拓扑学测试题

合集下载

大学拓扑学入门练习题

大学拓扑学入门练习题

大学拓扑学入门练习题1. 绘制拓扑空间给定一个拓扑空间X,根据以下要求,绘制出X的拓扑结构图。

1.1 X是一个有限集合,所有的子集都是X的开集。

1.2 X是一个无限集合,空集和X本身是X的开集。

1.3 X是一个无限集合,空集和X本身以外的有限子集都是X的闭集。

2. 判断拓扑关系给定一个拓扑空间X和集合A,判断以下拓扑关系是否成立,并简要说明理由。

2.1 A是X的子集,则A是X中的闭集。

2.2 A是X的子集,则A是X中的开集。

2.3 A是X的闭集,则A是X的子集。

2.4 A是X的开集,则A是X的子集。

2.5 A和X-A都是X的闭集,则A是X的子集。

2.6 A和X-A都是X的开集,则A是X的子集。

3. 证明定理根据拓扑学的基本定理,证明以下定理。

定理:在拓扑空间X中,如果U是X的开集,而A是X的闭集,则U-A是X的开集。

证明:首先,根据定理的前提条件,有U是X的开集,且A是X的闭集。

由定义可知,A的补集X-A是X的开集。

考虑U-A,根据集合的运算法则,U-A = U ∩ (X-A)。

由于U是开集,X-A是开集,根据拓扑学中开集的交集仍为开集的性质,可得U-A是X的开集。

综上所述,定理得证。

4. 寻找连通分量给定下图所示的拓扑空间X,请确定X的所有连通分量。

```A----B----C| | |D----E F|G```根据图示,边连接的节点表示相邻关系,每个节点代表一个集合。

连通分量是指在一个拓扑空间中,由任意两点之间连通的所有点所构成的集合。

请根据图示,列举出X的所有连通分量。

5. 类化空间给定一个拓扑空间X和一个等价关系~,其中a~b代表a和b在拓扑空间X中具有相同的邻域结构。

5.1 证明~是X上的一个等价关系。

证明:为证明~是X上的一个等价关系,需要满足以下条件:(i)自反性:对于任意a∈X,都有a~a。

(ii)对称性:对于任意a, b∈X,如果a~b,则b~a。

(iii)传递性:对于任意a, b, c∈X,如果a~b且b~c,则a~c。

拓扑学测试题

拓扑学测试题

拓扑学测试题一一、选择题(每小题2分,共10分)下列拓扑性质中,不满足连续不变性的是( ) A. 列紧 B. 序列紧 C. 可数紧 D. 紧致 下列拓扑性质中,没有遗传性的是( ) A.1T 空间 B. 2T 空间 C. 3T 空间 D. 4T 空间下列拓扑性质中,有限积性不成立的是( ) A.1T 空间 B. 2T 空间 C. 3T 空间 D. 4T 空间设X 多于两点, 21,ττ是X 的两个拓扑,则下列命题不成立的是( ) (A) 21ττ⋃是X 的某个拓扑的基; (B) 21ττ⋂是X 的一个拓扑; (C) 21ττ⋃是X 的一个拓扑; (D) 21ττ⋂是X 的某个拓扑的基。

设A 为度量空间 ),(d X 的任一非空子集,则下列命题不成立的是( ) (A) x 为A 的边界点当且仅当 (,)(,)0d x A d x X A =-= (B) x 为A 的聚点当且仅当 (,)0d x A = (C) x 为A 的内点当且仅当 (,)0d x X A ->; (D) A x ∈当且仅当 0),(=A x d .二、 二、判断题(每小题5分,共25分) 三、 仿紧空间是度量空间.()四、 商映射一定是闭映射或开映射. ()五、 局部道路连通空间不一定是道路连通空间. () 六、 连通空间一定是局部连通空间. ()七、 若11:f S →连续,则 1t ∃∈,使1()f t -不可数. () 八、 三、解答题(第1小题10分,第2小题15分,共25分) 九、 举例说明拓扑空间中的有限子集可以有聚点. 十、 设{}0,1,2X =,试写出 X 上的所有拓扑.十一、 四、证明题(每小题10分,共40分) 十二、 若 X 满足1T 公理,则X 中任一子集的导集都是闭集.十三、 证明欧氏平面除去可数个点后仍是道路连通的.十四、 证明至少有两个点的T 4空间的连通子集一定是不可数集.十五、 证明 X 为Hausdorff 空间当且仅当 {(,)|}x x x X ∆=∈是 X X ⨯的闭集.答案一 、 选择题 1、A 2、D 3、D 4、C 5、B二 、 是非题 1、ⅹ 2、ⅹ 3、√ 4、ⅹ 5、√三 、 解答题 1. 举例说明拓扑空间中的有限子集可以有聚点.解 例如 {}0,1X =,{},0,X τ=∅,{}{}01'=.2. 设 {}0,1,2X =,试写出X 上的所有拓扑. 解 2个开集的共有1个:{Φ,{0,1,2}}, 3个开集的共有6个: {Φ,{0},{0,1,2}},{Φ,{1},{0,1,2}},{Φ,{2},{0,1,2}},{Φ,{1,2},{0,1,2}},{Φ,{0,1},{0,1,2}},{Φ,{0,2},{0,1,2}} 4个开集的共有9个:{Φ,{0},{0,1},{0,1,2}},{Φ,{0},{0,2},{0,1,2}},{Φ,{1},{1,2},{0,1,2}},{Φ,{1},{0,1},{0,1,2}},{Φ,{2},{0,2},{0,1,2}},{Φ,{2},{1,2},{0,1,2}},{Φ,{0},{1},{0,1},{0,1,2}},{Φ,{0},{2},{0,2},{0,1,2}} {Φ,{1},{2},{1,2},{0,1,2}} 5个开集的共有6个:{Φ,{0},{0,2},{0,1},{0,1,2}},{Φ,{1},{1,2},{0,1},{0,1,2}},{Φ,{2},{1,2},{0,2},{0,1,2}} {Φ,{1},{2},{1,2},{0,1,2}}{Φ,{0},{1},{0,1},{0,1,2}} {Φ,{0},{2},{0,2},{0,1,2}} 6个开集的有6个:{Φ,{0},{1},{0,2},{0,1},{0,1,2}},{Φ,{0},{1},{1,2},{0,1},{0,1,2}},{Φ,{1},{2},{1,2},{0,2},{0,1,2}}, {Φ,{1},{2},{1,2},{0,1},{0,1,2}},{Φ,{0},{2},{0,1},{0,2},{0,1,2}},{Φ,{0},{2},{1,2},{0,2},{0,1,2}} … 8个开集的有1个:{Φ,{0},{1},{2},{1,2},{0,2},{0,1},{0,1,2}} 因此共有1+6+9+6+6+1=29个拓扑四 、证明题 1. 若X 满足 1T 公理,则X 中任一子集的导集都是闭集. 证明 设 A X ⊂,只要验证 ()cA '是开集. ()cx A '∀∈,则x 有开邻域U ,使得{}()\U x A =∅,由 1T 公理知, {}\U x 是开集,从而 {}()\cU x A '⊂,于是()cU A '⊂;所以x 是()cA '的内点.2. 证明欧氏平面除去可数个点后仍是道路连通的.证明 设X 是从 2R 除去可数个点后所得到的空间, ,x y X ∀∈,若 x y ≠,设L 是线段xy 的中垂线,设 z L ∈,用(,,)x y z 表示连接 ,,x y z 的折线, 由于这样的折线有不可数多条, 而 X 的余集 Y 是可数集, 所以至少有一条折线 (,,)x y z 不含 Y 中的点, 这表明X 是道路连通的.3. 证明至少有两个点的4T 空间的连通子集一定是不可数集.证明 设X 是至少有两个点的连通的4T 空间 Y 的子集,设 ,x y 是 X 中的两个不同点,令 {},{}A x B y ==,则 A 和B 是子空间 X 中的两个非空不相交的闭集,故由乌里松引理知,存在连续函数 :[0,1]f X →使得, ()0,()1f x f y ==,又因 X 是连通的,故 ()f X 是 [0,1]中的连通集,而 0,1()f X ∈,因此 ()[0,1]f X =,于是 X一定是不可数集.4.证明 X 为Hausdorff 空间当且仅当 {(,)|}x x x X ∆=∈是 X X ⨯的闭集.证明 (必要性)要证 ∆为闭集,只要证它的余集是开集。

大学数学拓扑真题试卷

大学数学拓扑真题试卷

大学数学拓扑真题试卷# 大学数学拓扑真题试卷一、选择题(每题2分,共20分)1. 拓扑空间中的开集,其任意并集还是开集。

这个性质称为:A. 并集公理B. 有限覆盖性质C. 邻域系统D. 闭集性质2. 在度量空间中,下列哪一项不是完备性的定义?A. 任何柯西序列都收敛B. 空间中的每个闭子集都是完备的C. 空间中的每个有界序列都有收敛子序列D. 空间是完备的3. 以下哪个概念不是拓扑空间的基本元素?A. 点B. 开集C. 距离D. 邻域4. 连续映射的定义是:A. 映射的逆像包含开集B. 映射的逆像是闭集C. 映射的逆像包含闭集D. 映射的逆像是邻域5. 以下哪个命题是正确的?A. 任何有限个开集的并集是开集B. 任何无限个开集的交集是开集C. 任何有限个闭集的并集是闭集D. 任何无限个闭集的交集是闭集6. 拓扑空间中的紧性是指:A. 空间是局部紧的B. 空间中任意开覆盖都有有限子覆盖C. 空间是度量空间D. 空间是可分的7. 以下哪个命题是闭区间套定理?A. 闭区间套的交集可能是空集B. 闭区间套的交集至少包含一个点C. 闭区间套的交集是开集D. 闭区间套的交集是闭集8. 度量空间中的完备性与紧性的关系是:A. 完备性蕴含紧性B. 紧性蕴含完备性C. 完备性与紧性无关D. 完备性与紧性总是等价的9. 以下哪个命题是正确的?A. 任何紧空间都是可分的B. 任何可分空间都是紧的C. 任何紧空间都是度量空间D. 任何度量空间都是紧的10. 同胚空间具有相同的:A. 维数B. 体积C. 面积D. 长度二、简答题(每题10分,共20分)1. 简述什么是同胚,并给出一个例子说明两个空间如何是同胚的。

2. 解释什么是紧空间,并给出一个例子说明一个空间是紧的。

三、证明题(每题15分,共30分)1. 证明:在度量空间中,如果一个序列的每个元素都包含在某个紧子集中,那么这个序列有一个收敛子序列。

2. 证明:在欧几里得空间中,闭区间是紧的。

拓扑试题及答案

拓扑试题及答案

拓扑试题及答案一、选择题(每题2分,共10分)1. 拓扑空间中,任意两个开集的并集还是开集,这是拓扑空间的哪个公理?A. 任意并集公理B. 有限并集公理C. 有限交公理D. 任意交公理答案:A2. 连续映射的定义是?A. 映射的逆映射是连续的B. 映射的原像与像的连续性一致C. 映射的像与原像的连续性一致D. 映射的原像与像的连续性不一致答案:B3. 在拓扑学中,一个空间的基是什么?A. 空间中所有开集的集合B. 空间中所有闭集的集合C. 空间中所有单点集的集合D. 空间中所有有限集的集合答案:A4. 拓扑空间中,一个集合的闭包是指什么?A. 集合本身B. 集合的内部C. 包含集合的所有极限点D. 集合的外部答案:C5. 什么是紧致性?A. 空间中任意开覆盖都有有限子覆盖B. 空间中任意闭覆盖都有有限子覆盖C. 空间中任意开覆盖都有无限子覆盖D. 空间中任意闭覆盖都有无限子覆盖答案:B二、填空题(每题2分,共10分)1. 如果拓扑空间X的任意开覆盖都有一个有限子覆盖,则称X是________。

答案:紧致的2. 拓扑空间中,如果一个映射是连续的,那么它的逆映射也是________。

答案:连续的3. 在拓扑空间X中,如果存在一个开集U包含点x,使得x是U的极限点,则称x是X的________。

答案:累积点4. 拓扑空间X的基B,如果X中任意开集都可以表示为B中开集的并集,则称B是X的一个________。

答案:基5. 如果拓扑空间X的任意子集的闭包都是闭集,则称X是________。

答案:T1空间三、简答题(每题5分,共20分)1. 请简述什么是拓扑空间?答案:拓扑空间是一个集合X,配合一个定义在其上的拓扑结构,这个结构由X的子集构成,满足任意并集公理、有限交公理和空集与全集为开集的条件。

2. 什么是连续映射?答案:连续映射是指在拓扑空间X和Y之间定义的映射f,对于Y中的任意开集V,其原像f^(-1)(V)在X中也是开集。

拓扑期末试题及答案

拓扑期末试题及答案

拓扑期末试题及答案一、选择题1. 下面哪个选项不是拓扑的基本概念?A. 连通性B. 邻域C. 紧致性D. 可分性答案:B. 邻域2. 拓扑空间的定义中包括以下哪些要素?A. 集合B. 拓扑C. 运算D. 距离答案:A. 集合,B. 拓扑3. 以下哪个定理用于判断一个集合是否为紧致集?A. Heine-Borel定理B. Bolzano-Weierstrass定理C. 单调有界定理D. Cantor定理答案:A. Heine-Borel定理4. 一个空间若每个点都有至少一个可数邻域,则称该空间满足:A. 可分性B. 连通性C. 紧致性D. 完备性答案:A. 可分性5. 以下哪个不是拓扑空间上的基本拓扑?A. 离散拓扑B. 序拓扑C. 紧致拓扑D. Hausdorff拓扑答案:C. 紧致拓扑二、填空题1. 在连通空间中,_________只有一个子集,即空集和整个集合本身。

答案:极大连通子集2. 设X是一个度量空间,如果序列{an}在X中收敛到点x,则它的任意一个子列也在X中收敛到点x,这个定理称为_________定理。

答案:Bolzano-Weierstrass定理3. 设X、Y是两个度量空间,f:X→Y是一个映射,若对X中任意一致收敛的序列{an}都有序列{f(an)}一致收敛于f(a),则称f是一个_________映射。

答案:连续映射4. 在一个度量空间中,若集合E能被包含在一列开集内,即E⊆∪(n=1)∞O(n),则E称为_________集。

答案:可分集5. 在度量空间中,_________是指个别的点被聚集成簇,而某个区域内不能含有过多的点。

答案:Hausdorff性三、计算题1. 已知拓扑空间X为实数集R上的子集,其基本拓扑为以区间(a,b)为开集的集合族T,计算X中元素x=1的极限点。

解答:首先,极限点是指一个点周围存在无穷多的序列点。

对于x=1来说,我们可以构造一个序列{a_n},其中a_n = 1+1/n。

考研拓扑学试题及答案

考研拓扑学试题及答案

考研拓扑学试题及答案一、选择题(每题3分,共30分)1. 在拓扑学中,一个集合的子集被称为开集,如果它是全空间的开集。

以下哪个选项不是开集的特征?A. 包含空集B. 任意两个开集的交集是开集C. 任意有限个开集的并集是开集D. 任意无限个开集的并集不是开集2. 拓扑空间中的一个基本性质是连续性。

以下哪个选项不是连续函数的特征?A. 函数的逆像是开集B. 函数的值域是开集C. 函数的图像是连续的曲线D. 函数在其定义域内连续3. 以下哪个命题是正确的?A. 有限个连通空间的不交并仍然是连通的B. 任意个连通空间的不交并是连通的C. 任意个连通空间的并集是连通的D. 有限个连通空间的并集是连通的4. 在拓扑空间中,一个点的闭包是指包含该点的最小闭集。

以下哪个说法是错误的?A. 闭包是闭集B. 闭包包含该点的所有邻域C. 闭包是唯一的D. 闭包可能是开集5. 以下哪个选项不是紧空间的特征?A. 任意开覆盖都有有限子覆盖B. 任意序列都有收敛的子序列C. 任意闭区间是紧的D. 任意闭集在空间中是紧的6. 拓扑空间中的分离公理是描述空间中点和子集之间关系的一种性质。

以下哪个选项是错误的?A. T0空间中,每个点由其闭包唯一确定B. T1空间中,每个点由其开核唯一确定C. T2空间中,任意两个不同点都由不相交的开集分离D. T3空间中,任意闭集和任意开集都由不相交的开集分离7. 以下哪个命题是错误的?A. 任意两个拓扑空间的乘积空间是豪斯多夫空间B. 任意两个豪斯多夫空间的乘积空间是豪斯多夫空间C. 任意两个紧致空间的乘积空间是紧致的D. 任意两个可数紧空间的乘积空间是可数紧的8. 以下哪个选项不是局部紧空间的特征?A. 每个点都有一个紧致的邻域B. 空间本身是紧致的C. 每个点都有一个开集邻域,其闭包是紧致的D. 每个点都有一个紧致子集作为其邻域9. 以下哪个命题是正确的?A. 任意两个拓扑空间的和空间是豪斯多夫空间B. 任意两个豪斯多夫空间的和空间是豪斯多夫空间C. 任意两个紧致空间的和空间是紧致的D. 任意两个可数紧空间的和空间是可数紧的10. 在拓扑空间中,一个点的导集是指所有包含该点的序列的极限点的集合。

试题集:拓扑学初步

试题集:拓扑学初步

1.在拓扑空间中,下列哪项不是开集的定义?o A. 开集是拓扑空间中的一个集合,它属于该空间的拓扑。

o B. 开集是所有点的邻域。

o C. 开集是所有点的闭包。

o D. 开集是包含在它自身的邻域内的集合。

参考答案: C. 开集是所有点的闭包。

解析: 开集的定义是它属于拓扑空间的拓扑,即它是一个邻域,包含在它自身的邻域内,但开集不是所有点的闭包,闭包是开集的补集的补集。

2.下列哪项不是拓扑空间的定义?o A. 一个集合和它的子集族,其中包含空集和全集。

o B. 任意多个开集的并集仍然是开集。

o C. 有限多个开集的交集仍然是开集。

o D. 任意多个闭集的并集仍然是闭集。

参考答案: D. 任意多个闭集的并集仍然是闭集。

解析: 拓扑空间的定义包括集合和它的子集族,其中包含空集和全集,任意多个开集的并集和有限多个开集的交集仍然是开集,但任意多个闭集的并集不一定是闭集。

3.在拓扑学中,下列哪项不是连续函数的定义?o A. 对于函数f的定义域中的任意开集,其像集也是开集。

o B. 对于函数f的值域中的任意开集,其原像集也是开集。

o C. 函数f在其定义域的每一点都是连续的。

o D. 函数f在其值域的每一点都是连续的。

参考答案: A. 对于函数f的定义域中的任意开集,其像集也是开集。

解析: 连续函数的定义是对于函数f的值域中的任意开集,其原像集也是开集,函数在其定义域的每一点都是连续的,但函数f的定义域中的开集的像集不一定是开集。

4.下列哪项不是紧致空间的定义?o A. 紧致空间中的任意开覆盖都有有限子覆盖。

o B. 紧致空间中的所有序列都有收敛子序列。

o C. 紧致空间中的所有连续函数都有界。

o D. 紧致空间中的所有连续函数都有最大值和最小值。

参考答案: B. 紧致空间中的所有序列都有收敛子序列。

解析: 紧致空间的定义是任意开覆盖都有有限子覆盖,所有连续函数都有界和最大最小值,但紧致空间中的所有序列不一定都有收敛子序列。

拓扑学基础试题及答案

拓扑学基础试题及答案

拓扑学基础试题及答案一、选择题(每题2分,共10分)1. 拓扑空间中,以下哪个概念不是基本的?A. 开集B. 闭集C. 连续函数D. 距离函数答案:D2. 以下哪个选项不是拓扑空间的性质?A. 空集和整个空间是开集B. 任意开集的并集是开集C. 有限个开集的交集是开集D. 任意集合的补集是闭集答案:D3. 在拓扑学中,两个拓扑空间之间的映射被称为?A. 同胚B. 连续映射C. 同伦D. 同调答案:B4. 拓扑空间中的邻域系统是指?A. 包含某点的所有开集的集合B. 包含某点的任意集合的集合C. 包含某点的有限个开集的交集D. 包含某点的任意开集答案:A5. 拓扑空间中的连通性是指?A. 空间不能被分割成两个不相交的非空开集B. 空间中的任意两点都可以通过连续路径相连C. 空间中的任意两点都可以通过直线相连D. 空间中的任意两点都可以通过曲线相连答案:A二、填空题(每题3分,共15分)1. 如果拓扑空间中任意两个不同的点都存在不相交的邻域,则称该空间为________。

答案:豪斯多夫空间2. 拓扑空间中的紧致性是指该空间的任意开覆盖都有________。

答案:有限子覆盖3. 拓扑空间中的连通空间是指不能表示为两个不相交的非空开集的并集的空间,这种性质也称为________。

答案:不可分割性4. 拓扑空间中的基是指由开集构成的集合,使得空间中的每一个开集都可以表示为基中集合的________。

答案:并集5. 拓扑空间中的同胚是指两个拓扑空间之间存在一个双射的连续映射,并且其逆映射也是连续的,这种映射也称为________。

答案:同胚映射三、简答题(每题10分,共20分)1. 请简述拓扑空间中闭集的定义。

答案:在拓扑空间中,如果一个集合的补集是开集,则称该集合为闭集。

2. 请解释什么是拓扑空间中的同伦等价。

答案:如果存在两个拓扑空间之间的连续映射,使得这两个映射的复合与各自空间上的恒等映射是同伦的,则称这两个空间是同伦等价的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拓扑学测试题一
一、选择题(每小题2分,共10分)
下列拓扑性质中,不满足连续不变性的是( )
A. 列紧
B. 序列紧
C. 可数紧
D. 紧致
下列拓扑性质中,没有遗传性的是( )
A. 1T 空间
B. 2T 空间
C. 3T 空间
D. 4T 空间
下列拓扑性质中,有限积性不成立的是( )
A. 1T 空间
B. 2T 空间
C. 3T 空间
D. 4T 空间
设X 多于两点, 21,ττ是X 的两个拓扑,则下列命题不成立的是( )
(A) 21ττ⋃是X 的某个拓扑的基;
(B) 21ττ⋂是X 的一个拓扑;
(C) 21ττ⋃是X 的一个拓扑;
(D) 21ττ⋂是X 的某个拓扑的基。

设A 为度量空间 ),(d X 的任一非空子集,则下列命题不成立的是( )
(A) x 为A 的边界点当且仅当 (,)(,)0d x A d x X A =-=
(B) x 为A 的聚点当且仅当 (,)0d x A =
(C) x 为A 的内点当且仅当 (,)0d x X A ->; (D) A x ∈当且仅当 0),(=A x d .
二、 二、判断题(每小题5分,共25分)
三、 仿紧空间是度量空间.()
四、 商映射一定是闭映射或开映射. ()
五、 局部道路连通空间不一定是道路连通空间. ()
六、 连通空间一定是局部连通空间. ()
七、 若 11:f S →连续,则 1t ∃∈,使 1()f t -不可数. ()
八、 三、解答题(第1小题10分,第2小题15分,共25分)
九、 举例说明拓扑空间中的有限子集可以有聚点.
十、 设 {}0,1,2X =,试写出 X 上的所有拓扑.
十一、 四、证明题(每小题10分,共40分)
十二、 若 X 满足 1T 公理,则 X 中任一子集的导集都是闭集. 十三、 证明欧氏平面除去可数个点后仍是道路连通的. 十四、 证明至少有两个点的T 4空间的连通子集一定是不可数集.
十五、 证明 X 为Hausdorff 空间当且仅当 {(,)|}x x x X ∆=∈是 X X ⨯的闭集.
答案
一 、 选择题 1、A 2、D 3、D 4、C 5、B
二 、 是非题 1、ⅹ 2、ⅹ 3、√ 4、ⅹ 5、√
三 、 解答题 1. 举例说明拓扑空间中的有限子集可以有聚点.
解 例如 {}0,1X =, {},0,X τ=∅, {}{}01'=.
2. 设 {}0,1,2X =,试写出X 上的所有拓扑.
解 2个开集的共有1个:{Φ,{0,1,2}}, 3个开集的共有6个: {Φ,{0},{0,1,2}},{Φ,{1},{0,1,2}},{Φ,{2},{0,1,2}},{Φ,{1,2},{0,1,2}},{Φ,{0,1},{0,1,2}},{Φ,{0,2},{0,1,2}} 4个开集的共有9个:
{Φ,{0},{0,1},{0,1,2}},{Φ,{0},{0,2},{0,1,2}},
{Φ,{1},{1,2},{0,1,2}},{Φ,{1},{0,1},{0,1,2}},{Φ,{2},{0,2},{0,1,2}},{Φ,{2},{1,2},{0,1,2}},{Φ,{0},{1},{0,1},{0,1,2}},{Φ,{0},{2},{0,2},{0,1,2}} {Φ,{1},{2},{1,2},{0,1,2}}
5个开集的共有6个:
{Φ,{0},{0,2},{0,1},{0,1,2}},{Φ,{1},{1,2},{0,1},{0,1,2}},{Φ,{2},{1,2},{0,2},{0,1,2}}
{Φ,{1},{2},{1,2},{0,1,2}}{Φ,{0},{1},{0,1},{0,1,2}} {Φ,{0},{2},{0,2},{0,1,2}}
6个开集的有6个:
{Φ,{0},{1},{0,2},{0,1},{0,1,2}},{Φ,{0},{1},{1,2},{0,1},{0,1,2}},{Φ,{1},{2},{1,2},{0,2},{0,1,2}},
{Φ,{1},{2},{1,2},{0,1},{0,1,2}},{Φ,{0},{2},{0,1},{0,2},{0,1,2}},{Φ,{0},{2},{1,2},{0,2},{0,1,2}} …
8个开集的有1个:{Φ,{0},{1},{2},{1,2},{0,2},{0,1},{0,1,2}} 因此共有1+6+9+6+6+1=29个拓扑
四 、证明题 1. 若X 满足 1T 公理,则X 中任一子集的导集都是闭集. 证明 设 A X ⊂,只要验证 ()c A '是开集.
()c
x A '∀∈,则x 有开邻域U ,使得 {}()\U x A =∅,由 1T 公理知, {}\U x 是开集,从而 {}()\c U x A '⊂,于是 ()c U A '⊂;所以x 是 ()c A '的内点.
2. 证明欧氏平面除去可数个点后仍是道路连通的.
证明 设X 是从 2R 除去可数个点后所得到的空间, ,x y X ∀∈,若 x y ≠,设L 是线段xy 的中垂线,设 z L ∈,用 (,,)x y z 表示连接 ,,x y z 的折线, 由于这样的折线有不可数多条, 而 X 的余集 Y 是可数集, 所以至少有一条折线 (,,)x y z 不含 Y 中的点, 这表明X 是道路连通的.
3. 证明至少有两个点的 4T 空间的连通子集一定是不可数集. 证明 设X 是至少有两个点的连通的 4T 空间 Y 的子集,设 ,x y 是 X 中的两个不同点,令 {},{}A x B y ==,则 A 和 B 是子空间 X 中的两个非空不相交的闭集,故由乌里松引理知,存在连续函数 :[0,1]f X →使得, ()0,()1f x f y ==,又因 X 是连通的,故 ()f X 是 [0,1]中的连通集,而 0,1()f X ∈,因此 ()[0,1]f X =,于是 X 一定是不可数集.
4.证明 X 为Hausdorff 空间当且仅当 {(,)|}x x x X ∆=∈是 X X ⨯的闭集.
证明 (必要性)要证 ∆为闭集,只要证它的余集是开集。

(,),(,)c x y x y ∈∆为内点.由 (,)c x y ∈∆知,
x y ≠,因 X 为Hausdorff 空间知,存在 x 开邻域 U , y 的开邻域 V ,使得 ,U V ⋂=∅于是 (,)c x y U V ∈⨯⊂∆,所以 (,)x y 为内点,这就证明了 ∆为闭集. (充分性)对 ,,x y x y ∀∈∆≠,由 ∆的定义知, (,)x y ∈∆,即由Δ为闭集知, c ∆为开集,于是存在开集 ,U V 使得 (,)c x y U V ∈⨯∆,由 c U V ⨯∆知, ,U V 为 ,x y 的不相交的邻域,这表明 X 为Hausdorff 空间.。

相关文档
最新文档