数学:6.1线段、射线、直线同步练习(苏科版七年级上)

合集下载

苏科版七年级上册数学6.1《线段、射线、直线》(有答案)

苏科版七年级上册数学6.1《线段、射线、直线》(有答案)

苏科版七年级上册数学6.1《线段、射线、直线》(有答案)5.如果A、B、C在同一直线上,线段AB=6 cm,BC=2 cm,则A、C两点间的距离是( ) A.8 cm B.4 cm C.8 cm 或4 cm D.无法确定◆填空题6.如图,以点O为端点的射线有_______条,它们分别是______________,图中线段共有_______条.7.如图,C、D是线段AB上的点,若AB=7,CD=2,则图中所有线段的长度之和为______.8.已知点C是线段AB的中点,AB的长度为10 cm,则AC的长度为_______cm.9.如图,C、D是线段AB上的两个点,CD=8 cm,M是AC的中点,N是DB的中点,MN12 cm,那么线段AB的长等于_______cm.10.若线段AB=a,C是线段AB上任意一点,M、N分别是AC和BC的中点,则MN=_______.◆解答题◆11.已知道四点A、B、C、D,按要求画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)作射线BC.12.已知线段AB=2 cm,延长AB到C,使BC =2AB,若D为AB的中点,求DC的长.13.如图,线段AB=8 cm,C是线段AB上一点,AC=3.2 cm,M是AB的中点,N是AC 的中点,求线段MN的长.14.在直线m上取点A、B,使AB=10 cm,再在m上取一点P,使PA=2 cm,M、N分别为PA、PB的中点,求线段MN的长.15.线段AB被分成2:3:4三个部分,已知第一部分中点与第三部分中点的距离为5.4cm,求线段AB的长.答案和解析【答案】选择题1.D.【解析】A.A、B两点之间的距离为3cm,故A选项说法正确;B.A、B两点之间的距离为线段AB的长度,故B选项正确;C.线段AB的中点C到A、B两点的距离相等,故C选项正确;D.A、B两点之间的距离是线段AB,应为AB 的长度,故D选项错误.2.D.【解析】A.射线延伸后两直线不能相交,故本选项错误;B.直线延伸后两直线不能相交,故本选项错误;C.射线和直线延伸后两直线不能相交,故本选项错误;D.射线延伸后两直线能相交,故本选项正确;3.C.【解析】①错误,细线始终有端点,所以它是线段.实际生活中除了光、声音之类的,不存在射线,更不用说直线;②错误,直线可以无限延长,所以没有一半;③正确,射线定义:只有一个端点,另一端无限延长,任意的一点可看作两条射线分别的端点;④正确,过两点作一条直线;⑤正确,两点之间线段最短.4.B.【解析】如图,能表示点C是线段AB的中点的是AB=BC,AC=BC,而AC=AB和AC+BC=AB 都不能表示C是线段AB的中点,即正确的有②③两个.5.C.【解析】(1)点B在A、C之间时,AC=AB+BC=6+2=8cm;(2)点C在A、B之间时,AC=AB-BC=6-2=4cm.所以A、C两点间的距离是8cm或4cm.填空题6.4;射线OA、射线OB,、射线OC,、射线OD;8.【解析】以O为端点的射线有OA、OB、OC、OD,共四条;一共有七条线段,分别是OD、OA、OB、OC、AB、AC、BC.7.23.【解析】所有线段的长度之和=AC+AD+AB+CD+CB+DB=(AC+BC)+(AD+DB)+CD+AB=AB+AB+AB+CD=3AB+CD,∵AB=7,CD=2,∴所有线段的长度之和=3×7+2=23.8.5.【解析】AC=12AB=5cm.9.12.【解析】∵M是AC的中点,N是DB的中点,∴AM=MC,BN=DN,∴AM+BN=MC+DN=MN-CD=4cm,∴AB=AM+BN+CD=12cm.10.12a.【解析】因为M和N分别是BC和AC的中点,所以CM=12AC,CN=12BC,所以MN=MC+CN=12AC+12BC=12(AC+BC),因为AB=a,所以MN=12a.解答题11.【解答】解:(1)(2)(3)12.【解答】解:如图所示:∵线段AB=2cm,BC=2AB,∴BC=4cm,∵D为AB的中点,∴BD=1cm,∴DC=BD+BC=1+4=5cm.13.【解答】解:由AB=8,M是AB的中点,所以AM=4,又AC=3.2,所以CM=0.8cm;因为N是AC的中点,所以NC=1.6,所以MN=NC+CM=2.4cm.14.【解答】解:如图,(1)当点P在线段AB上时,PB=AB-PA=8cm,M、N分别为PA、PB的中点,∴MN=PM+PN=12AP+12BP=1+4=5(cm);(2)当点P在线段BA的延长线上时,PB=AB+PA=12cm,M、N分别为PA、PB的中点,∴MN=PN-PM=12BP-12AP=6-1=5(cm).∴线段MN的长是5cm.15.【解答】解:线段第一部分中点至第三部分中点的比是1:3:2,1+3+2=65.4÷6=0.9求出一份就是0.9;0.9×2=1.80.9×3=2.70.9×4=3.61.8+2.7+3.6=8.1(cm)。

苏科版七上数学6.1直线、射线、线段练习

苏科版七上数学6.1直线、射线、线段练习

苏科版数学七上第6章平面图形的认识(一)6.1直线、射线、线段练习一、选择题1.下列说法错误的是()A.直线AB和直线BA表示同一条直线B.直线AB比射线AB长C.线段A B和线段BA表示同一条线段D.过一点可以作无数条直线2.经过两点可以画( )直线A.三条直线B.两条直线C.一条直线D.不确定3.如图棋盘上有黑、白两色棋子若干,找出所有使三颗颜色相同的棋在同一直线上的直线,满足这种条件的直线共有( )A.5条B.4条C.3条D.2条4.在下列现象中,体现了基本事实“两点确定一条直线”的有()A.1个B.2个C.3个D.4个5.如图所示,某同学的家在P处,他想尽快赶到附近C处搭顺风车.他选择第②条路线,用几何知识解释其道理正确的是( )A.两点确定一条直线B.两点之间,直线最短C.两点之间,线段最短D.经过一点有无数条直线6.数学源于生活,并用于生活,要把一根木条固定在墙上至少需要钉两颗钉子,其中的数学原理是()A.过一点有无数条直线B.线段中点的定义C.两点之间线段最短 D .两点确定一条直线7.如图,点M是AB的中点,点N是BD的中点,AB=6cm,BC=10cm, CD=8cm .则MN的长为( )A.12cmB.1lcmC.13cmD.10cm8.如图,下列关系式中与图不符合的式子是( )A.AD-CD=AB+BCB.AC-BC=AD-BDC.AC-BC=AC+BDD.AD-AC=BD-BC二、填空题9.若平面内有4个点,过其中任意两点画射线,最多可以画条.10.已知A, B, C, D四点,任意三点都不在同一直线,以其中的任意两点为端点的线段有条.11.往返于甲、乙两地的火车,途中停靠五个站,则最多要准备种车票.12.要在墙上固定一根木条,至少要两根钉子,其几何原理是 .13.把弯曲的公路改直,就能缩短路程,应用的数学知识是 .14.点A, B, C是同一直线上的三个点,若AB=7cm, BC=5cm,则AC= cm. 15如图,点C将线段AB分成1:2的两部分,点D是AB的中点,若CD=2,则线段AB的长度是 .16.如图,若D是AB中点,E是BC中点,若AC=8, EC=3, AD= .三、解答题17.如图,已知线段AB,点C在AB上,点P在AB外.(1)根据要求画出图形:画直线PA,画射线PB,连接PC;(2)写出图中的所有线段.18.已知平面上点A, B, C, D (每三点都不在一条直线上) .(l)经过这四点最多能确定条直线.(2)如图这四点表示公园四个地方,如果点B, C在公园里湖对岸两处, A, D在湖面上,要从B到C筑桥,从节省材料的角度考虑,应选择图中两条路中的哪一条?如果有人想在桥上较长时间观赏湖面风光,应选择哪一条?为什么?19.如图所示,工厂A与工厂B想在公路m旁修建一座共用的仓库0,并且要求0到A与0到B的距离之和最短,请你在m上确定仓库应修建的0点位置,同时说明你选择该点的理由.20.如图,点C在线段AB上, AC<CB,点D、E分别是AB和CB的中点,AC= 10cm, EB=8cm .(1)求线段CD, DE, AB的长;(2)是否存在点M,使它到A, C两点的距离之和等于8cm,为什么?(3)是否存在点M,使它到A,C两点的距离之和大于10cm ?如果点M存在,点M 的位置应该在哪里?为什么?这样的点M有多少个?。

6.1 线段、射线、直线 苏科版数学七年级上册同步练习(解析版)

6.1 线段、射线、直线 苏科版数学七年级上册同步练习(解析版)

第6章 平面图形的认识(一)6.1 线段、射线、直线基础过关全练知识点1 线段、射线、直线的概念和表示方法1.(2022江苏镇江润州期末)下列说法正确的是( )A.直线AB=2 cmB.射线AB=3 cmC.直线AB与直线BA是同一条直线D.射线AB与射线BA是同一条射线2.(2022江苏苏州昆山月考)下列说法中正确的是( )A.线段EF和线段FE是两条不同的线段B.延长线段EF和延长线段FE的含义是相同的C.经过两点可以画一条直线,并且只能画一条直线D.延长直线EF3.连淮扬镇铁路不仅是国家铁路网的骨干线路,同时也是江苏高速铁路网的大动脉,该线从连云港至镇江,共16个站点,那么要保证每两个站点之间都有高铁可乘,共有 种不同的票价,要准备 种车票.知识点2 线段的基本性质及两点间的距离4.(2022江苏南通通州期末)如图,从A地前往B地有三条道路a、b、c,但走b这条路最近,理由是( )A.两点之间线段最短B.两点之间射线最短C.两点之间直线最短D.两点确定一条直线知识点3 直线的基本性质5.(2022江苏盐城亭湖期末)为了让一队学生站成一条直线,先让两名学生站好不动,再让其他学生依次往后站,要求目视前方时只能看到各自前面的那一名学生,这种做法依据的几何知识应是( )A.两点之间,线段最短B.射线只有一个端点C.两直线相交只有一个交点D.两点确定一条直线6.同一个平面内任意的四个点,可以确定 条直线.知识点4 线段的大小比较 7.如图所示,比较线段a和线段b的长度,结果正确的是( )A.a>bB.a<bC.a=bD.无法确定8.如图,用圆规比较两条线段A'B'和AB的大小,其中正确的是( )A.A'B'>ABB.A'B'=ABC.A'B'<ABD.A'B'≤AB知识点5 线段、射线、直线的画法9.(教材P148变式题)如图,有A、B、C三点,请按照下列语句画出图形.(1)画直线AB;(2)画射线AC;(3)连接BC.知识点6 线段的中点与线段的和差 10.(2022江苏无锡新吴期末)已知线段AB=100 cm,点C是直线AB上一点,BC=40 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是( )A.70 cmB.30 cmC.70 cm或30 cmD.50 cmAB,D为AC的中点,若AB=9 cm, 11.已知线段AB,延长AB到C,使BC=13则DC的长为 .12.如图,线段AB=24,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当点P在线段AB上运动时,试说明2BM-BP为定值;(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN 长度不变;②MA+PN的值不变.选择一个正确的结论,并求出其值.能力提升全练13.(2022江苏淮安涟水期末,8,)济青高铁北线,共设有11个不同站点,要保证每两个站点之间都有高铁可乘,需要印制不同的火车票( ) A.110种 B.132种C.55种D.66种14.(2019山东日照中考,14,)如图,已知AB=8 cm,BD=3 cm,C为AB的中点,则线段CD的长为 cm.15.(2021黑龙江大庆中考,14,)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有 个交点.16.(2021江苏苏州相城期末,24,)如图,点C为线段AB的中点,点E为线段BC上的点,点D为线段AE的中点.(1)若线段AB=a,CE=b,且|a-15|+(b-4.5)2=0,求a,b的值;(2)在(1)的条件下,求线段CD的长.17.(2017河北中考,20,)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C表示的数的和是p.(1)若以点B为原点,写出点A,C所表示的数,并计算p的值;若以点C 为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p的值.素养探究全练18.[推理能力]如图所示,线段AB上的点数与线段的总条数有如下关系:当线段AB上有3个点时,线段总条数为3;当线段AB上有4个点时,线段总条数为6;当线段AB上有5个点时,线段总条数为10;……(1)当线段AB上有6个点时,线段总条数为多少?(2)当线段AB上有n(n≥2)个点时,线段总条数为多少?(用含n的式子表示)(3)当n=100时,线段总条数为多少?答案全解全析基础过关全练1.C 直线、射线不可度量,所以选项A、B不正确,射线AB与射线BA 的端点不同,不是同一条射线,所以选项D不正确,故选C.2.C 选项A,线段EF和线段FE是同一条线段,故A中说法错误;选项B,延长线段EF是从F点延长,延长线段FE是从E点延长,两者含义不同,故B中说法错误;选项D,直线不可度量,也不可延长,故D中说法错误;选项C是基本事实,故正确.3.答案 120;240解析 有多少种不同的票价即有多少条线段,15+14+13+…+2+1=120(种);有多少种车票是要考虑顺序的,则有12 0×2=240(种).4.A b是连接A与B的线段,两点之间线段最短.5.D 先让两名学生站好,实质是确定两定点,由两点即可确定一条直线.6.答案 1或4或6解析 (1)四点在一条直线上,可确定1条直线,如图1;(2)只有三点在一条直线上,可确定4条直线,如图2;(3)任意三个点都不在一条直线上,可确定6条直线,如图3.7.B 由题图可知a=3.5 cm,b=4.2 cm,所以a<b.故选B.8.A 由题图可知,A'B'>AB,故选A.9.解析 (1)(2)(3)如图所示.10.D 分两种情况讨论:①如图1,当点C 在线段AB 上时,MN=MC+CN=12AC+12BC=30+20=50 cm;②如图2,当点C 在线段AB 的延长线上时,MN=MC-CN=12AC-12BC=70-20=50 cm.综上,线段MN 的长度是50 cm,故选D.图1图211.答案 6 cm解析 ∵BC=13AB,AB=9 cm,∴BC=3 cm,∴AC=AB+BC=12 cm,又∵D 为AC 的中点,∴DC=12AC=6 cm.12.解析 设点P 的运动时间为x 秒.(1)当点P 在点B 左边时,PA=2x,PB=24-2x,AM=x,由题意得24-2x=2x,解得x=6;当点P 在点B 右边时,PA=2x,PB=2x-24,AM=x,由题意得2x-24=2x,方程无解.综上可得,出发6秒时,PB=2AM.(2)当点P 在线段AB 上运动时,AM=x,BM=24-x,PB=24-2x,∴2BM-BP=2(24-x)-(24-2x)=24.∴当点P 在线段AB 上运动时,2BM-BP 为定值.(3)结论①正确,结论②不正确,MN 的长为12.理由:∵PA=2x,AM=PM=x,PB=2x-24,PN=12PB=x-12,∴MN=PM-PN=x-(x-12)=12,∴MN 的长度为定值12,故①正确.MA+PN=x+x-12=2x-12,故MA+PN 的值随x 的变化而变化,故②不正确.能力提升全练13.A 把11个站点看成直线上的11个点,每两点间需印制两种火车票,共有11×(11-1)2=55条线段,所以共要印制不同的火车票2×55=110种.14.答案 1解析 ∵C 为AB 的中点,AB=8 cm,∴BC=12AB=12×8=4(cm),∵BD=3 cm,∴CD=BC-BD=4-3=1(cm).15.答案 190解析 因为n 条直线两两相交最多有n (n -1)2个交点,所以当n=20时最多有190个交点.16.解析 (1)∵|a-15|+(b-4.5)2=0,∴|a-15|=0,(b-4.5)2=0,∴a=15,b=4.5.(2)∵点C为线段AB的中点,AB=15,AB=7.5,∴AC=12又CE=4.5,∴AE=AC+CE=12,∵点D为线段AE的中点,AE=6,∴DE=12∴CD=DE-CE=6-4.5=1.5.17.解析 (1)若以点B为原点,则点C所表示的数是1,点A所表示的数是-2,所以p=1+0-2=-1;若以点C为原点,则点A所表示的数是-3,点B所表示的数是-1,所以p=-3-1+0=-4.(2)因为原点O在题图中数轴上点C的右边,且CO=28,所以点C所表示的数是-28,点B所表示的数是-29,点A所表示的数是-31,所以p=-31-29-28=-88.素养探究全练18.解析 (1)当线段AB上有6个点时,线段总条数为1+2+3+4+5=15.(2)当线段AB上有n个点时,线段总条数为1+2+3+…+(n-1)=n(n-1).2=4 950.(3)当n=100时,线段总条数为100×(100-1)2。

七年级数学上册 线段 射线 直线练习题 苏科版

七年级数学上册 线段 射线 直线练习题 苏科版

第六章 平面图形的认识(一)6.1 线段、射线、直线(1)一、基础训练 1. 填表:2. 如图,线段上有两点和,则图中共有________条线段.它们是__ ______________________________.二、综合应用3. 对于直线AB ,线段CD ,射线EF ,在下列各图中能相交的是 ( )4. C 为线段AB 的中点,D 在线段CB 上,6=DA ,4=DB ,求CD 的长度.5. 如图,AD=12DB, E 是BC 的中点,BE=15AC=2cm,求线段DE 的长.6. 在直线上顺次取C B A 、、三点,使得cm AB 4=,cm BC 3=,若O 是线段AC 的中点,求线段OB 的长度.7. 请你做裁判:过C B A 、、三个点中的两点作直线,小明说有一条,小林说只有一条,小牛说不是一条就是三条,你认为他们三人谁的说法对?为什么?E D B A8. 如图,从A 地到B 地有①②③三条路可以走,每条路长分别为n m l 、、(图中、、表 示直角),则第_________条路最短,另两条路 的长短关系为__________________.9. 两条直线相交最多有_________个交点;三条直线两两相交最多有_________个交点;四条直线两两相交最多有_________个交点;n 条直线两两相交最多有_______个交点. 三、思维拓展10. 请欣赏:线段组成的美丽图案.请你把号码相同的点用线段连起来,你得到什么图案?6.1 线段、射线、直线1.略2.6条;AC 、AD 、AB 、CD 、CB 、DB3. B4.CD =1 5. DE=66.OB=0.5cm7. 小牛8.③;相等9.1;3;6;()21-nn10. 略。

苏科版七年级上册数学同步练习:6.1线段、射线、直线2(含答案).docx

苏科版七年级上册数学同步练习:6.1线段、射线、直线2(含答案).docx

初中数学试卷鼎尚图文**整理制作 6.1线段、射线、直线2同步练习姓名_____________班级____________学号____________分数_____________一、选择题1 .已知点A 、B 、C 都是直线l 上的点,且AB=5cm,BC=3cm,那么点A 与点C 之间的距离是( )A.8cmB.2cmC.8cm 或2cmD.4cm2 .如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是( )A.M 点在线段AB 上B.M 点在直线AB 上C.M 点在直线AB 外D.M 点可能在直线AB 上,也可能在直线AB 外3 .下列说法中正确的是( )A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段 C.在线段、射线、直线中直线最长 4 .下列说法中,错误的是( )A.经过一点的直线可以有无数条B.经过两点的直线只有一条C.一条直线只能用一个字母表示D.线段CD 和线段DC 是同一条线段 5 .下列说法中,正确的个数有( )(1)射线AB 和射线BA 是同一条射线 ; (2)延长射线MN 到C;(3)延长线段MN 到A 使NA==2MN; (4)连结两点的线段叫做两点间的距离.A.1B.2C.3D.46 .一条弯曲的公路改为直道,可以缩短路程,其道理用几何知识解释的应是( )A.两点之间线段最短;B.两点确定一条直线;C.线段可以大小比较;D.线段有两个端点7 .如图,C 、D 是线段AB 上两点,若CB =4cm,DB =7cm,且D 是AC 的中点,则AC 的长等于A.3cmB.6cmC.11cmD.14cm第3题图D C B A8 .经过任意三点中的两点共可以画出的直线条数是( )A.一条或三条B.三条C.两条D.一条9 .如图1,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( ) A.CD=AC-BD B.CD=21BC C.CD=21AB-BD D.CD=AD-BC10.下列说法中,①延长直线AB 到C;②延长射线OC 到D;③反向延长射线OC 到D;④延长线段AB 到C.正确的是 ( )A.①②B.②③C.③④D.①④11.如图4,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中.从A 地到B 地有2条水路、2条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C地.则从A 地到C 地可供选择的方案有( )A.20种B.8种C. 5种D.13种二、填空题 12.已知线段AB 的长为18cm,点C 在线段AB 的延长线上,且AC=BC 35,则线段BC=___. 13.已知线段AB=10,直线AB 上有一点C,且BC=4,M 是线段AC 的中点,则AM 的长为______.14.已知线段AB 及一点P,若AP+PB>AB,则点P 在______________ .15.已知线段AB =5cm,在直线上截取BC =2cm,则AC =__cm.16.线段MN 延长到点P ,使NP =2MN ,A 为MN 的中点,B 为NP 的中点,若MN =6cm,则AB =__cm. 17.一个钉子把一根细木条钉在木板上,木条能转动,这表示________.用两个钉子把细木条钉在木板上,就能固定细木条,这说明________.18.要在墙上固定一根木条,至少需要______根钉子.19.下列说法:①过两点有且只有一条直线;②连接两点的线段叫两点间的距离;③两点之间,线段最短;④如果AB BC =,则点B 是线段AC 的中点.其中正确的说法有________个.20.已知A 、B 、C 三点在同一条直线上,M 、N 分别为线段AB 、BC 的中点,且 AB = 60,BC =40,则MN 的长为___________.21.如图,延长线段AB 到C ,使4BC =,若8AB =,则线段AC 的长是BC 的______倍.22.若线段AB=a,C 是线段AB 上任意一点,M 、N 分别是AC 和CB 的中点,则MN=______________.23.已知线段AB=8cm,在直线AB 上画线段BC,使它等于3cm,则AC=__________.24.如图2,已知AC=12BC.(1)若AC=4cm,则BC=_____cm;(2)若AB=15cm,则AC=_____cm;.BC=_____cm.图4图1A B C BCA 图2三、解答题25.已知线段AB=6cm,回答下列问题:当点C到A、B的距离之和等于6cm时,点C的位置应在哪里?是否存在点C,使它到AB两点的距离之和等于5cm?26.如图8,AB=24cm,C、D点在线段AB上,且CD=10cm,M、N分别是AC、BD的中点,求线段MN的长.图827.如图7的“金鱼”中,含有哪些可以用图中字母表示的线段、?射线和直线28.在锯木料时,一般先在木板上画出两点,然后过这两点弹出一条墨线,你能说明其道理吗?能说明道理吗?29.如图11所示,沿江街AB段上有四处居民小区A.C.D.B,且有AC=CD=DB,为改善居民的购物环境,想在AB上建一家超市,每个小区的居民各执一词,难以定下具体的建设位置,高经理是超市负责人,从便民、获利的角度考虑,你觉得他会把超市建在哪儿?6.1线段、射线、直线参考答案一、选择题1 .C [点拨]当点C 在线段AB 上则AC 为2cm 当点C 在线段AB 的延长线上则AC 为8cm2 .D3 .C4 .C [点拨]一条直线可以用一个小写母表示也可能用两个大写的字母表示5 .A [点拨](1)它们是两条射线,(2)射线不能延长 ,(3)正确 ,(4)连结两点的线段的长度叫做两点间的距离,故选A6 .A7 .B8 .A9 .B [点拨]由C 是线段AB 的中点可得A 、C 、D 正确,但D 是CB 上一点并一定是中点得B 不正确10.C11.D二、填空题12.27 [点拨]由AC=BC 35得3AC=5BC,由AC=AB+CB 得3(AB+BC)=5BC 得BC=32AB=27cm 13.7或3 [点拨]当点C 在点B 左侧时为3,当点C 在点B 右侧时为714.在直线AB 上或在直线AB 外15.3或7.16.4.5 [点拨]MN=6则NP=3由A 、B 分别为中点得AN=3,BN=1.5,AB=AN+BN=4.517.过一点的直线有无数条;两点可以确定一条直线18.两;19.220.10或50(只填对一个得2分)21.322.2a ; 23.11cm 或5cm24.8,5,10三、解答题25.(1)C 在AB 上;(2)不存在.26.MN=MC+CD+ND=21AC+CD+21DB=21(AC+DB)+CD=21(AB —CD)+CD=17。 27.“金鱼”中的线段有:线段AB , 线段AC ,线段BD ,线段BE ,线段DE ,线段CD ,线段CF ,线段DF,线段EF.“金鱼”中可以用图中字母表示的射线有:射线BA,射线AB,射线AC,射线CA.“金鱼”中的直线有:直线AB,直线AC.28.木工在木板上画出两点,然后过这两点弹出一条墨线,其中的道理是:过两点有且只有一条直线或两点确定一条直线。过两点有且只有一条直线或两点确定一条直线。29.若建在线段CD的某一点E处,设CE=x,AC=a,则四小区居民到超市购物的总路程之和为(a+x)+x+(a—x)+(2a—x)=4a;若建AC上某一点F处,设CF=x,AC=a,则四小区居民到超市购物的总路程之和为(a—x)+x+(a+x)+(2a+x)=4a+2x>4a;同样建在线段DB的某一点处,也大于4a;所以,应建在线段CD的任何一点处.。

61 线段、射线以及直线(解析版)

61 线段、射线以及直线(解析版)

2021-2022学年七年级数学上册同步课堂专练(苏科版)6.1线段、射线以及直线一、单选题1.轩轩同学带领自己的学习小组成员预习了“线段、射线、直线”一节的内容后,对下图展开了讨论,下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段【答案】B【详解】解:A. 根据直线MN与直线NM表示方法是同一条直线,故选项A正确;B. 射线PM与射线MN是端点不同,不是同一条射线,故选项B说法不正确;C. 射线PM与射线PN是同一条射线,端点相同,方向相同,故选项C正确;D. 根据线段MN与线段NM表示方法是同一条线段,故选项D正确.故选择:B.2.A,B两点间的距离是指()A.过A,B两点间的直线B.连接A,B两点间的线段C.直线AB的长D.连接A,B两点间的线段的长度【答案】D【详解】解:A ,B 两点间的距离是指连接A ,B 两点间的线段的长度,故选:D .3.根据语句“直线1l 与直线2l 相交,点M 在直线1l 上,直线2l 不经过点M .”画出的图形是( )A .B .C .D .【答案】D【详解】解:A .直线2l 不经过点M ,故本选项不合题意;B .点M 在直线1l 上,不在直线2l 上,故本选项不合题意;C .点M 在直线1l 外,故本选项不合题意;D .直线1l 与直线2l 相交,点M 在直线1l 上,直线2l 不经过点M ,故本选项符合题意;答案:D .4.以下说法正确的是( )A .钝角的一半一定不会小于45︒B .两点之间直线最短C .延长直线AB 到点E ,使BE AB =D .连接两点间的线段就是这两点的距离【答案】A【详解】解:A 、钝角的一半一定不会小于45︒,说法正确,符合题意;B 、两点之间线段最短,故原来的说法错误,不符合题意;C 、延长线段AB 到点E ,使BE =AB ,故原来的说法错误,不符合题意;D、连接两点间的线段的长度,叫作这两点间的距离,故说法错误,不符合题意.故选:A.5.下列说法正确的是()A.射线比直线短B.两点间的长度叫两点间的距离C.经过三点只能作一条直线D.两点确定一条直线【答案】D【详解】解:A、射线,直线都是可以无限延长的,无法测量长度,错误;B、连接两点的线段的长度叫做两点间的距离,错误;C、经过不在一条直线的三点能作三条直线,错误;D、两点确定一条直线,是公理,正确;故选:D.+++最小,则点P()6.如图,线段AB、CD,在平面内找一点P,若使得PA PB PC PDA.线段AB的中点B.线段AD的中点C.线段AB和线段CD的交点D.线段AD和线段BC的交点【答案】D【详解】解:线段AB和线段CD,在平面内找一点P,使得它到四端点的距离和P A+PB+PC+PD最小,则点P是线段AD和线段BC的交点,故选:D.7.下列说法正确的是()A.延长射线AB到C B.若AM=BM,则M是线段AB的中点C.两点确定一条直线D.过三点能作且只能做一条直线【答案】C【详解】解:A、射线本身是向一端无限延伸的,不能延长,故A不合题意;B、若AM=BM,此时点M可能在线段AB的垂直平分线上,故B不合题意;C、两点确定一条直线,说法正确,故C符合题意;D、只有三点共线时才能做一条直线,故D不合题意,故选:C.8.下列说法正确的个数为()①用一个平面去截一个圆锥,截面的形状可能是一个三角形;①若2AB=AC,则点B是AC的中点;①连接两点的线段叫做这两点之间的距离;①在数轴上,点A、B分别表示有理数a、b,若a>b,则A到原点的距离比B到原点的距离大.A.1个B.2个C.3个D.4个【答案】A【详解】解:①用一个平面去截一个圆锥,截面的形状可能是一个三角形;判断正确,故符合题意;①若2AB=AC,则点B不一定是AC的中点;判断错误,故不合题意;①连接两点的线段的长度叫做这两点之间的距离;判断错误,故不符合题意;①在数轴上,点A 、B 分别表示有理数a 、b ,若a >b ,则A 到原点的距离B 到原点的距离大;判断错误,故不符合题意.故选:A .二、填空题9.已知线段20AB =,14AM BM =,点P 、Q 分别是AM 、AB 的中点.(1)如图,当点M 在线段AB 上时,则PQ 的长为___________.(2)当点M 在直线AB 上时,则PQ 的长为__________.【答案】8 8或403【详解】解:(1)如图,当点M 在线段AB 上时20AB =,14AM BM =, 145AM AB ∴==,4165BM AB ==, 点P 、Q 分别是AM 、AB 的中点,122AP AM ∴==,1102AQ AB ==, 1028PQ AQ AP ∴=-=-=,故答案为:8.(2)由(1)得:当点M 在线段AB 上时,8PQ =;当点M 在线段AB 外时,如图:20AB =,14AM BM =, 132044AB BM AM BM BM BM ∴=-=-==, 803BM ∴=,203AM = 点P 、Q 分别是AM 、AB 的中点,11023AP AM ∴==,1102AQ AB ==, 10401033PQ AQ AP ∴=+=+=, 故答案为:8,403. 10.如图1,AB 是一条拉直的细绳,,C D 两点在AB 上,且:2:3AC BC =,:3:7AD BD =.则(1):CD AD =_________;(2)若将点C 固定,将AC 折向BC ,使得AC 落在BC 上(如图2),再从点D 处剪断,使细绳分成三段,分成的三段细绳的长度由小到大之比为____________.【答案】1①3 2①3①5【详解】解:(1)①:2:3AC BC =,AC CB AB +=,①:2:(23)2:5AC AB =+=, ①25AC AB =; ①:3:7AD BD =,AD DB AB , ①:3:(37)3:10AD AB =+=, ①310AD AB =; ①231=51010CD AC AD AB AB AB =--=, ①13::1:31010CD AD AB AB ==. (2)设对折后点D 关于C 点对称处为D ,被剪断两处分别是点D 和D ,剪开的三段细绳依次是AD 、DD '、D B ',①根据上题,310AD AB =; 11=22105DD DC AB AB '=⨯=;311=5102D B CB CD CB CD AB AB AB ''-=-=-=; ①DD AD D B ''<<. ①131::::2:3:55102DD AD D B AB AB AB ''==. 故答案为:(1)1①3(2)2①3①5.11.如图所示,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 的中点,若MN =7cm ,BC =3cm ,则AD 的长为_____cm .【答案】11【详解】解:①MN =MB +BC +CN ,MN =7cm ,BC =3cm ,①MB +CN =7﹣3=4cm ,①M 是AB 的中点,N 是CD 的中点,①AB =2MB ,CD =2CN ,①AD =AB +BC +CD =2(MB +CN )+BC =2×4+3=11cm .故答案为:11.12.将一条弯曲的公路改成直道,这样就可以缩短路程,其中的道理用我们学过的几何知识解释为:___________.【答案】两点之间,线段最短【详解】解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间,线段最短,故答案为:两点之间,线段最短.三、解答题13.如图,90PAQ ∠=︒,点B 、点C 分别在边PA 、QA 上,且12cm BA =,6cm CA =,动点M 沿AP 边从点A 出发,向点B 以2cm /s 的速度运动;动点N 沿QA 边从点C 出发,向点A 以1cm /s 的速度运动;若M 、N 同时运动,用(s)t 表示移动的时间.(1)当AM AN =时,求t 的值;(2)①当t 为何值时,点M 恰好在AB 的13处? ①在①的前提下,AM AN +等于BA CA +的13吗? 【答案】(1)2t =;(2)①2t =或4t =;①不等于.【详解】解:(1)由题意得:2cm,cm AM t CN t ==,6cm CA =,(6)cm AN CA CN t ∴=-=-,当AM AN =时,则26t t =-,解得2t =;(2)①当13AM AB =时,即12123t =⨯,解得2t =, 当23AM AB =时,即22123t =⨯,解得4t =, 综上,当2t =或4t =时,点M 恰好在AB 的13处; ①当2t =时,24(cm)AM t ==,64(cm)AN t =-=, 则8(cm)AM AN +=,12618(cm)BA CA +=+=, 此时181863≠⨯=; 当4t =时,28(cm)AM t ==,62(cm)AN t =-=,则10(cm)AM AN +=, 此时1101863≠⨯=; 综上,在①的前提下,AM AN +不等于BA CA +的13. 14.如图所示,点 A 、B 、C 、D 表示在同一直线上的四个车站的位置.求:(1)A 、D 两站的距离;(2)C 、D 两站的距离;(3)若C 为AD 的中点,求a 与b 之间所满足的相等关系.【答案】(1)4a +3b ;(2)a +3b ;(3)2a =3b .【详解】解:(1)a +b +3a +2b =4a +3b .故A 、D 两站的距离是4a +3b ;(2)3a +2b ﹣(2a ﹣b )=3a +2b ﹣2a +b =a +3b .故C 、D 两站的距离是a +3b ;(3)依题意有a +b +2a ﹣b =a +3b ,则2a =3b ,(或a =32b ). 15.对数轴上的点P 进行如下操作:先把点P 表示的数乘以()0m m ≠,再把所得数对应的点沿数轴向右平移n 个单位长度,得到点P ',我们称P '为点P 的“倍移点”.例如点P 表示的数是1,当2m =,3n =时,那么倍移点P '表示的数是1235⨯+=.数轴上,点A ,B ,C ,D 的“倍移点”分别为'A ,B ′,'C ,D .(1)当12m =,1n =时,若点A 表示的数为-2,则点A '表示的数为____________;若点B '表示的数是3,则点B 表示的数为____________;(2)当4n =时,若点D 表示的数为3,点D 表示的数为-5,则m 的值为_____________;(3)若线段5A B AB ''=,请写出你能由此得到的结论,并说明理由.【答案】(1)0;4;(2)-3;(3)m =±5,见解析【详解】解:(1)①点A 表示的数为-2,①-2×12+1=0, ①它的对应点A '表示的数为0,设点B 表示的数为x ,①点B '表示的数是3,①x ×12+1=3,解得:x=4,故答案为:0,4;(2)由题意得:3m+4=-5,解得:m=-3,故答案为:-3;(3)设点A表示的数为a,点B表示的数为b,则点A′表示的数为am+n,点B′表示的数为bm+n,①|bm+n-am-n|=5|b-a|,①|m(b-a)|=5|b-a|,解得:m=±5,①若线段A'B'=5AB,m=±5.。

苏科版七年级数学上册《6.1 线段、直线、射线》同步练习题-附带参考答案

苏科版七年级数学上册《6.1 线段、直线、射线》同步练习题-附带参考答案

苏科版七年级数学上册《6.1 线段、直线、射线》同步练习题-附带参考答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列说法正确的是()A.线段AB是A,B两点间的距离B.两点间的距离是一个正数,也是一个图形C.在所有连接两点的线中距离最短D.在连接两点的所有线中,最短的一条的长度就是两点间的距离2.已知线段AB=3cm,延长BA到C,使BC=5cm,则AC的长是()A.11cm B.8cm C.3cm D.2cm3.如图,C为线段AB的中点,D在线段CB上,DA=6,DB=4,则CD为()A.1 B.5 C.2 D.2.54.已知线段及点,若,则一定成立的是()A.点为线段的中点B.点在线段上C.点在线段的延长线上D.点在线段的延长线上5.点A、B、C是同一直线上的三个点,若,,则()A.11cm B.5cm C.11cm或5cm D.11cm或3cm6.如图,A、B、C、D四点在同一条直线上,M是AB的中点,N是DC的中点,MN=a,BC=b,那么AD等于()A.a+b B.a+2b C.2b﹣a D.2a﹣b7.如图,点AB、C顺次在直线l上,M是线段AC的中点,N是线段BC的中点.若想求出MN的长度,则只需条件()A.AC=26 B.AB=16 C.AM=13 D.CN=58.如图,数轴上有O,A,B三点,点O表示原点,点A表示的数为-1,若OB=3OA,则点B表示的数为()A.1 B.2 C.3 D.4二、填空题9.若在直线上取6个点,则图中一共出现条射线和线段.10.平面上有任意三点,过其中两点画直线,共可以画条直线.11.已知点C是直线AB上一点,AB=6cm,BC=2cm,那么AC的长是.12.如图所示,A地到B地有①②③④四条道路,其中第条道路最近,理由是13.在一场足球比赛中,运动员甲、乙两人与足球的距离分别是8m,17m,那么甲、乙两人的距离d的范围是.三、解答题14.已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.15.根据下列语句,画出图形.已知四点A、B、C、D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,相交于点P.16.如图,已知线段AB的长为a,延长线段AB至点C,使BC=AD.(1)求线段AC的长(用含a的代数式表示);(2)取线段AC的中点D,若DB=3,求a的值.17.一辆出租车从超市(点)出发,向东走到达小李家(点),继续向东走到达小张家(点),然后又回头向西走到达小陈家(点),最后回到超市.(1)以超市为原点,向东方向为正方向,用表示,画出数轴,并在该数轴上表示、、、的位置;(2)小陈家(点)距小李家(点)有多远?(3)若出租车收费标准如下,以内包括收费元,超过部分按每千米元收费,则从超市出发到回到超市一共花费多少元?18.已知数轴上三点M,O,N对应的数分别为−1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为,如果点P到点M、点N的距离相等,那么x的值是;(2)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,请直接写出t的值.答案1.D2.D3.A4.D5.C6.D7.B8.C9.12;1510.1或311.4cm或8cm12.③;两点之间线段最短13.9cm≤d≤25cm14.解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=AD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cmAD=10x=10×2=20 cm15.解:画图如下:16.(1)解:∵AB=a,BC=AB∴BC=a∵AC=AB+BC∴AC=a+a=a(2)解:∵AD=DC=AC,AC=a∴DC=a∵DB=3,BC=a∵DB=DC﹣BC∴3=a﹣a∴a=1217.(1)根据数轴与点的对应关系,可知超市(O点)在原点,小李家(点)所在位置表示的数是+2,小张家(点)所在位置表示的数是+6,小陈家(点)所在位置表示的数是-4,画出数轴如图所示:(2)从数轴上值,小陈家(点)和小李家(点)距离为:2-(-4)=6(千米);(3)一共行驶了:2+4+10+4=20(千米)则一共花费了:10+(20-3)×3=61(元)则从超市出发到回到超市一共花费61元.18.(1)4;1(2)解:假设存在P,使点P到点M、点N的距离之和是8∴|−1−x|+|x−3|=8∴|x+1|+|x−3|=8当时解得;当时方程不成立;当时解得;综上所述,存在或时使点P到点M、点N的距离之和是8;(3)解:由题意得,t分钟后点P表示的数为,点M表示的数为,点N表示的数为∵t分钟时点P到点M、点N的距离相等∴|−t−(−1−2t)|=|−t−(3−3t)|∴|t+1|=|2t−3|∴t+1=2t−3或解得或。

苏科版七年级上《6.1线段、射线、直线》同步测试含答案(共2份).1

苏科版七年级上《6.1线段、射线、直线》同步测试含答案(共2份).1

第 1 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可6.1 第1课时 线段、射线、直线知识点 1 线段、射线、直线的概念1.给出下列图形,其表示方法不正确的是( )图6-1-12.下列语句:(1)点a 在直线l 上;(2)直线的一半就是射线;(3)延长直线AB 到C ;(4)射线OA 与射线AO 是同一条射线.其中正确语句的个数为( )A .0B .1C .2D .33.如图6-1-2,图中线段和射线的条数分别为( )图6-1-2A .一条,二条B .二条,三条C .三条,六条D .四条,三条4.如图6-1-3所示,直线l 、射线PQ 和线段MN 中能相交的是( )图6-1-35.图6-1-4中有______条线段,______条射线,______条直线.图6-1-46.如图6-1-5所示,OA,OB是两条射线,C是OA上一点,D,E是OB上两点,则图中共有________条线段,它们分别是_______________________________________ ;图中共有________条射线,它们分别是____________________.图6-1-57.火车票价是根据两站距离的远近而定的,距离越远,票价越高.如果一段铁路上共有五个站点,每两站间的距离都不相等,那么这段铁路上的火车票价共有________种.知识点2线段、直线的性质8.建筑工人砌墙时,经常在两个墙角的位置分别插一根木桩,然后拉一条直的参照线.这个实例体现的数学知识是()A.两点之间,线段最短B.过已知三点可以画一条直线C.一条直线通过无数个点D.两点确定一条直线9.如图6-1-6,甲、乙两地之间有多条路可走,那么最短路线是()图6-1-6A.①-④B.②-④第 2 页共9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可第 3 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可C .③-⑤D .②-⑤ 10.下列说法正确的是( ) A .线段AB 是A ,B 两点间的距离B .两点间的距离是一个正数,也是一个图形C .在所有连接两点的线中距离最短D .在连接两点的所有线中,最短的一条的长度就是两点间的距离11.如图6-1-7,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是__________________.图6-1-712.如图6-1-8,学生要去博物馆参观,从学校A 处到博物馆B 处的路径共有①②③三条,为了节约时间,尽快从A 处赶到B 处,假设行走的速度不变,你认为走路线________(只填标号)最快,理由是 .图6-1-813.如图6-1-9,A ,B 是公路l 两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A ,B 两村的距离和最小,试在l 上标注出点P 的位置,并说明理由.第 4 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可图6-1-914.经过任意四点中的两点共可以画出的直线条数是( ) A .1条 B .1条或4条C .1条或6条D .1条、4条或6条 15.按下列语句画图:(1)点P 不在直线l 上;(2)线段a ,b 相交于点P ;(3)直线a 经过点A ,而不经过点B ;(4)直线l 和线段a ,b 分别交于A ,B 两点.16.如图6-1-10,有A ,B ,C ,D 四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H 的位置,使它与四个村庄的距离之和最小,你能说明理由吗?图6-1-10第 5 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可17.如图6-1-11,在平面内有A ,B ,C 三点. (1)画直线AC ,线段BC ,射线AB ;(2)在线段BC 上任取一点D(不同于点B ,C),连接AD ; (3)数数看,此时图中共有________条线段.图6-1-1118.如图6-1-12,在直线上任取1个点,2个点,3个点,4个点……图6-1-12(1)填写下表:(2)在直线上取n个点,可以得到几条射线?(3)用这种方法可以得到15条线段吗?如果可以,请指出取几个点;如果不可以,请说明理由.第 6 页共9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可1.B2.A[解析] 所有语句都错误.故选A.3.C4.D[解析] 根据线段不能延伸,而射线只向一个方向延伸即可知正确的只有选项D.故选D.5.3123[解析] 端点数决定线段和射线的条数.6.6OC,OD,OE,CD,CE,DE5CA,OC,OD,DE,EB7.108.D9.B[解析] 由图可知,甲、乙两地之间的四条路只有②-④是线段,故最短路线是②-④.故选B.10.D[解析] 线段AB是图形,A,B两点间的距离是数量,因此A不正确;两点间的距离不是图形,因此B不正确;线和距离不能比较,因此C不正确;在连接两点的所有线中,最短的一条是连接这两点的线段,连接两点的线段的长度就是这两点间的距离.11.两点确定一条直线[解析] 经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.12.②两点之间线段最短13.解:点P的位置如下图所示.作法:连接AB交l于点P,则点P为汽车站的位置.理由:两点之间,线段最短.14.D[解析] 如图,若四点在同一条直线上,则只能画出1条直线;若有三点在同一直线上,则能画出4条直线;若任意三点都不在同一直线上,则能画出6条直线.综上所述,在同一平面内,经过任意四点中的两点共可以画出1条或4条或6条直线.故第7 页共9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可第 8 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可选D.15.解:如图所示.16.解:如图所示,连接AC ,BD ,它们的交点是H ,点H 就是蓄水池的位置,这一点到A ,B ,C ,D 四点的距离之和最小.理由是两点之间线段最短.17解:(1)(2)如图所示.(3)图中共有6条线段.18.[解析] 1个点时,没有线段,有2条射线; 2个点时,有1条线段,4条射线; 3个点时,有3条线段,6条射线; 4个点时,有6条线段,8条射线…… n 个点时,有(n -1)+(n -2)+…+3+2+1=12 n (n -1)条线段,2n 条射线.解:(1)第 9 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可(2)可以得到2n 条射线.(3)可以,取6个点.因为取n 个点时,线段有12n (n -1)条,当n =6时,12n (n -1)=15,所以取6个点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1线段、射线、直线
姓名_____________班级____________学号____________分数_____________
一、选择题
( )
1 .下列图形中,能够相交的是
长度为( )
cm
A.6cm
B.6 cm
C.4 cm
D. 3
3 .下列说法中,正确的有( )。
(1)过两点有且只有一条线段(2)连结两点的线段叫做两点的距离
(3)两点之间,线段最短 (4)AB=BC,则点B是线段AC的中点
(5) 射线比直线短
A.1个
B.2个
C.3个
D.4个
4 .同一平面内的三条直线最多可把平面分成( )部分。
A.4
B.5
C.6
D.7
( )
5 .如图,点C在线段AB上,D是AC的中点,E是BC的中点,若ED=6,则AB的长为
A. 6
B. 8
C. 12
D. 16
6 .下列说法中,①延长直线AB到C;②延长射线OC到D;③反向延长射线OC到D;④延长线
段AB到C.正确的是 ( )
A.①②
B.②③
C.③④
D.①④
7.在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是
A.0.5㎝
B.1㎝
C.1.5㎝
D.2㎝
二、填空题
8.如图,点C、D是线段AB上的两点,若AC=4,CD=5,DB=3,则图中所有线段的和是______.
9.如图3,三角形ABC中,AB⊥AC,AD⊥BC,则图形中能表示点到直线的距离的线段有_____条。
A
C
B D
10.在同一平面内不在同一直线上的3个点,过任意2个点作一条直线,则可作直线的条数为______________________.
三、解答题
11.已知C为线段AB的中点,D是线段AC的中点。
(1)画出相应的图形,并求出图中线段的条数;
(2)若图中所有线段的长度和为26,求线段AC的长度;
(3)若E为线段BC上的点,M为EB的中点,DM = a,CE = b,求线段AB的长度。
12.已知线段AB = 6.
(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些
线段长度的和;
(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是线段AB的六等分点,
这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和.
参考答案
一、选择题
1 .D
2 .B
3 .A
4 .D
5 .C
6 .C
7.B
二、填空题
8.41;
9.5
10.3
三、解答题
11.(1)6条;(2)AC = 4;
(3)AB = AC + CE + EB = 2CD + CE + 2EM
=2(CD+ EM)+ CE
= 2(DM-CE)+ CE = 2DM-CE = 2a-b。
12.解:(1)设M、N是线段AB的三等分点(图略);共组成6条线段(写出来), 这6条线段的长度和为20
(2)设P1、P2、P3是线段AB的四等分点,R1、R2、R3、R4、R5是线段AB
的六等分点(图略),易知R2与M重合,R3与P2重合,R4与N重合,
故共可组成8(18)
36
2
⨯+
=条线段
进一步计算每条线段的长度,并把它们加起来, 得所有线段的长度的和为88。

相关文档
最新文档