九年级数学二次函数2.2二次函数的图象与性质2.2.1二次函数的图象与性质同步练习新版北师大版

合集下载

2.2 二次函数的图象与性质二次函数y=a(x-h)2的图象与性质 课件 初中数学北师大版九年级下册

2.2 二次函数的图象与性质二次函数y=a(x-h)2的图象与性质 课件 初中数学北师大版九年级下册
(1,0).

2
(2)抛物线 y=- (x+3) 的开口向下,对称轴为直线 x=-3,顶点坐标为

(-3,0).
6.已知抛物线y=a(x-h)2向右平移4个单位长度后,所得的图象与抛物
线y=-2(x-5)2 重合,求a,h的值.
解:抛物线y=-2(x-5)2的顶点坐标为(5,0).把点(5,0)向左平移4个单
函数图象如图所示.
∴抛物线的开口向上,对称轴为直线x=3,顶点坐标为(3,0),函数有最
小值0,
当x>3时,y随x的增大而增大;当x<3时,y随x的增大而减小.
1.将二次函数y=-3x 2 的图象平移后,得到二次函数y=-3(x-1) 2 的图
象,平移方法正确的是(
A.向左平移1个单位长度
B.向右平移1个单位长度
而减小.
新知应用
2
1.已知抛物线 y=a(x+m) (m 为常数)的顶点在 y 轴的右侧,且 am<0,则
此图象的开口方向 向上 .

2
2.画出函数 y= (x-3) 的图象,并说出此函数的性质(开口方向、对称

轴、顶点坐标、最值、增减性).
解:当x=0或x=6时,y=4.5;当y=0时,x=3;当x=1或x=5时,y=2.
新知应用
1.在平面直角坐标平面内,把二次函数y=(x+1)2的图象向左平移2个
单位长度,那么图象平移后的函数表达式是( D )
A.y=(x+1)2-2
B.y=(x-1)2
C.y=(x+1)2+2
D.y=(x+3)2
2.函数y=(x+3)2的图象可以由函数y=x2的图象向 左

九年级数学北师大版初三下册--第二单元2.2 《二次函数的图象和性质(第四课时)》课件

九年级数学北师大版初三下册--第二单元2.2 《二次函数的图象和性质(第四课时)》课件
2
负半轴上,所以不与x轴相交;函数y=
3 2
x2-1与y=
3 (x-1)2的二次项系数相同,所以抛物线的形状相同,
2
因为对称轴和顶点的位置不同,所以抛物线的位置不同;
抛物线y=
1 2
x
1 2
2
的顶点坐标为
1 2
,0
;抛物线y=
1 2
x+
1 2
2
的对称轴是直线x=-
1 2
.
总结
知2-讲
本题运用了性质判断法和数形结合思想,运用二 次函数的性质,画出图象进行判断.
y 1 (x 1)2 …
2
-2 -0.5
0 -0.5
-2 -4.5 -8 …
y 1 (x 1)2 … -8 -4.5 -2 -0.5 0 -0.5 -2 …
2
y
画出二次函数 y = - 1 ( x + 1)2

y= -
1(x-
2 1)2 的图像,
2
1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
知识点 1 二次函数y=a(x-h)2的图象
知1-导
议一议
二次函数y= 1 (x-1)2的图象与二次函数y= 1 x2
2
2
的图象有什么关系?
类似地,你能发现二次函数y= 1 (x+1)2的图象与
二次函数y=
1
2 (x-1)2的图象有什么关系吗?
2
知1-导
x … -3 -2 -1 0 1 2 3 …
的开口方向、对称
轴、顶点坐标、增减性和最值?
(2)抛物线
y= -
1(x2
1)2

九年级数学下册 第二章 二次函数 2.2 二次函数的图像与性质 2.2.1 二次函数y=±x2的图象与性质课件 (新版

九年级数学下册 第二章 二次函数 2.2 二次函数的图像与性质 2.2.1 二次函数y=±x2的图象与性质课件 (新版

K12课件
16
K12课件
12
第1课时 二次函数y=±x2的图象与性质
解:(1)图略.把点(2,n)代入 y=-x2 中,得 n=-22, ∴n=-4.把点(2,-4)代入 y=3x+m 中, 得-4=3×2+m,∴m=-10. (2)由题意,得yy==-3xx-2,10,解得xy= =2-,4或xy= =- -52, 5. ∴抛物线 y=-x2 与直线 y=3x+m 存在另一个交点,其坐标为(-5,-25).
K12课件
4
第1课时 二次函数y=±x2的图象与性质
3.下列关于抛物线y=x2和y=-x2的异同点说法错误的是( D ) A.抛物线y=x2和y=-x2有共同的顶点和对称轴 B.在同一直角坐标系中,抛物线y=x2和y=-x2既关于x轴对称, 又关于原点对称 C.抛物线y=x2和y=-x2的开口方向相反 D.点A(-3,9)既在抛物线y=x2上,也在抛物线y=-x2上
[点评] 判断两个函数图象的交点个数就是看这两个函数表达 式所组成的方程组的解的个数.
K12课件
13
第1课时 二次函数y=±x2的图象与性质
素养提升
规律探究如图K-9-4,点A1,A2,A3,…,An在抛物线y=x2上,点B0, B1,B2,B3,…,Bn在y轴上,若△A1B0B1,△A2B1B2,…,△AnBn-1Bn 都为等腰直角三角形(点B0在坐标原点处), 则△A2018B2017B2018的腰长等于__2_0_1_8___2 __.
[解析] ∵线段AB⊥y轴,且AB=6,∴由抛物线的对称 性可知,点B的横坐标为3.当x=3时,y=x2=32=9, ∴直线AB的表达式为y=9.
K12课件
图K-9-2
10
第1课时 二次函数y=±x2的图象与性质

【核心素养】北师大版九年级数学下册2.2 第1课时 二次函数y=x2和y=-x2的图象与性质 教案

【核心素养】北师大版九年级数学下册2.2 第1课时  二次函数y=x2和y=-x2的图象与性质 教案

2.2 二次函数的图象与性质第1课时二次函数y = x2和y =-x2的图象与性质教学内容第1课时二次函数y = x2和y =-x2的图象与性质课时1核心素养目标1.能够利用描点法作出y=x2的图象,并能根据图象认识和理解二次函数y=x2的性质.2.能作出二次函数y=x2的图象,并能够比较与y=x2的图象的异同,初步建立二次函数表达式与图象之间的联系.3.经历画二次函数y=x2的图象和探索性质的过程,获得利用图象研究函数性质的经验.4.培养学生数形结合的思想,积累数学经验,为后续学习服务.知识目标1.会用描点法画出形如y=x2和y=-x2的二次函数图象,理解抛物线的概念;2.通过观察图象能说出二次函数y=x2和y=-x2的图象特征和性质,并会应用.教学重点会用描点法画出形如y=x2和y=-x2的二次函数图象,理解抛物线的概念教学难点通过观察图象能说出二次函数y=x2和y=-x2的图象特征和性质,并会应用教学准备课件教学过程主要师生活动设计意图一、情境导入二、探究新知三、当堂练习,巩固所学一、创设情境,导入新知1.你还记得一次函数与反比例函数的图象吗?①一次函数y = kx + b (k≠0)2. 通常怎样画一个函数的图象?列表、描点、连线.二、小组合作,探究概念和性质知识点一:二次函数y=x2和y= -x2的图象和性质合作探究你会用描点法画二次函数y = x2的图象吗?师生活动:师生一起完成画图,教师先出示表格,由学生说出x对应的y值,再描点、连线.教师强调在连线时,注意要用平滑的曲线连线,不能直接用线段把点与点之间连接.1.列表:在y = x2中自变量x可以是任意实数,设计意图:通过创设问题情景,引导学生复习描点法,复习借助图象分析性质的过程中注意分类讨论、由特殊到一般的解决问题的方法,为学习二次函数的图象奠定基础.设计意图:通过让学生自主填表,启发学生观察表达式的特点,调动学生的思维. 体现启发式教学,让每位学生都参与到学习过程中,加深学生对知识的理解,充分调动学生学习的积极性.设计意图:让学生思考和交流对函数性质的认识,并积累从图象的角度研究函数性质的经验.设计意图:类比研究y=x2图形性质的方法研究y= -x2的图形性质,让学生初步体会二次函数系数与函数性质的关系,同时体会这两个图象是关于中列表表示几组对应值:2. 描点:根据表中x,y的数值在坐标平面中描点(x,y)3. 连线:如图,再用光滑的曲线顺次连接各点,就得到y = x2的图象.观察思考问题1 你能描述图象的形状吗?二次函数y = x2的图象是一条抛物线,并且抛物线开口向上.问题2 图象与x轴有交点吗?如果有,交点坐标是什么?有,(0,0).问题3 当x < 0 时,随着x值的增大,y值如何变化?当x > 0 时呢?当x < 0 时,y随x的增大而减小;当x > 0 时,y随x的增大而增大.问题4 当x取何值时,y的值最小?最小值是什么?x = 0 时,y min= 0.问题5 图象是轴对称图形吗?如果是,它的对称轴是什么?师生活动:教师出示问题,学生思考、讨论,师生共同得出答案.合作探究做一做:画出函数y = -x2的图象,并仿照y = x2的性质说出y = -x2有哪些性质?师生活动:学生亲自动手操作,画出函数图象,然心对称.设计意图:培养学生归纳、整理知识的意识.注意将图象与表达式进行联系,让学生理解知识点.设计意图:巩固所学知识,加深对二次函数增减性的理解.设计意图:让学生自主探究,培养自主学习、独立思考的习惯,加深对二次函数的性质的理解,培养数形结合思想.设计意图:考查学生对二次函数图象的性质的掌握.设计意图:考查学生求解二次函数的表达式和画图的能力.后小组讨论、交流得出答案.1.图象是一条开口向下的抛物线.2. 当x < 0 时,y随x的增大而增大;当x > 0 时,y随x的增大而减小;当x = 0 时,ymax = 0.3.抛物线关于y轴对称.4. 顶点坐标是(0,0);是抛物线上的最高点.要点归纳典例精析例1若点A(-3,y1),B(-2,y2) 是二次函数y = -x2图象上的两点,那么y1与y2的大小关系是___y2>y1___.例1变式若点A(-1,y1),B(2,y2) 是二次函数y = -x2图象上的两点,那么y1与y2的大小关系是___y1>y2___.师生活动:学生独立思考并作答.例2已知:如图,直线y=3x+4 与抛物线y=x2交于A、B两点,求出A、B两点的坐标,并求出两交点与原点所围成的三角形的面积.师生活动:学生独立思考并作答,选一名学生板书.教师巡视.三、当堂练习,巩固所学1. 两条抛物线y = x2与y = -x2在同一坐标系内,下列说法中不正确的是()A. 顶点坐标均为(0,0)B. 对称轴均为x = 0C. 开口都向上第1课时二次函数y = x2和y =-x2的图象与性质。

九年级数学下册 第二章 二次函数 2.2 二次函数的图像与性质 2.2.1 二次函数y=±x2的图象

九年级数学下册 第二章 二次函数 2.2 二次函数的图像与性质 2.2.1 二次函数y=±x2的图象

课时作业(九)[第二章 2 第1课时 二次函数y =±x 2的图象与性质]一、选择题1.下列关于二次函数y =x 2的图象的说法:①是一条抛物线;②开口向上;③是轴对称图形;④过点(0,0);⑤它的顶点是原点,且是抛物线的最高点;⑥y 的值随x 值的增大而增大.其中正确的有()A .3个B .4个C .5个D .6个2.下列函数中,当x >0时,y 的值随x 值的增大而减小的是( )A .y =x 2B .y =x -1C .y =34xD .y =1x3.下列关于抛物线y =x 2和y =-x 2的异同点说法错误的是( )A .抛物线y =x 2和y =-x 2有共同的顶点和对称轴B .在同一直角坐标系中,抛物线y =x 2和y =-x 2既关于x 轴对称,又关于原点对称C .抛物线y =x 2和y =-x 2的开口方向相反D .点A (-3,9)既在抛物线y =x 2上,也在抛物线y =-x 2上4.二次函数y =x 2与一次函数y =-x -1在同一直角坐标系中的图象大致为( )图K -9-15.已知a <-1,点(a -1,y 1),(a ,y 2),(a +1,y 3)都在函数y =x 2的图象上,则( ) 链接听课例2归纳总结A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 1<y 3 二、填空题6.函数y =x 2的图象的顶点坐标为________,若点(a ,4)在该函数图象上,则a 的值是________.7.如图K -9-2,A ,B 分别为抛物线y =x 2上的两点,且线段AB ⊥y 轴,若AB =6,则直线AB 的表达式为________.图K -9-28.如图K -9-3,边长为2的正方形ABCD 的中心在直角坐标系的原点O 处,AD ∥x 轴,以O 为顶点且过A ,D 两点的抛物线与以O 为顶点且过B ,C 两点的抛物线将正方形分割成几部分,则图中阴影部分的面积是________.图K-9-3三、解答题9.已知抛物线y=-x2与直线y=3x+m都经过点(2,n).(1)画出y=-x2的图象,并求出m,n的值;(2)抛物线y=-x2与直线y=3x+m是否存在另一个交点?若存在,请求出这个点的坐标.规律探究如图K-9-4,点A1,A2,A3,…,A n在抛物线y=x2上,点B0,B1,B2,B3,…,B n在y轴上,若△A1B0B1,△A2B1B2,…,△A n B n-1B n都为等腰直角三角形(点B0在坐标原点处),则△A2018B2017B2018的腰长等于________.图K-9-4详解详析【课时作业】 [课堂达标]1.[解析] B ①②③④正确. 2.[答案] D3.[解析] D 点A (-3,9)在抛物线y =x 2上,但不在抛物线y =-x 2上.故选D.4.[解析] D y =x 2中a =1>0,图象开口向上,在第一、二象限;y =-x -1中,k =-1<0,图象经过第二、四象限,b =-1<0,图象与y 轴交于负半轴,所以直线经过第二、三、四象限.故选D.5.[答案] C6.[答案] (0,0) ±2[解析] 若点(a ,4)在函数y =x 2的图象上,则a 2=4,a =±2. 7.[答案] y =9[解析] ∵线段AB ⊥y 轴,且AB =6,∴由抛物线的对称性可知,点B 的横坐标为3.当x =3时,y =x 2=32=9,∴直线AB 的表达式为y =9.8.[答案] 2[解析] 根据图示及抛物线、正方形的性质,得S 阴影=12S 正方形=12×2×2=2.9.解:(1)图略.把点(2,n )代入y =-x 2中,得n =-22,∴n =-4.把点(2,-4)代入y =3x +m 中,得-4=3×2+m ,∴m =-10.(2)由题意,得⎩⎪⎨⎪⎧y =3x -10,y =-x 2, 解得⎩⎪⎨⎪⎧x =2,y =-4或⎩⎪⎨⎪⎧x =-5,y =-25.∴抛物线y =-x 2与直线y =3x +m 存在另一个交点,其坐标为(-5,-25).[点评] 判断两个函数图象的交点个数就是看这两个函数表达式所组成的方程组的解的个数.[素养提升][答案] 2018 2[解析] 作A 1C ⊥y 轴,A 2E ⊥y 轴,A 1D ⊥x 轴,A 2F ⊥x 轴,垂足分别为C ,E ,D ,F .∵△A 1B 0B 1,△A 2B 1B 2都是等腰直角三角形,∴B 1C =B 0C =DB 0=A 1D ,B 2E =B 1E ,设A 1(a ,a ).将点A 1的坐标代入表达式y =x 2,得a =a 2,解得a =0(不符合题意,舍去)或a =1.由勾股定理,得A1B0= 2.则B1B0=2.过点B1作B1N⊥A2F于点N,设点A2(x2,y2),可得A2N=y2-2,B1N=x2=y2-2,又点A2在抛物线上,∴y2=x22,即x2+2=x22,解得x2=2或x2=-1(不合题意,舍去),则A2B1=2 2,同理可得:A3B2=3 2,A4B3=4 2,…,∴A2018B2017=2018 2,∴△A2018B2017B2018的腰长为2018 2.。

二次函数的图象与性质 北师大版九年级数学下册

二次函数的图象与性质      北师大版九年级数学下册
射时所经过的路线,我们把
它叫做抛物线.
2.图象和x轴有交点吗?
如果有,交点坐标是什么?
有交点,交点坐标是(0,0).
3.当x<0时,随着x值的增大,y的值如何变化?当x
>0时呢?
当x<0时,y随x的增大而减小;当x>0时,y随x的增大而增大.
x<0
x>0
4.当x取什么值时,y的值最小?
最小值是什么?
m2 2
的开口向上,则m的值为(
D.1
【答案】A
【分析】根据二次函数的定义和性质解答即可.
m2 2
【详解】解:∵抛物线 y (m 1) x
的开口向上,
∴m2-2=2,m+1>0,
∴m=±2,m>-1,
∴m=2.
故选:A.

2.已知点(1,y1),(2,y2),(-3,y3)都在函数y=-2x2的图
的性质.
教学难点:建立二次函数表达式与图象之间的联系.
新知讲解
合作学习
【复习引入】
你还记得学习过哪些函数吗?
一次函数、反比例函数
怎么研究这些函数?
1.解析式
2.图象
3.性质
4.应用
画一个函数图象的基本步骤是什么?
描点法:
1.列表
2.描点
3.连线
简述描点法作图的一般步骤?
1)列表—表中给出一些自变量的值及其对应的函数值;
③当-1<x<2时,x=0时取最大值0,x=2时取最小值-4,因此-4<y≤0,
故该项错误;
④若(m,p)、(n,p)是该抛物线上两点,则两点关于直线x=0对称,因此
m+n=0,故该项正确.
故答案为:①②④.
6.根据下列条件分别求a的取值范围.

九年级数学二次函数y=a(x-h)2的图象与性质

九年级数学二次函数y=a(x-h)2的图象与性质

二 二次函数y=ax2的图象与y=a(x-h)2的图象的关系
想一想
抛物线 y 1 x 12,y 1 x 12 的图象与抛物线
2
2
y 1 x2 的图象有什么关系?
2
-4
y 1 x 12
2
-2 -2 -4
24
y 1 x 12
2
y 1 x 12
a,c的符号
a>0,c>0 a>0,c<0 a<0,c>0
a<0,c<0
图象
开口方向
向上
对称轴 顶点坐标
y轴(直线x=0) (0,c)
函数的增减性 最值
当x<0时,y随x增大 而减小;当x>0时,y 随x增大而增大.
x=0时,y最小值=c
向下 y轴(直线x=0)
(0,c)
当x<0时,y随x增大 而增大;当x>0时, y随x增大而减小.
解析:抛物线y=-2x2的顶点坐标是(0,0),抛物 线y=-2(x+1)2的顶点坐标是(-1,0).则由二次函 数y=-2x2的图象向左平移1个单位即可得到二次函 数y=-2(x+1)2的图象.故选C.
当堂练习
1.把抛物线y=-x2沿着x轴方向平移3个单位长度,那么 平移后抛物线的解析式是 y=-(x+3)2或y=-(x-3)2 . 2顶.二点次坐函标数是y_=_2(_(32_x,_-0_) 23__).2图象的对称轴是直线___x__32__,
解析:∵抛物线y=3(x+ 2 )2的对称轴为x=- 2,a= 3>0,∴x<- 2时,y随x的增大而减小;x>- 2 时, y随x的增大而增大.∵点A的坐标为(-3 2,y1),∴点 A在抛物线上的对称点A′的坐标为(3 2 ,y1).∵- 2< 1<0<3 2,∴y2<y3<y1.故答案为y2<y3<y1.

九年级数学下册 第二章 二次函数 2.2 二次函数的图像与性质 2.2.2 二次函数y=ax2,y=ax2+c的图象与性质

九年级数学下册 第二章 二次函数 2.2 二次函数的图像与性质 2.2.2 二次函数y=ax2,y=ax2+c的图象与性质

K12课件
4
2.2018·虹口区一模 抛物线y=2x2-4的顶点在( B )
A.x轴上
B.y轴上
C.第三象限
D.第四象限
[解析] B 根据题意知,抛物线y=2x2-4的对称轴为直线x=0,故 它的顶点在y轴上.故选B.
K12课件
5
3.若在同一直角坐标系中,作函数y=2x2,y=-2x2,y= -2x2+1的图象,则它们( A ) A.都关于y轴对称 B.开口方向相同 C.都经过原点 D.互相可以通过平移得到
上的两个点,∴y1=-2x12+m,y2=-2x22+m.∵x1<x2<0,∴x12>x22,
∴y1<y2.故选C.(也可以利用二次函数的增减性得出y1<y2)
K12课件
7
5.如果将抛物线y=x2+2向下平移1个单位长度,那么所
得新抛物线的表达式是( C )
A.y=(x-1)2+2
B.y=(x+1)2+2
第二章 二次函数
2 二次函数的图象与性质
K12课件
1
第二章 二次函数
第2课时 二次函数y=ax2, y=ax2+c的图象与性质
课堂达标
素养提升
K12课件
2
课堂达标
一、 选择题
1.2017·余杭区期中 已知二次函数y=ax2的图象经过点(-2,6),
则下列点中不在该函数图象上的是( )D
A.(2,6)
B.(1,1.5)
C.(-1,1.5)
D.(2,8)
K12课件
3
[解析] D 把(-2,6)代入 y=ax2 中,得 4a=6,则 a=32,所以这个二次函数 的表达式为 y=32x2.A.当 x=2 时,y=32×22=6,所以点(2,6)在该函数的图象 上;B.当 x=1 时,y=32×12=1.5,所以点(1,1.5)在该函数的图象上;C.当 x =-1 时,y=32×(-1)2=1.5,所以点(-1,1.5)在该函数的图象上;D.当 x =2 时,y=32×22=6,所以点(2,8)不在该函数的图象上.故选 D.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.1二次函数的图像与性质
一、夯实基础
1.抛物线y =2x 2
,y =-2x 2
,y =2x 2
+1共有的性质是( ).
A .开口向上
B .对称轴都是y 轴
C .都有最高点
D .顶点都是原点 6.任给一些不同的实数k ,得到不同的抛物线y =x 2
+k ,当k 取0,±1时,关于这些抛物线有以下判断:(1)开口方向都相同;(2)对称轴都相同;(3)形状相同;(4)都有最低点.其中判断正确的是________.(填序号)
2.抛物线y =ax 2
+b 与x 轴有两个交点,且开口向上,则a 、b 的取值范围是( ). A .a >0,b <0 B .a >0,b >0
C .a <0,b >0
D .a <0,b <0
3.在同一直角坐标系中,y =ax 2
+b 与y =ax +b(a ,b 都不为0)的图象的大致位置是( ).
4.若二次函数y =ax 2
+c ,当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为( ).
A .a +c
B .a -c
C .-c
D .c
7.已知点(-2,y 1)、(-1,y 2)、(3,y 3)在函数y =x 2
+c 的图象上,则y 1、y 2、y 3的大小关系是________.
二、能力提升
5.在同一直角坐标系中,图象不可能由函数y =2x 2
+1的图象通过平移变换、轴对称变换得到的函数是( ).
A .y =2x 2
-1 B .y =2x 2
+3
C .y =-2x 2
-1 D .y =
2
12
x -1 8.当m =_______时,二次函数y =(1-m)x 2
2
m 的图象开口向上.
9.已知抛物线的顶点在原点,对称轴为y 轴,且经过点(-2,-8),则抛物线对应的函数关系式为_______.
10.说明y =213x +4是由y =2
13
x 怎样平移得到的,并说明:
(1)抛物线y =2
13
x +4的顶点坐标、对称轴及y 随x 的变化情况;
(2)函数的最大(小)值.
三、课外拓展
11.设直线y 1=x +b 与抛物线y 2=x 2
+c 的交点为A(3,5)和B . (1)求出b 、c 和点B 的坐标.
(2)画出草图,根据图象回答:当x 在什么范围时y 1≤y 2?
12.如图所示,小华在某次投篮中,球的运动路线是抛物线y =2
15
x +3.5的一部分,
若命中篮圈中心,求他与篮底的距离l.
四、中考链接
1.(2012广州市,2, 3分)将二次函数y=x 2
的图像向下平移1个单位。

则平移后的二次函数的解析式为( )
A. y= x 2
-1 B. y= x 2
+1 C. y= (x -1)2
D. y= (x+1)2
2、(2013江苏)函数42-=x y 的图像与y 轴的交点坐标是( ). A 、(2,0) B 、(-2,0) C 、(0,4) D 、(0,-4)
参考答案
1. 答案:B
6. 答案:(1)(2)(3)(4)
2. 解析:由抛物线开口向上,可知a >0.又抛物线与x 轴有两个交点,可知ax 2
+b =0有两个不同的根,故b <0.
答案:A
3. 解析:根据抛物线y =ax 2
+b 和一次函数y =ax +b 的图象与性质可知选D . 答案:D
4. 解析:因为二次函数y =ax 2+c 的对称轴为y 轴,再由抛物线的对称性知x 1和x 2关于y 轴对称,所以x 1+x 2=0.故x =0时,y =c.
答案:D
7. 解析:对于函数y =x 2
+c 的增减性应分x >0,x <0讨论.当x <0时,y 随x 的增大而减小,因为-2<-1,所以y 1>y 2;对于对称轴两侧的x 值,应根据它与对称轴的远近来比较函数值的大小.因为|3-0|>|-2-0|,所以y 3>y 1.所以y 3>y 1>y 2.
答案:y 3>y 1>y 2
5. 解析:由y =2x 2
+1向下平移2个单位长度可得到y =2x 2
-1,由y =2x 2
+1向上平移2个单位长度可得到y =2x 2
+3,由y =2x 2
+1关于x 轴对称可得到y =-2x 2
-1,故选D .
答案:D 8.答案:-2 9.答案:y =-2x 2
10. 解:因为k 值由0变为4,所以y =213x +4是由y =2
13
x 向上平移4个单位得到
的.
(1)y =2
13
x +4的图象的顶点坐标为(0,4),对称轴是y 轴(直线x =0),当x >0时,y
随x 的增大而增大,当x <0时,y 随x 的增大而减小.
(2)当x =0时,y 有最小值是4.
11. 解:(1)∵直线y 1=x +b 与抛物线y 2=x 2
+c 的交点为A(3,5),∴35,9 5.b c +=⎧⎨
+=⎩∴2,
4.
b c =⎧⎨=-⎩
∴y 1=x +2,y 2=x 2
-4. 由2
2,
4,
y x y x =+⎧⎨
=-⎩得112,0x y =-⎧⎨
=⎩或223,
5,
x y =⎧⎨=⎩
∴B(-2,0). (2)图象如图所示.
由图象可知:当x≤-2或x≥3时,y 1≤y 2.
12. 解:由题意,得当y =3.05时,3.05=2
15
x -+3.5,
解得x =±1.5.
∵篮圈中心在第一象限,
∴篮圈中心点的坐标是(1. 5,3.05). ∴他与篮底的距离是l =2.5+1.5=4(m). 答:他与篮底的距离l 为4 m. 中考链接:
1.【解析】根据二次函数图象的平移规律“上加下减,左加右减”进行解题. 【答案】解:∵向下平移1个单位∴y=x 2
-1.故得到的抛物线的解析式是y= x 2
-1.
2、答案:D。

相关文档
最新文档