一元二次方程的解法(二)配方法—巩固练习(基础)

合集下载

初中数学中考总复习:一元二次方程、分式方程的解法及应用--巩固练习题及答案(基础)

初中数学中考总复习:一元二次方程、分式方程的解法及应用--巩固练习题及答案(基础)

中考总复习:一元二次方程、分式方程的解法及应用—巩固练习(基础)【巩固练习】 一、选择题1. 用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -= C .()229x += D .()229x -=2.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( ) A .1 B .12C .13D .253.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B . 1k >-且0k ≠C .1k <D . 1k <且0k ≠4.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ).A .213014000x x +-= B .2653500x x +-= C .213014000x x --= D .2653500x x --=6.甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( ) A.B.C.D.二、填空题7.若ax 2+bx+c=0是关于x 的一元二次方程,则不等式3a+6>0的解集是____ ____. 8.如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.9.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 __ .10.当m 为 时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根;此时这两个实数根是 .11.如果分式方程1+x x =1+x m 无解, 则 m = . 12.已知关于x 的方程 x 1 - 1-x m= m 有实数根,则 m 的取值范围是 .三、解答题 13. (1)解方程:x x x x 4143412+-=---; (2)解方程:x x x x 221103+++=.14.一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度.15.关于x 的一元二次方程1201x p x x 有两实数根=-+-、.2x (1)求p 的取值范围;(2)若p x x x x 求,9)]1(2)][1(2[2211=-+-+的值.16.如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米? (2)能否使所围的矩形场地面积为810平方米,为什么?【答案与解析】 一、选择题 1.【答案】B ;【解析】根据配方法的步骤可知在方程两边同时加上一次项系数一半的平方,整理即可得到B 项是正确的.2.【答案】C ;【解析】∵22127x x += ∴221212)22(21)7x x x x m m +-=--=(, 解得m=5(此时不满足根的判别式舍去)或m=-1.原方程化为230x x +-=,212()x x -=21212()411213.x x x x +-=+=3.【答案】B ;【解析】由题意得方程有两个不相等的实数根,则△=b 2-4ac>0,即4+4k>0.解得1k >-且0k ≠. 4.【答案】B ;【解析】有题意2320,10m m m -+=-且≠,解得2m =.5.【答案】B ;【解析】(80+2x )(50+2x )=5400,化简得2653500+-=x x . 6.【答案】B ;【解析】由已知,此人步行的路程为av 千米,所以乘车的路程为千米。

一元二次方程的解法(二)配方法(基础)

一元二次方程的解法(二)配方法(基础)

一元二次方程的解法(二)配方法—知识讲解(基础)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程;2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力.【要点梳理】知识点一、一元二次方程的解法---配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1.用配方法解方程:2x2+3x﹣1=0.【思路点拨】首先把方程的二次项系数化为1,移项,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.【答案与解析】解:2x2+3x﹣1=0x2+x2+)x+x1=【点评】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行:(1)把形如ax2+bx+c=0(a≠0)的方程中二次项的系数化为1;(2)把常数项移到方程的右边;(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n≥0)的方程;(4)用直接开平方的方法解此题.举一反三:【变式】用配方法解方程.(1)x2-4x-2=0; (2)x2+6x+8=0.【答案】(1)方程变形为x2-4x=2.两边都加4,得x2-4x+4=2+4.利用完全平方公式,就得到形如(x+m)2=n的方程,即有(x-2)2=6.解这个方程,得x-2=或x-2=-.于是,原方程的根为x=2+或x=2-.(2)将常数项移到方程右边x2+6x=-8.两边都加“一次项系数一半的平方”=32,得 x2+6x+32=-8+32,∴ (x+3)2=1.用直接开平方法,得x+3=±1,∴ x=-2或x=-4.类型二、配方法在代数中的应用2.若代数式221078M a b a =+-+,2251N a b a =+++,则M N -的值( )A.一定是负数 B.一定是正数 C.一定不是负数 D.一定不是正数【答案】B ;【解析】(作差法)22221078(51)M N a b a a b a -=+-+-+++ 2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>.故选B.【点评】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.3.用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0. 【答案与解析】 解:﹣8x 2+12x ﹣5=﹣8(x 2﹣x )﹣5=﹣8[x 2﹣x+()2]﹣5+8×()2=﹣8(x ﹣)2﹣,∵(x ﹣)2≥0,∴﹣8(x ﹣)2≤0,∴﹣8(x ﹣)2﹣<0,即﹣8x 2+12﹣5的值一定小于0.【点评】利用配方法将代数式配成完全平方式后,再分析代数式值的符号. 注意在变形的过程中不要改变式子的值.举一反三:【高清ID 号:388499关联的位置名称(播放点名称):配方法与代数式的最值—例4变式1】【变式】求代数式 x 2+8x+17的最小值【答案】x 2+8x+17= x 2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴当(x+4)2=0时,代数式 x 2+8x+17的最小值是1.4.已知223730216b a a b -+-+=,求4a b -的值. 【思路点拨】解此题关键是把3716拆成91416+ ,可配成两个完全平方式. 【答案与解析】将原式进行配方,得2291304216b a a b ⎛⎫⎛⎫-++-+= ⎪ ⎪⎝⎭⎝⎭, 即2231024a b ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, ∴ 302a -=且104b -=, ∴ 32a =,14b =.∴ 3312222a -=-=-=-. 【点评】本题可将原式用配方法转化成平方和等于0的形式,进而求出a .b 的值.一元二次方程的解法(二)配方法—巩固练习(基础)【巩固练习】一、选择题1. (2015•滨州)用配方法解一元二次方程x 2﹣6x ﹣10=0时,下列变形正确的为( )A .(x+3)2=1B .(x ﹣3)2=1C .(x+3)2=19D .(x ﹣3)2=192.下列各式是完全平方式的是( )A .277x x ++B .244m m --C .211216n n ++ D .222y x -+ 3.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .3±D .以上都不对4.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-15.把方程x 2+3=4x 配方,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=26.用配方法解方程x 2+4x=10的根为( )A .2.-2..二、填空题7.(1)x 2+4x+ =(x+ )2;(2)x 2-6x+ =(x- )2;(3)x 2+8x+ =(x+ )2.8.若223(2)1x mx x ++=--,那么m =________.9.若226x x m ++是一个完全平方式,则m 的值是________.10.求代数式2x 2-7x+2的最小值为 .11.(2014•资阳二模)当x= 时,代数式﹣x 2﹣2x 有最大值,其最大值为 . 12.已知a 2+b 2-10a-6b+34=0,则的值为 .三、解答题13. 用配方法解方程(1) (2)221233x x +=14. (2014秋•西城区校级期中)已知a 2+b 2﹣4a+6b+13=0,求a+b 的值.15.已知a ,b ,c 是△ABC 的三边,且2226810500a b c a b c ++---+=.(1)求a ,b ,c 的值;(2)判断三角形的形状.【答案与解析】一、选择题1.【答案】D ;【解析】方程移项得:x 2﹣6x=10,配方得:x 2﹣6x+9=19,即(x ﹣3)2=19,故选D .2.【答案】C ; 【解析】211216n n ++214n ⎛⎫=+ ⎪⎝⎭. 3.【答案】C ;【解析】 若x 2+6x+m 2是一个完全平方式,则m 2=9,解得m=3±;4.【答案】A ;【解析】a 2-4a+5= a 2-4a+22-22+5=(a-2)2+1 ;5.【答案】C ;【解析】方程x 2+3=4x 化为x 2-4x=-3,x 2-4x+22=-3+22,(x-2)2=1.6.【答案】B ;【解析】方程x 2+4x=10两边都加上22得x 2+4x+22=10+22,x=-214二、填空题7.【答案】(1)4;2; (2)9;3; (3)16;4.【解析】配方:加上一次项系数一半的平方.8.【答案】-4;【解析】22343x mx x x ++=-+,∴ 4m =-.9.【答案】±3;【解析】2239m ==.∴ 3m =±.10.【答案】-338;【解析】∵2x 2-7x+2=2(x 2-72x )+2=2(x-74)2-338≥-338,∴最小值为-338, 11.【答案】-1,1【解析】∵﹣x 2﹣2x=﹣(x 2+2x )=﹣(x 2+2x+1﹣1)=﹣(x+1)2+1,∴x=﹣1时,代数式﹣x 2﹣2x 有最大值,其最大值为1;故答案为:﹣1,1.【解析】 -3x 2+5x+1=-3(x-56)2+3712≤3712,• ∴最大值为3712. 12.【答案】4.【解析】∵a 2+b 2-10a-6b+34=0∴a 2-10a+25+b 2-6b+9=0∴(a-5)2+(b-3)2=0,解得a=5,b=3,∴=4.三、解答题13.【答案与解析】(1)x 2-4x-1=0x 2-4x+22=1+22(x-2)2=5x-2=5 x 1=5x 2=5(2) 221233x x += 226x x +=2132x x += 222111()3()244x x ++=+ 2149()416x += 1744x +=± 132x = 22x =-14.【答案与解析】解:∵a 2+b 2﹣4a+6b+13=0,∴a 2﹣4a+4+b 2+6b+9=0,∴(a ﹣2)2+(b+3)2=0,∴a ﹣2=0,b+3=0,∴a=2,b=﹣3,∴a+b=2﹣3=﹣1.15.【答案与解析】(1)由2226810500a b c a b c ++---+=,得222(3)(4)(5)0a b c -+-+-= 又2(3)0a -≥,2(4)0b -≥,2(5)0c -≥,∴ 30a -=,40b -=,50c -=,∴ 3a =,4b =,5c =.(2)∵ 222345+= 即222a b c +=,∴ △ABC 是以c 为斜边的直角三角形.。

10.《一元二次方程》全章复习与巩固—知识讲解(基础)

10.《一元二次方程》全章复习与巩固—知识讲解(基础)

《一元二次方程》全章复习与巩固—知识讲解(基础)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.【典型例题】类型一、一元二次方程的有关概念1.下列方程中是关于x 的一元二次方程的是( )A .2210x x +=B .20ax bx c ++=C .(1)(2)1x x -+=D .223250x xy y --= 【答案】C ;【解析】A :不是整式方程,故本选项错误;B :当a =0时,即ax 2+bx +c =0的二次项系数是0时,该方程就不是一元二次方程;故本选项错误;C :由原方程,得x 2+x-3=0,符一元二次方程的要求;故本选项正确;D :方程3x 2-2xy -5y 2=0中含有两个未知数;故本选项错误.故选C .【总结升华】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.举一反三:【高清ID :388528 关联的位置名称(播放点名称):利用定义求字母的值】【变式】关于x 的方程22(28)(2)10a a x a x --++-=,当a 时为一元一次方程;当a 时为一元二次方程.【答案】a =4;a ≠4且a ≠-2.要点二、一元二次方程的解法1.基本思想一元二次方程−−−→降次一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法.要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.【典型例题】 类型二、一元二次方程的解法2.用适当的方法解一元二次方程(1) 0.5x2-=0; (2) (x+a)2=;(3) 2x2-4x-1=0; (4) (1-)x2=(1+)x.【答案与解析】(1)原方程可化为0.5x2=∴x2=用直接开平方法,得方程的根为∴x1=,x2=-.(2)原方程可化为x2+2ax+a2=4x2+2ax+∴x2=a2用直接开平方法,得原方程的根为∴x1=a,x2=-a.(3) a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=∴x1=,x2=.(4)将方程整理,得(1-)x2-(1+)x=0用因式分解法,得x[(1-)x-(1+)]=0∴ x1=0,x2=-3-2.【总结升华】在以上归纳的几种解法中,因式分解法是最简便、最迅捷的方法,但只有一部分方程可以运用这种方法,所以要善于及时观察标准的二次三项式在有理数范围内是否能直接因式分解,凡能直接因式分解的,应首先采取这种方法.公式法是可以解任何类型的一元二次方程,但是计算过程较繁琐,所以只有选择其他解法不顺利时,才考虑用这种解法.虽然先配方,再开平方的方法也适用于任何类型的一元二次方程,但是对系数复杂的一元二次方程,配方的过程比运用公式更繁琐,所以,配方法适用于系数简单的一元二次方程的求解.举一反三:【变式】解方程. (1)(3x-2)2+(2-3x)=0; (2)2(t-1)2+t=1.【答案】(1)原方程可化为:(3x-2)2-(3x-2)=0,∴ (3x-2)(3x-2-1)=0.∴ 3x-2=0或3x-3=0,∴ 123x =,21x =. (2)原方程可化为:2(t-1)2+(t-1)=0.∴ (t-1)[2(t-1)+1]=0.∴ (t-1)(2t-1)=0,∴ t-1=0或2t-1=0.∴ 11t =,212t =.要点三、一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.类型三、一元二次方程根的判别式的应用3.(2015•荆门)若关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,则a 的取值范围是( )A .a ≥1B . a >1C . a ≤1D .a <1【答案】A ;【解析】∵关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,∴△=(﹣4)2﹣4(5﹣a )≥0,∴a ≥1.故选A .【总结升华】本题考查的是一元二次方程根的判别式,根据方程有两个实数根,得到判别式大于等于零,求出a 的取值范围.【高清ID :388528 关联的位置名称(播放点名称):根系关系】2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.要点诠释:1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.类型四、一元二次方程的根与系数的关系4.已知x 1、x 2是关于x 的方程2220x x t -++=的两个不相等的实数根,(1)求t 的取值范围; (2)设2212s x x =+,求s 关于t 的函数关系式. 【答案与解析】(1)因为一元二次方程有两个不相等的实数根.所以△=(-2)2-4(t+2)>0,即t <-1.(2)由一元二次方程根与系数的关系知:122x x +=,122x x t =+,从而2212s x x =+21212()2x x x x =+-222(2)2t t =-+=-,即2(1)s t t =-<-.【总结升华】利用根与系数关系求函数解析式综合题.举一反三:【变式】已知关于x 的一元二次方程222(1)x m x m =--的两实数根为1x ,2x .(1)求m 的取值范围;(2)设12y x x =+,当y 取得最小值时,求相应m 的值,并求出最小值.【答案】(1)将原方程整理为222(1)0x m x m +-+=.∵ 原方程有两个实数根.∴ 22[2(1)]4840m m m =--=-+≥△,∴ 12m ≤. (2) 1222y x x m =+=-+,且12m ≤. 因为y 随m 的增大而减小,故当12m =时,取得最小值1. 要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.类型五、一元二次方程的应用5.如图所示,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长.【答案与解析】设小正方形的边长为xcm,由题意得4x2=10×8×(1-80%).解得x1=2,x2=-2.经检验,x1=2符合题意,x2=-2不符合题意舍去.∴ x=2.答:截去的小正方形的边长为2cm.【总结升华】设小正方形的边长为x cm,因为图中阴影部分面积是原矩形面积的80%,所以4个小正方形面积是原矩形面积的20%.举一反三:【变式】(2015春•启东市月考)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在欲砌50m长的墙,砌成一个面积300m2的矩形花园,则BC的长为多少m?【答案】解:设AB=x米,则BC=(50﹣2x)米.根据题意可得,x (50﹣2x )=300,解得:x 1=10,x 2=15,当x=10,BC=50﹣10﹣10=30>25,故x 1=10(不合题意舍去),50﹣2x=50﹣30=20.答:BC 的长为20m .6.某旅行社有100张床位,每床每晚收费10元,空床可全部租出;若每床每晚提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了每晚获得1120元的利润,每床每晚应提高多少元?【答案与解析】设每床每晚提高x 个2元,则每床每晚收费为(10+2x)元,每晚出租出去的床位为(100-10x)张,根据题意,得(10+2x)(100-10x)=1120.整理,得x 2-5x+6=0.解得,x 1=2,x 2=3.∴ 当x =2时,2x =4;当x =3时,2x =6.答:每床每晚提高4元或6元均可.【总结升华】这是商品经营问题,总利润=每张床费×床数.可设每床每晚提高x 个2元,则床费为(10+2x)元,由于每晚每床提高2元,出租出去的床位减少10张,则出租出去的总床位为(100-10x)张,据此可列方程.【巩固练习】一、选择题1.已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( )A.1B.﹣1C.0D.无法确定2.若一元二次方程式ax (x +1)+(x +1)(x +2)+bx (x +2)=2的两根为0.2,则|3a +4b |之值为何( )A .2B .5C .7D .83.(2015•濠江区一模)某机械厂一月份生产零件50万个,三月份生产零件72万个,则该机械厂二、三月份生产零件数量的月平均增长率为( )A .2%B . 5%C . 10%D . 20% 4.将代数式x 2+4x-1化成(x+p )2+q 的形式( )A.(x-2)2+3B.(x+2)2-4C.(x+2)2-5D.(x+2)2+45.若关于x 的一元二次方程2210kx x ++=有实数根,则k 的取值范围是( ).A .k <0B .k ≤0C .k ≠1且k ≠0D .k ≤1且k ≠06.从一块正方形的铁片上剪掉2 cm 宽的长方形铁片,剩下的面积是48 cm 2,则原来铁片的面积是( ) A.64 cm 2 B.100 cm 2 C.121 cm 2 D.144 cm 27.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定8.如果关于x 的方程ax 2+x-1=0有实数根,则a 的取值范围是( )A .B .C .且D .且二、填空题9.已知关于x 的方程x 2+mx ﹣6=0的一个根为2,则m = ,另一个根是 .10.(2014秋•青海校级期末)有一间长20m ,宽15m 的矩形会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则地毯的长、宽分别为 和 .11.关于x 的一元二次方程22(1)10a x x a -++-=有一个根为0,则a = .12.阅读材料:设一元二次方程似20ax bx c ++=(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:12b x x a +=-,12c x x a =,根据该材料填空:已知x 1,x 2是方程2630x x ++=的两实数根,则2112x x x x +的值为________. 13.已知两个连续奇数的积是15,则这两个数是___________________.14.设x 1,x 2是一元二次方程x 2-3x-2=0的两个实数根,则2211223x x x x ++的值为________. 15.问题1:设a 、b 是方程x 2+x -2012=0的两个实数根,则a 2+2a +b 的值为 ;问题2:方程x 2-2x -1=0的两个实数根分别为x 1,x 2,则(x 1―1)(x 2―1)= ; 问题3:已知一元二次方程x 2-mx +m -2=0的两个实数根为x 1、x 2且x 1x 2(x 1+x 2)=3,则m的值是 ;问题4:已知一元二次方程x 2-2x+m=0,若方程的两个实数根为X 1,X 2,且X 1+3X 2=3,则m 的值是 .16.某校2010年捐款1万元给希望工程,以后每年都捐款,计划到2012年共捐款4.75万元,则该校捐款的平均年增长率是 .三、解答题17.某两位数的十位数字与个位上的数字之和是5,把这个数的个位上的数字与十位上的数字对调后,所得的新两位数与原两位数的乘积为736,求原来的两位数.18. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.19.(2015•十堰)已知关于x 的一元二次方程x 2﹣(2m+3)x+m 2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.20.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图像的草图,观察其图像的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元?【答案与解析】一、选择题1.【答案】B;【解析】解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选B.2.【答案】B;【解析】先根据一元二次方程式ax(x+1)+(x+1)(x+2)+bx(x+2)=2的根确定a.b 的关系式.然后根据a.b的关系式得出3a+4b=-5.用求绝对值的方法求出所需绝对值.3.【答案】D;【解析】设平均每月增长的百分率为x,根据题意,得50(1+x)2=72,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去)故选D.4.【答案】C;【解析】根据配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.x2+4x-1=x2+4x+4-4-1=(x+2)2-5,故选C.5.【答案】D;【解析】因为方程是一元二次方程,所以k≠0,又因为一元二次方程有实数根,所以△≥0,即△=4-4k≥0,于是有k≤1,从而k的取值范围是k≤1且k≠0.6.【答案】A;【解析】本题用间接设元法较简便,设原铁片的边长为xcm.由题意,得x(x-2)=48,解得x1=-6(舍去),x2=8.∴x2=64,即正方形面积为64 cm2.7.【答案】A;【解析】由t是方程的根得at2+bt+c=0,M=4a2t2+4abt+b2=4a(at2+bt)+b2= b2-4ac=△.8.【答案】B ;【解析】注意原方程可能是一元二次方程,也可能是一元一次方程.二、填空题9.【答案】1;﹣3.【解析】根据一元二次方程的解定义,将x =2代入关于x 的方程x 2+mx ﹣6=0,然后解关于m 的一元一次方程;再根据根与系数的关系x 1+x 2=﹣b a解出方程的另一个根. 10.【答案】 15m ,10m ;【解析】设留空宽度为xm ,则(20﹣2x )(15﹣2x )=20×15×,整理得:2x 2﹣35x+75=0,即(2x ﹣5)(x ﹣15)=0,解得x 1=15,x 2=2.5,∵20﹣2x >0,∴x<10,∴x=2.5,∴20﹣2x=15,15﹣2x=10.∴地毯的长、宽分别为15m 和10m .11.【答案】-1;【解析】把x=0代入方程得1a =±,因为10a -≠,所以1a =-.12.【答案】10;【解析】此例首先根据阅读部分,明确一元二次方程根与系数的关系, 然后由待求式2112x x x x +变形为2221212121212()2x x x x x x x x x x ++-=,再整体代换. 具体过程如下:由阅读材料知 x 1+x 2=-6,x 1x 2=3. 而222221121212121212()2(6)23103x x x x x x x x x x x x x x ++---⨯+====. 13.【答案】3和5或-3和-5;【解析】注意不要丢解.14.【答案】7;【解析】∵ x 1,x 2是一元二次方程2320x x --=的两实数根,∴ x 1+x 2=3,x 1x 2=-2∴ 222222112211221212123(2)()3(2)7x x x x x x x x x x x x x x ++=+++=++=+-= 15.【答案】2011;-2;m=-1或3;m=34. 【解析】由于a ,b 是方程x 2+x-2012=0的两个实数根,根据根与系数的关系可以得到a+b=-1,并且a 2+a-2012=0,然后把a 2+2a+b 可以变为a 2+a+a+b ,把前面的值代入即可求出结果.16.【答案】50%;【解析】设该校捐款的平均年增长率是x , 则, 整理,得,解得,答:该校捐款的平均年增长率是50%.三、解答题17.【答案与解析】设原两位数的十位数字为x,则个位数字为(5-x),由题意,得[10x+(5-x)][10(5-x)+x]=736.整理,得x2-5x+6=0,解得x1=2,x2=3.当x=2时5-x=3,符合题意,原两位数是23.当x=3时5-x=2符合题意,原两位数是32.18.【答案与解析】设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答:这两个月的平均增长率是10%.19.【答案与解析】解:(1)∵关于x的一元二次方程x2﹣(2m+3)x+m2+2=0有实数根,∴△≥0,即(2m+3)2﹣4(m2+2)≥0,∴m≥﹣;(2)根据题意得x1+x2=2m+3,x1x2=m2+2,∵x12+x22=31+|x1x2|,∴(x1+x2)2﹣2x1x2=31+|x1x2|,即(2m+3)2﹣2(m2+2)=31+m2+2,解得m=2,m=﹣14(舍去),∴m=2.20.【答案与解析】⑴若商店经营该商品不降价,则一天可获利润100×(100-80)=2000(元)⑵ ①依题意得:(100-80-x)(100+10x)=2160即x2-10x+16=0解得:x1=2,x2=8经检验:x1=2,x2=8都是方程的解,且符合题意.答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元.②依题意得:y=(100-80-x)(100+10x)∴y= -10x2+100x+2000=-10(x-5)2+2250画草图(略)观察图像可得:当2≤x≤8时,y≥2160∴当2≤x≤8时,商店所获利润不少于2160元.。

___版九年级上册一元二次方程练习题(含答案)

___版九年级上册一元二次方程练习题(含答案)

___版九年级上册一元二次方程练习题(含答案)一元二次方程及其解法——直接开平方法巩固练】一、选择题1.(2015·泰安模拟)方程$x^2+ax+1=0$和$x^2-x-a=0$有一个公共根,则$a$的值是().A.0.B.1.C.2.D.32.若$ax^2-5ax+3=0$是一元二次方程,则不等式$3a+6>0$的解集应是(。

).A.$a>2$。

B.$a-2$。

D.$a>-2$且$a\neq 0$3.(2016·重庆校级三模)若关于$x$的一元二次方程$ax^2+bx+6=0$的一个根为$x=-2$,则代数式$6a-3b+6$的值为()A.9B.3C.0D.-34.已知方程$x+bx+a=0$有一个根是$-a(a\neq 0)$,则下列代数式的值恒为常数的是(。

).A.ab。

B.$\frac{a}{b}$。

C.$a+b$。

D.$a-b$5.若$\frac{x-9}{x-3}=\frac{1}{2}$,则$x^2-5x+6$的值为().A.1.B.-5.C.1或-5.D.66.对于形如$x$的方程$(x+m)=n$,它的解的正确表达式是().A.用直接开平方法解得$x=\pm n$B.当$n\geq m$时,$x=m\pm n$C.当$n>m$时,$x=\pm(n-m)$D.当$n\geq m$时,$x=\pm(n-m)$二、填空题7.如果关于$x$的一元二次方程$x^2+px+q=0$的两根分别为$x_1=2$,$x_2=1$,那么$p$,$q$的值分别是.8.(2014秋·东胜区校级期中)若关于$x$的一元二次方程$(m-2)x^2+3x+m^2-4=0$的常数项为$-8$,则$m$的值等于.9.已知$x=1$是一元二次方程$x+mx+n=0$的一个根,则$m+2mn+n$的值为________.10.(1)当$k=\frac{1}{2}$时,关于$x$的方程$(k-1)x^2-(k-1)x+1=0$是一元二次方程;(2)当$k\neq \frac{1}{2}$时,上述方程是一元一次方程.11.已知$a$是方程$x^2+ax-5=0$的根,则$\frac{1}{a^3}-\frac{1}{a}$的值为.12.已知$a$是关于$x$的一元二次方程$x-2012x+1=0$的一个根,则$a-2011a+\frac{22}{2012a^2+1}$的值为.三、解答题13.(2016·乌鲁木齐校级月考)一元二次方程$a(x-1)^2+b(x-1)+c=0$化为一般形式后为$2x^2-3x-1=0$,试求$a$,$b$,$c$的值.14.用直接开平方法解下列方程:1)$x^2-6x+5=0$;2)$2x^2-5x+2=0$;3)$3x^2+4x+1=0$;4)$5x^2-6x+1=0$;5)$x^2-8\sqrt{2}x+16=0$;6)$4x^2-4x+1=0$;7)$3x^2-4\sqrt{2}x+2=0$;8)$5x^2-4\sqrt{5}x+1=0$;9)$x^2-(2+\sqrt{3})x+1=0$;10)$2x^2-(2+\sqrt{2})x+\sqrt{2}=0$.1.题目中的符号应该用正确的数学符号代替,即“=”应该为“=”。

一元二次方程的解法(二)配方法—巩固练习(基础)

一元二次方程的解法(二)配方法—巩固练习(基础)

一元二次方程的解法(二)配方法—巩固练习(基础)【巩固练习】一、选择题1. (2015•滨州)用配方法解一元二次方程x 2﹣6x ﹣10=0时,下列变形正确的为( )A .(x+3)2=1B .(x ﹣3)2=1C .(x+3)2=19D .(x ﹣3)2=192.下列各式是完全平方式的是( )A .277x x ++B .244m m --C .211216n n ++ D .222y x -+ 3.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .3±D .以上都不对4.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-15.把方程x 2+3=4x 配方,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=26.用配方法解方程x 2+4x=10的根为( )A .2±10B .-2±14C .-2+10D .2-10二、填空题7.(1)x 2+4x+ =(x+ )2;(2)x 2-6x+ =(x- )2;(3)x 2+8x+ =(x+ )2.8.若223(2)1x mx x ++=--,那么m =________.9.若226x x m ++是一个完全平方式,则m 的值是________.10.求代数式2x 2-7x+2的最小值为 .11.(2014•资阳二模)当x= 时,代数式﹣x 2﹣2x 有最大值,其最大值为 .12.已知a 2+b 2-10a-6b+34=0,则的值为 .三、解答题13. 用配方法解方程(1) (2)221233x x +=14. (2014秋•西城区校级期中)已知a 2+b 2﹣4a+6b+13=0,求a+b 的值.15.已知a ,b ,c 是△ABC 的三边,且2226810500a b c a b c ++---+=.(1)求a ,b ,c 的值;(2)判断三角形的形状.【答案与解析】一、选择题1.【答案】D ;【解析】方程移项得:x 2﹣6x=10,配方得:x 2﹣6x+9=19,即(x ﹣3)2=19,故选D .2.【答案】C ; 【解析】211216n n ++214n ⎛⎫=+ ⎪⎝⎭. 3.【答案】C ;【解析】 若x 2+6x+m 2是一个完全平方式,则m 2=9,解得m=3±;4.【答案】A ;【解析】a 2-4a+5= a 2-4a+22-22+5=(a-2)2+1 ;5.【答案】C ;【解析】方程x 2+3=4x 化为x 2-4x=-3,x 2-4x+22=-3+22,(x-2)2=1.6.【答案】B ;【解析】方程x 2+4x=10两边都加上22得x 2+4x+22=10+22,x=-2±14.二、填空题7.【答案】(1)4;2; (2)9;3; (3)16;4.【解析】配方:加上一次项系数一半的平方.8.【答案】-4;【解析】22343x mx x x ++=-+,∴ 4m =-.9.【答案】±3;【解析】2239m ==.∴ 3m =±.10.【答案】-338;【解析】∵2x 2-7x+2=2(x 2-72x )+2=2(x-74)2-338≥-338,∴最小值为-338, 11.【答案】-1,1【解析】∵﹣x 2﹣2x=﹣(x 2+2x )=﹣(x 2+2x+1﹣1)=﹣(x+1)2+1,∴x=﹣1时,代数式﹣x 2﹣2x 有最大值,其最大值为1;故答案为:﹣1,1.【解析】 -3x 2+5x+1=-3(x-56)2+3712≤3712,• ∴最大值为3712. 12.【答案】4.【解析】∵a 2+b 2-10a-6b+34=0∴a 2-10a+25+b 2-6b+9=0∴(a-5)2+(b-3)2=0,解得a=5,b=3,∴=4.三、解答题13.【答案与解析】(1)x 2-4x-1=0x 2-4x+22=1+22 (x-2)2=5x-2=5±x 1=2+5x 2=2-5(2) 221233x x += 226x x +=2132x x += 222111()3()244x x ++=+ 2149()416x += 1744x +=± 132x = 22x =-14.【答案与解析】解:∵a 2+b 2﹣4a+6b+13=0,∴a 2﹣4a+4+b 2+6b+9=0,∴(a ﹣2)2+(b+3)2=0,∴a ﹣2=0,b+3=0,∴a=2,b=﹣3,∴a+b=2﹣3=﹣1.15.【答案与解析】(1)由2226810500a b c a b c ++---+=,得222(3)(4)(5)0a b c -+-+-= 又2(3)0a -≥,2(4)0b -≥,2(5)0c -≥,∴ 30a -=,40b -=,50c -=,∴ 3a =,4b =,5c =.(2)∵ 222345+= 即222a b c +=,∴ △ABC 是以c 为斜边的直角三角形.。

2023年高考备考一元二次方程的解法(二)配方法—知识讲解(提高)

2023年高考备考一元二次方程的解法(二)配方法—知识讲解(提高)

一元二次方程的解法〔二〕配方法—知识讲解〔提高〕(学习目标)1.了解配方法的概念,会用配方法解一元二次方程;2.掌握运用配方法解一元二次方程的根本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力。

(要点梳理)知识点一、一元二次方程的解法---配方法1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方法,右边化为一个常数; ⑤假设方程右边是非负数,则两边直接开平方,求出方程的解;假设右边是一个负数,则判定此方程无实数解.要点诠释:〔1〕配方法解一元二次方程的口诀:一除二移三配四开方;〔2〕配方法关键的一步是“配方〞,即在方程两边都加上一次项系数一半的平方.〔3〕配方法的理论依据是完全平方公式2222()a ab b a b ±+=±.知识点二、配方法的应用1.用于比拟大小:在比拟大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零〔或小于零〕而比拟出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方法后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法〞在求最大〔小〕值时的应用,将原式化成一个完全平方法后可求出最值.4.用于证明:“配方法〞在代数证明中有着广泛的应用,我们学习二次函数后还会了解“配方法〞在二次函数中也有着广泛的应用.要点诠释:“配方法〞在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,商量不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们肯定要把它学好.(典型例题)类型一、用配方法解一元二次方程1. 〔2023春•石景山区期末〕用配方法解方程:2x 2﹣12x ﹣2=0.(思路点拨)首先将二次项系数化为1,再将方程的常数项移动方程右边,两边都加上9,左边化为完全平方法,右边合并,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解. (答案与解析)解:2x 2﹣12x ﹣2=0,系数化为1得:x 2﹣6x ﹣1=0,移项得:x 2﹣6x=1,配方得:x 2﹣6x +9=10,即〔x ﹣3〕2=10,开方得:x ﹣3=±, 则x 1=3+,x 2=3﹣. (总结升华)此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移动方程右边,然后两边都加上一次项系数一半的平方,左边化为完全平方法,右边合并,开方转化为两个一元一次方程来求解.举一反三:(变式) 用配方法解方程〔1〕 〔2〕20x px q ++=2x 2+3=5x (答案)〔1〕2235x x += 2253x x -=- 25322x x -=- 2225535((2424x x -+=-+ 251()416x -= 5144x -=± 123,12x x ==.〔2〕20x px q ++= 222()(22p p x px q ++=-+ 224()24p p q x -+= ①当240p q -≥时,此方程有实数解,12x x ==; ②当240p q -<时,此方程无实数解. 类型二、配方法在代数中的应用2. 用配方法证明21074x x -+-的值小于0.(思路点拨)此题不是用配方法解一元二次方程,但所用的配方法思想与自己学的配方法大同小异,即思路一致.(答案与解析) 22271074(107)410410x x x x x x ⎛⎫-+-=-+-=--- ⎪⎝⎭A 27494910410400400x x ⎛⎫=--+-- ⎪⎝⎭274910420400x ⎡⎤⎛⎫=----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2274971111041020402040x x ⎛⎫⎛⎫=--+-=--- ⎪ ⎪⎝⎭⎝⎭. ∵ 2710020x ⎛⎫--≤ ⎪⎝⎭,∴ 271111002040x ⎛⎫---< ⎪⎝⎭, 即210740x x -+-<.故21074x x -+-的值恒小于0.(总结升华)证明一个代数式大于零或小于零,常用方法就是利用配方法得到一个含完全平方法和一个常数的式子来证明.举一反三:(变式)试用配方法证明:代数式223x x -+的值不小于238.(答案) 22123232x x x x ⎛⎫-+=-+ ⎪⎝⎭ 22211123244x x ⎡⎤⎛⎫⎛⎫=-+-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 21123416x ⎡⎤⎛⎫=--+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 2112348x ⎛⎫=--+ ⎪⎝⎭ 2123248x ⎛⎫=-+ ⎪⎝⎭. ∵ ,∴ 2123232488x ⎛⎫-+≥ ⎪⎝⎭. 21204x ⎛⎫-≥ ⎪⎝⎭即代数式223x x -+的值不小于238.3. 〔2023春•宜兴市校级月考〕假设把代数式x 2+2bx+4化为〔x ﹣m 〕2+k 的形式,其中m ,k 为常数,则k ﹣m 的最大值是 . (答案); (解析)解:x 2+2bx+4=x 2+2bx+b 2﹣b 2+4=〔x+b 〕2﹣b 2+4;∴m=﹣b ,k=﹣b 2+4,则k ﹣m=﹣〔b ﹣〕2+.∵﹣〔b ﹣〕2≤0,∴当b=时,k ﹣m 的最大值是. 故答案为:. (总结升华)此题考查利用完全平方公式配方,注意代数式的恒等变形.举一反三:(变式)〔1〕的最小值是;〔2〕的最大值是 . 2x 2+6x ‒3‒x 2+4x +5(答案)〔1〕222222333152632(3)323(()32()2222x x x x x x x ⎡⎤+-=+-=++--=+-⎢⎥⎣⎦; 所以的最小值是152- 2x 2+6x ‒3〔2〕22222245(4)5(422)5(2)9x x x x x x x -++=--+=--+-+=--+所以的最大值是9.‒x 2+4x +5 4. 分解因式:42221x x ax a +++-.(答案与解析) 42221x x ax a +++-4222221x x x ax a =+-++-4222212x x x ax a =++--+()()2221x x a =+--()()22(1)(1)x x a x x a =++-+-+.(总结升华)这是配方法在因式分解中的应用,通过添项、配成完全平方法,进而运用平方差公式分解因式.。

专题02 一元二次方程的解法(基础)(原卷版)

专题02 一元二次方程的解法(基础)(原卷版)

专题02 一元二次方程的解法要点一、直接开平方法解一元二次方程1.直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.2.直接开平方法的理论依据:平方根的定义.3.能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.要点二、一元二次方程的解法---配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.要点三、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.要点四、一元二次方程的求根公式一元二次方程,当时,.要点五、用公式法解一元二次方程的步骤用公式法解关于x的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a、b、c的值(要注意符号);③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.要点六、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤 (1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.一、单选题1.(2020·江苏扬州市·九年级月考)一元二次方程20x px q ++=的两根为3、4,那么二次三项式2x px q ++可分解为( ) A .()()34x x +-B .()()34x x -+C .()()34x x --D .()()34x x ++2.(2020·淮南市龙湖中学九年级月考)若用配方法解一元二次方程2610x x --=,则原方程可变形为( ) A .()231x -=B .()2310x -=C .()231x +=D .()2310x +=3.(2020·邢台市第七中学九年级期中)下列方程中,有两个不相等的实数根的是( ) A .x 2=0B .x ﹣3=0C .x 2﹣5=0D .x 2+2=04.(2020·南京师范大学附属中学树人学校九年级月考)将方程(x ﹣1)2=6化成一元二次方程的一般形式,正确的是( ) A .x 2﹣2x+5=0B .x 2﹣2x ﹣5=0C .x 2+2x ﹣5=0D .x 2+2x+5=5.(2020·海林市朝鲜族中学九年级月考)若|x 2﹣4x+4|x+y 的值为( ) A .3 B .4 C .6 D .9二、填空题6.(2020·河南信阳市·九年级月考)已知()222(1)160y y +++-=,那么21y +=______.7.(2020·太平乡初级民族中学九年级月考)定义新运算®:对于任意实数a 、b 都有:a ®b =a 2+ab ,如果3®4=32+3×4=9+12=21,那么方程x ®2=0的解为________.8.(2020·全国八年级课时练习)配方法不仅可以用来解一元二次方程,还可以用来解决很多问题.例如:因为3a 2≥0,所以3a 2-1≥-1,即:3a 2-1就有最小值-1.只有当a=0时,才能得到这个式子的最小值-1.同样,因为-3a 2≤0.所以-3a 2+1≤1,即:-3a 2+1就有最大值1,只有当a=0时,才能得到这个式子的最大值1.(1)当x= 时,代数式-2(x+1)2-1有最大值(填“大”或“小”值为 .(2)当x= 时,代数式 2x 2+4x+1有最小值(填“大”或“小”)值为 . (3)矩形自行车场地ABCD 一边靠墙(墙长10m ),在AB 和BC 边各开一个1米宽的小门(不用木板),现有能围成14m 长的木板,当AD 长为多少时,自行车场地的面积最大?最大面积是多少?9.(2020·上海市静安区实验中学八年级课时练习)方程220(40)x px q p q ++=-≥的根是___________.三、解答题10.(2020·云南昆明市·九年级期末)解方程: (1)22410x x --=(配方法)(2)2(1)66x x +=+11.(2020·河北石家庄市·九年级期中)定义新运算“⊕”如下:当a b ≥时,a b ab b ⊕=+;当a b <时,a b ab a ⊕=-,解方程()()2120x x -⊕+=12.(2020·淮南市龙湖中学九年级月考)解方程:2x -6=3x(x -3). 小明是这样解答的:将方程左边分解因式,得2(x -3)=3x(x -3).……第一步 方程两边同时除以(x -3),得2=3x.……第二步解得x =23.……第三步 (1)小明的解法从第________步开始出现错误; (2)写出正确的解答过程.13.(2018·洛阳市洛龙区龙城双语初级中学九年级月考)先化简,再求值:2212111x x x x x --⎛⎫÷+- ⎪-+⎝⎭,其中x 是方程260x x +-=的根. 14.(2020·全国八年级课时练习)用适当的方法解下列方程: 、1、2x 510x -+=、 、2、()()23x-2x-2x =、 、3、()()22231y y +=-.15.(2020·全国八年级课时练习)若正比例函数y=(a ﹣1)23a x -的图象经过点(﹣2,b 2+5),求a ,b 的值.。

第3课时 一元二次方程的解法(2) -- 配方法

第3课时 一元二次方程的解法(2) -- 配方法

例题与对应练习
• [例1]用配方法解一元二次方程x2 - 6x = 5时,此方程可变形为(

• A.(x+3)2 = 14
B.(x-3)2 = 4
• C.(x+3)2 = 9
D.(x-3)2 = 14
• 【练习】把一元二次方程x2 - 6x + 1 = 0配方成(x + m)2 = n的形式,正确的是(
用配方法解一元二次方程
• 解方程:x2 + 6x - 16 = 0. • 步骤: • (1)移项:把“常数项”移到等号的右边:x2 + 6x = 16; • (2)配方:等号两边同时加上一次项系数一半的平方,使等号左边成为一个完全平
方式: • x2 + 6x + _________ = 16 + _________ , • 即(x + _________ )2 = _________ ; • (3)用直接开平方法解方程:x + _________ = _________ , • ∴方程的解是x1 = _________ ,x2 = _________ .
形式,则ab = _________ . • 小结:配方时,先把常数项移到等号的右边,然后两边都加上一
次项系数一半的平方.
• [例3]配方法解一元二次方程: • (1)y2 + 10y + 4 = 0;(2)x(x + 8) = 16.
(1)y2 + 10y + 4 = 0;
• 【练习】用配方法解一元二次方程:

• A.(x+3)2 = 10
B.(x-3)2 = 10
• C.(x+3)2 = 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的解法(二)配方法一巩固练习(基础)
【巩固练习】 、选择题
1. ( 2015?滨州)用配方法解一兀二次方程 2 亠 x - 6x - 10=0 时,下 F 列变形正确的为( 2 A . (x+3) =1 B 2 .(x - 3) =1 C . (x+3) 2
=19 D .(x' 、2 -3) =19 2.下列各式是完全平方式的是( )
2 A . x 7x 7 B
2 2 .m - 4m - 4 C . n
1
n 2
1
16
D .
y 2 —2x 2
3.右x +6x+m 是一个元全平方式,则 m 的值是( )
A . 3
B
.-3
C
._3
D
以上都不对
4.用配方法将二次三项式
a -4a+5 变形, 结果是(
)
2
A . (a-2) +1
B 2
.(a+2) -1
2
C
. (a+2) +1
D
. 2
(a-2 ) -1
5.把方程x 2+3=4x 配方, 得(

2
A . (x-2 ) =7
B 2
.(x+2) =21 2
C . (x-2 ) =1
D
. 2
(x+2) =2
6.用配方法解方程 x 2+4x=10的根为(
)
A . 2± .10
B .-2 ± 帀 C
. -2+ .10
D
.2-、、10
&若 x 2 +mx +3 =(x -2)2 -1,那么 m= __________ . 9•若x 2 +6x+m 2是一个完全平方式,则
m 的值是 _________ . 2
10.
求代数式2X-7X+2的最小值为 .
2
11. ___________________________ (2014?资阳二模)当x=
_____________________________ 时,代数式-x - 2x 有最大值,其最大值为 ___________ 12 .已知 a 2+b 2-10a-6b+34=0,则•亠 的值为 ___________ .
三、解答题 13. 用配方法解方程
(1)
厂竣{讥m
2
2
14. (2014秋?西城区校级期中)已知 a +b - 4a+6b+13=0,求a+b 的值.
15.已知a, b, c 是厶ABC的三边,且a2 b2 c2 -6a -8b -10c 50 =0 .
37
⑴求a , b , c 的值;
(2)判断三角形的形状. 【答案与解析】 、选择题 1 •【答案】D;
【解析】方程移项得:x 2-6x=10,配方得:x 2-6x+9=19,即(x -3) 2=19 , 故选D . 2. 【答案】C ;
1 1
n — 2
16
3. 【答案】C ;
【解析】若x 2
+6x+m i 是一个完全平方式,则 4. 【答案】A ;
【解析】a 2-4a+5= a 2-4a+2 2-2 2+5= (a-2 ) 2+1 ; 5. 【答案】C ;
【解析】方程 x 2+3=4x 化为 x 2-4x=-3 , X 2-4X +2 2=-3+22, (x-2 ) 2=1. 6. 【答案】B ;
【解析】方程x 2+4x=10两边都加上22得X 2+4X +22=10+22, x=-2 土 14
二、填空题 7.
【答案】(1) 4; 2; (2) 9; 3; (3) 16; 4.
【解析】配方:加上一次项系数一半的平方•
&【答案】-4 ;
2 2
【解析】x mx 3 = x-4x 3,二 m = -4 . 9.[答案】土 3;
【解析】m 2 =32 =9 .••• m = 3. 2
2 7
7 2 33 33 [解析】T 2x -7x+2=2 (x - — x ) +2=2 (x- — ) - — > - — ,•••最小值为- 2 4 8
8
11.[答案】-1,1
[解析 I T - x 2- 2x= -( x 2+2x ) = -( x 2+2x+1 — 1) = -( x+1 ) 2+1, • x= - 1时,代数式-x 2- 2x 有最大值,其最大值为
1;
故答案为:-1, 1.
【解析】-3x 2+5X + 仁-3 (x- 5 ) 2+ 37 w 37 , ?
6 12 12
•••最大值为 12
12. [答案】 4.
【解析】 2
m=9,解得 m==3;
10.[答案】
33
§;
33 8
2 2
【解析】••• a+b-10a-6b+34=0
2 2
••• a -10a+25+b -6b+9=0
2
2
-•( a-5 ) + (b-3 ) =0,解得 a=5, b=3,
=4
■:=4 -
三、解答题 13.【答案与解析】
(1)卡卜君】m
x 2
-4x-1=0 x 2 2 2
-4x+2 =1+2
(x-2)
2
=5
x-2=
X 1= 2+ . 5
X 2= 2-、. 5
⑵2x 2」x =2
3
3
2
2x 2
x = 6
2
1 x x =3
2 1 /1、2 —x (—) 4
1 (x )
4
x
4
X 2 二-2
14.【答案与解析】
解:••• a 2+b 2 - 4a+6b+13=0 ,
2 2
a - 4a+4+
b +6b+9=0 , • ( a - 2) + ( b+3) =0, --a — 2=0, b+3=0, a=2, b= — 3, • a+b=2 — 3= — 1.
x 2
二 3 Q)2
4
49 16 7 4
15. 【答案与解析】
(1 )由a2 b2 c2 -6a -8b -10c 50 = 0,得(a -3)2 (b -4)2 (c-5)2 = 0 又(a—3)2_0,
(b—4)2_0, (C—5)2_0,
a —3 = 0 ,
b —4 = 0 ,
c —5 = 0 ,
a=3, b=4 , c=5 .
(2)•••32 42 = 52即a2 b2二c2,
△ ABC是以c为斜边的直角三角形.。

相关文档
最新文档