{}{}x y ≠,则X 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对85、设{1,2}X =,{,,{1}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对86、设{1,2}X =,{,,{2}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 道路连通空间87、设{1,2,3}X =,{,,{1}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对88、设{1,2,3}X =,{,,{23}}X φ=,T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对89、设{1,2,3}X =,{,,{13}}X φ=,T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对90、设{1,2,3}X =,{,,{12}}X φ=,T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对91、设{1,2,3}X =,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对92、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间93、设X 是一个拓扑空间,若X 的每一个有限子集都是闭集,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间94、设X 是一个拓扑空间,若对x X ∀∈及x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间95、设X 是一个拓扑空间,若对X 的任何一个闭集A 及A 的每一个开邻域U ,都存在A的一个开邻域V ,使得V U ⊂,则X 是( ) ①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间96、设{1,23}X =,,{,,{1},{23}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正规空间97、设{1,23}X =,,{,,{2},{13}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正规空间98、设{1,23}X =,,{,,{3},{12}}X φ=,T ,则(,)X T 是( )①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正则空间99、设{1,23}X =,,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间100、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间101、设{1,23}X =,,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间102、若拓扑空间X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个() ① 连通空间 ② 道路连通空间 ③ 紧致空间 ④ 可分空间103、紧致空间中的每一个闭子集都是( )① 连通子集 ② 道路连通子集 ③ 紧致子集 ④ 以上都不对104、Hausdorff 空间中的每一个紧致子集都是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对105、紧致的Hausdorff 空间中的紧致子集是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对106、拓扑空间X 的任何一个有限子集都是( )① 连通子集 ② 紧致子集 ③ 非紧致子集 ④ 开集107、实数空间R 的子集{1,2,3}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集108、实数空间R 的子集{1,2,3,4}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集109、如果拓扑空间X 的每个紧致子集都是闭集,则X 是( )① 1T 空间 ② 紧致空间 ③ 可数补空间 ④ 非紧致空间二、填空题(每题2分)1、设{,}X a b =,则X 的平庸拓扑为 ;2、设{,}X a b =,则X 的离散拓扑为 ;3、同胚的拓扑空间所共有的性质叫 ;4、在实数空间R 中,有理数集Q 的导集是___________.5、)(A d x ∈当且仅当对于x 的每一邻域U 有 ;6、设A是有限补空间X中的一个无限子集,则()d A= ;7、设A是有限补空间X中的一个无限子集,则A= ;8、设A是可数补空间X中的一个不可数子集,则()d A= ;9、设A是可数补空间X中的一个不可数子集,则A= ;10、设{1,2,3}X=,X的拓扑{,,{2},{2,3}}=,则X的子集{1,2}A=的内部T Xφ为 ;11、设{1,2,3}A=的内部=,则X的子集{1,3} X=,X的拓扑{,,{1},{2,3T Xφ为 ;12、设{1,2,3}A=的内部=,则X的子集{1,2}T XφX=,X的拓扑{,,{1},{2,3为 ;13、设{1,2,3}A=的内部=,则X的子集{1,3} X=,X的拓扑{,,{2},{2,3}}T Xφ为 ;14、设{,,}=,则X的平庸拓扑为 ;X a b c15、设{,,}=,则X的离散拓扑为 ;X a b c16、设{1,2,3}A=的内部=,则X的子集{1,3}T XφX=,X的拓扑{,,{2},{3},{2,3}}为 ;17、设{1,2,3}A=的内部=,则X的子集{1,2}T XφX=,X的拓扑{,,{1},{3},{1,3}为 ;18、:f X Y→是拓扑空间X到Y的一个映射,若它是一个单射,并且是从X到它的象集()f X的一个同胚,则称映射f是一个 .19、:f X Y→是拓扑空间X到Y的一个映射,如果它是一个满射,并且Y的拓扑是对于映射f而言的商拓扑,则称f是一个 .20、设,→是一个映射,若X中任何一个开集U的象集X Y是两个拓扑空间,:f X Yf U是Y中的一个开集,则称映射f是一个;()21、设,→是一个映射,若X中任何一个闭集U的象集X Y是两个拓扑空间,:f X Y()f U 是Y 中的一个闭集,则称映射f 是一个 ;22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个 ;25、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ;26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个 ;27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个 ;28、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ;29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;30、若12,X X 满足第一可数性公理,则积空间12X X ⨯满足 ;31、若12,X X 满足第二可数性公理,则积空间12X X ⨯也满足 ;32、如果一个拓扑空间具有性质P ,那么它的任何一个子空间也具有性质P ,则称性质P 为 ;33、设D 是拓扑空间X 的一个子集,且D X =,则称D 是X 的一个 ;34、若拓扑空间X 有一个可数稠密子集,则称X 是一个 ;35、设X 是一个拓扑空间,如果它的每一个开覆盖都有一个可数子覆盖,则称X 是一个 ;36、如果一个拓扑空间具有性质P ,那么它的任何一个开子空间也具有性质P ,则称性质P 为 ;37、如果一个拓扑空间具有性质P ,那么它的任何一个闭子空间也具有性质P ,则称性质P 为 ;38、设X 是一个拓扑空间,如果则称X 是一个0T 空间;39、设X 是一个拓扑空间,如果则称X 是一个1T 空间;40、设X 是一个拓扑空间,如果则称X 是一个2T 空间;41、正则的1T 空间称为 ;42、正规的1T 空间称为 ;43、完全正则的1T 空间称为 ;44、设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个 .45、设X 是一个拓扑空间,Y 是X 的一个子集.如果Y 作为X 的子空间是一个紧致空间,则称Y 是拓扑空间X 的一个 .46、设X 是一个拓扑空间. 如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个 .47、设X 是一个拓扑空间. 如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个 .48、设X 是一个拓扑空间. 如果X 中的每一个序列都有一个收敛的子序列,则称拓扑空间X 是一个 .三.判断(每题3分,判断1分,理由2分)1、从离散空间到拓扑空间的任何映射都是连续映射( )2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )9、设拓扑空间X 满足第二可数性公理,则X 满足第一可数性公理( )10、若拓扑空间X 满足第二可数性公理,则X 的子空间Y 也满足第二可数性公理( )11、若拓扑空间X 满足第一可数性公理,则X 的子空间Y 也满足第一可数性公理( )12、设{1,2,3}X =,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是3T 空间.( )13、设{1,2,3}X =,{,,{1},{2},{1,2}}T X φ=,则(,)X T 是3T 空间.( )14、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是1T 空间.( )15、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是4T 空间.( )16、3T 空间一定是2T 空间.( )17、4T 空间一定是3T 空间.( )18、设,A B 是拓扑空间X 的两个紧致子集,则A B ⋃是一个紧致子集.( )19、Hausdorff 空间中的每一个紧致子集都是闭集.( )四.名词解释(每题2分)1.同胚映射2、集合A 的内点3、集合A 的内部4.拓扑空间(,)T X 的基5.闭包6、序列7、导集8、不连通空间9、连通子集10、不连通子集11、1 A 空间12、2 A 空间13、可分空间14、0T 空间:15、1T 空间:16、2T 空间:17、正则空间:18、正规空间:19、完全正则空间:20、紧致空间21、紧致子集22、可数紧致空间23、列紧空间24、序列紧致空间五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂.2、设,,X Y Z 都是拓扑空间.:f X Y →, :g Y Z →都是连续映射,试说明:g f X Z →也是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集.5、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T .6、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T . 7、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T .8、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[2],[1],[2]}Y =-,试写出Y 的商拓扑T .9、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[3]}Y =,试写出Y 的商拓扑T . 10、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[4]}Y =,试写出Y 的商拓扑T . 11、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[1],[2],[4]}Y =-,试写出Y 的商拓扑T .12、离散空间是否为2A 空间?说出你的理由.13、试说明实数空间R 是可分空间.14、试说明每一个度量空间都满足第一可数性公理.15、设X 是一个1T 空间,试说明X 的每一个单点集是闭集.16、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,试说明X 是一个1T 空间.17、设(,)X T 是一个1T 空间,∞是任何一个不属于X 的元素.令*{}X X =⋃∞和*X =⋃*T T {},试说明拓扑空间*(,)X *T 是一个0T 空间.18、若X 是一个正则空间,试说明:对x X ∀∈及x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂.19、若X 是一个正规空间,试说明:对X 的任何一个闭集A 及A 的每一个开邻域U ,都存在A 的一个开邻域V ,使得V U ⊂.20、试说明1T 空间X 的任何一个子集的导集都是闭集.21、试说明紧致空间X 的无穷子集必有凝聚点.22、如果X Y ⨯是紧致空间,则X 是紧致空间.23、如果X Y ⨯是紧致空间,则Y 是紧致空间.24、试说明紧致空间X 的每一个闭子集Y 都是紧致子集.六、证明题(每题8分)1、设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射.则()f X 是Y 的一个连通子集.2、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的开集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.3、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的闭集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.4、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个连通子集.5、设{}Y γγ∈Γ是拓扑空间X 的连通子集构成的一个子集族.如果Y γγφ∈Γ≠,则Y γγ∈Γ是X 的一个连通子集.6、设A 是拓扑空间X 的一个连通子集,B 是X 的一个既开又闭的集合.证明:如果A B φ⋂≠,则A B ⊂.7、设A 是连通空间X 的非空真子集. 证明:A 的边界()A φ∂≠.8、设X 是一个含有不可数多个点的可数补空间.证明X 不满足第一可数性公理.9、设X 是一个含有不可数多个点的有限补空间.证明:X 不满足第一可数性公理.10、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第二可数性公理,证明:Y 也满足第二可数性公理.11、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第一可数性公理,证明:Y 也满足第一可数性公理.12、A 是满足第二可数性公理空间X 的一个不可数集。

相关文档
最新文档