九年级数学中考专题复习训练题及解析 整式与因式分解

合集下载

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案一、选择题1.下列计算正确的是()A.(3a)2=6a2B.(a2)3=a5C.a6÷a2=a3D.a2⋅a=a32.若8x=21,2y=3,则23x−y的值是()A.7 B.18 C.24 D.633.计算(−2ab)(ab−3a2−1)的结果是()A.−2a2b2+6a3b B.−2a2b2−6a3b−2abC.−2a2b2+6a3b+2ab D.−2a2b2+6a3b−14.若(x−1)(x+4)=x2+ax+b,则a、b的值分别为().A.a=5,b=4 B.a=3,b=−4 C.a=3,b=4 D.a=55.下列变形中正确的是()A.(x+y)(−x−y)=x2−y2B.x2−4x−4=(x−2)2C.x4−25=(x2+5)(x2−5)D.(−2x+3y)2=4x2+12xy+9y26.下列分解因式正确的是()A.x2+2xy−y2=(x−y)2B.3ax2−6ax=3(ax2−2ax)C.m3−m=m(m−1)(m+1)D.a2−4=(a−2)27.图(1)是一个长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,小长方形的长为a,宽为b(a>b),然后按图(2)拼成一个正方形,通过计算,用拼接前后两个图形中阴影部分的面积可以验证的等式是()A.a2b2=(ab)2B.(a+b)2=(a−b)2+4abC.(a+b)2=a2+b2+2ab D.a2−b2=(a+b)(a−b)8.若x−y=−3,xy=5则代数式2x3y−4x2y2+2xy3的值为()A.90 B.45 C.-15 D.-30二、填空题9.若27×3x=39,则x的值等于10.计算:(√3−√2)(√3+√2)=.11.在实数范围内分解因式2x2+3x−1=.12.要使(y2−ky+2y)⋅(−y)的展开式中不含y2项,则k的值是.13.已知4y2−my+9是完全平方式,则m的值为.三、解答题14.计算:(2a−1)(a+2)−6a3b÷3ab.15.把下列多项式分解因式:(1)a4−8a2b2+16b4(2)x2(y2−1)+2x(y2−1)+(y2−1)16.已知a+b=5,ab=−6,求:(1)a2b+ab2的值;(2)a2+b2的值;(3)a-b的值.17.下面是某同学对多项式(x2−4x+2)(x2−4x+6)+4进行因式分解的过程解:设x2−4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2−4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的____(填序号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2−2x)(x2−2x+2)+1进行因式分解.18.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式;(2)根据整式乘法的运算法则,通过计算验证上述等式;(3)若a+b+c=10,ab+ac+bc=35利用得到的结论,求a2+b2+c2的值.参考答案1.D2.A3.C4.B5.C6.C7.B8.A9.610.111.2(x −−3+√174)(x −−3−√174)12.213.±1214.解:原式=2a 2+4a −a −2−2a 2=3a −2.15.(1)解:a 4−8a 2b 2+16b 4=(a 2−4b 2)2=(a +2b)2(a −2b)2(2)解:x 2(y 2−1)+2x(y 2−1)+(y 2−1)=(x 2+2x +1)(y 2−1)=(x +1)2(y +1)(y −1)16.(1)解:∵a +b =5,ab =−6∴a 2b +ab 2=ab(a +b)=−30(2)解: a 2+b 2=(a +b)2−2ab=25+12=37(3)解: (a −b)2=a 2+b 2−2ab=37+12=49故a−b=±7 .17.(1)C(2)否;(x−2)4(3)解:设x2−2x+1=y原式=(y−1)(y+1)+1=y2−1+1=y2=(x2−2x+1)2=[(x−1)2]2=(x−1)4.18.(1)解:∵边长为(a+b+c)的正方形的面积为:(a+b+c)2,分部分来看的面积为a2+b2+c2+2ab+ 2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)解:∵(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ab+b2+bc+ac+bc+c2=a2+b2+c2+2ab+2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(3)解:∵a+b+c=10∴a2+b2+c2=(a+b+c)2−2ab−2bc−2ac=102−2×35=30∴a2+b2+c2的值为30.。

2023年中考数学《整式的运算与因式分解》专题知识回顾及练习题(含答案解析)

2023年中考数学《整式的运算与因式分解》专题知识回顾及练习题(含答案解析)

2023年中考数学《整式的运算与因式分解》专题知识回顾及练习题(含答案解析)1. 合并同类型:法则:“一相加,两不变”,即系数相加,字母与字母的指数不变照写。

2. 整式的加减的实质:合并同类项。

3. 整式的乘除运算:①单项式×单项式:系数相乘,同底数幂相乘,其中一个因式单独存在的字母连同它的指数作为积的一个因式。

②单项式×多项式:单项式乘以多项式的每一项,变成单项式乘以单项式。

③多项式×多项式:用其中一个多项式的每一项乘以另一个多项式的每一项,变成单项式乘以单项式。

④单项式÷单项式:系数相除,同底数幂相除,被除数中单独存在的字母连同它的指数作为商的一个因式。

4. 乘法公式:①平方差公式:()()22b a b a b a −=−+。

②完全平方公式:()2222b ab a b a +±=±。

5. 因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a −+=−22完全平方公式:()2222b a b ab a ±=+±。

③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则: ()()n x m x c bx x ++=++2。

31.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.33.(2022•长春)先化简,再求值:2+a)(2﹣a)+a(a+1),其中a=2﹣4.【分析】先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.34.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【分析】先去括号,再合并同类项,然后把x2+2x=2代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x 2+2x ﹣2=0,∴x 2+2x =2,∴当x 2+2x =2时,原式=2(x 2+2x )+1=2×2+1=4+1=5.35.(2022•广西)先化简,再求值:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x ,其中x =1,y =21. 【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x 、y 的值代入化简后的式子计算即可.【解答】解:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x=x 2﹣y 2+y 2﹣2y=x 2﹣2y ,当x =1,y =时,原式=12﹣2×=0.36.(2022•衡阳)先化简,再求值.(a +b )(a ﹣b )+b (2a +b ),其中a =1,b =﹣2.【分析】根据平方差公式以及单项式乘多项式的运算法则化简后,再把a =1,b =﹣2代入计算即可.【解答】解:(a +b )(a ﹣b )+2a +b )=a 2﹣b 2+2ab +b 2=a 2+2ab ,将a =1,b =﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.37.(2022•丽水)先化简,再求值:(1+x )(1﹣x )+x (x +2),其中x =21. 【分析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x =代入计算即可.【解答】解:(1+x )(1﹣x )+x (x +2)=1﹣x 2+x 2+2x=1+2x ,当x =时,原式=1+=1+1=2.38.(2022•南充)先化简,再求值:(x +2)(3x ﹣2)﹣2x (x +2),其中x =3﹣1.【分析】提取公因式x +2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x +2)(3x ﹣2﹣2x )=(x +2)(x ﹣2)=x 2﹣4,当x =﹣1时, 原式=(﹣1)2﹣4=﹣2.39.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣3|﹣12.(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =21. 【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把x 的值代入化简后的式子,进行计算即可解答.【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣ =1+1+2×+﹣1﹣2 =2++﹣1﹣2=1;(2)(x +3)2+(x +3)(x ﹣3)﹣2x (x +1)=x 2+6x +9+x 2﹣9﹣2x 2﹣2x=4x ,当x =时,原式=4×=2.40.(2022•岳阳)已知a 2﹣2a +1=0,求代数式a (a ﹣4)+(a +1)(a ﹣1)+1的值.【分析】先化简所求的式子,再结合已知求解即可.【解答】解:a (a ﹣4)+(a +1)(a ﹣1)+1=a 2﹣4a +a 2﹣1+1=2a 2﹣4a=2(a 2﹣2a ),∵a 2﹣2a +1=0,∴a 2﹣2a =﹣1,∴原式=2×(﹣1)=﹣2.41.(2022•苏州)已知3x 2﹣2x ﹣3=0,求(x ﹣1)2+x (x +32)的值. 【分析】直接利用整式的混合运算法则化简,进而合并同类项,再结合已知代入得出答案.【解答】解:原式=x 2﹣2x +1+x 2+x=2x 2﹣x +1,∵3x 2﹣2x ﹣3=0,∴x 2﹣x =1,∴原式=2(x 2﹣x )+1=2×1+1=3.42.(2022•荆门)已知x +x1=3,求下列各式的值: (1)(x ﹣x 1)2; (2)x 4+41x. 【分析】(1)利用完全平方公式的特征得到:(a ﹣b )2=(a +b )2﹣4ab ,用上述关系式解答即可;(2)将式子用完全平方公式的特征变形后,利用整体代入的方法解答即可.【解答】解:(1)∵=, ∴= = =﹣4x • =32﹣4=5;(2)∵=,∴=+2 =5+2=7,∵=,∴=﹣2=49﹣2=47.43.(2022•无锡)计算:(1)|﹣21|×(﹣3)2﹣cos60°; (2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).【分析】(1(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解答】解:(1)原式=×3﹣=﹣=1;(2)原式=a 2+2a ﹣(a 2﹣b 2)﹣b 2+3b=a 2+2a ﹣a 2+b 2﹣b 2+3b=2a +3b .44.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.45.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a﹣b)2=1,∴原式=9.。

初三中考数学专项练习 整式与因式分解

初三中考数学专项练习 整式与因式分解

整式与因式分解一、选择题1. (•海南,第9题3分)下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣25考点:因式分解的意义.分析:利用因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可.解答:解;A、a2+4a﹣21=a(a+4)﹣21不是因式分解,故此选错误;B、a2+4a﹣21=(a﹣3)(a+7),正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故此选错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故此选错误;故选:B.点评:此题主要考查了因式分解的意义,正确把握因式分解的意义是解题关键.2. (•黑龙江龙东,第11题3分)下列各运算中,计算正确的是()A.4a2﹣2a2=2 B.(a2)3=a5C.a3•a6=a9D.(3a)2=6a2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法..分析:根据合并同类项,可判断A,根据幂的乘方,可判断B,根据同底数幂的乘法,可判断C,根据积的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、底数不变指数相乘,故B错误;C、底数不变指数相加,故C正确;D、3的平方是9,故D错误;故选:C.点评:本题考查了幂的乘方与积的乘方,积得乘方等于每个因式分别乘方,再把所得的幂相乘.3. (•黑龙江绥化,第12题3分)下列运算正确的是()A.(a3)2=a6B.3a+3b=6ab C.a6÷a3=a2D.a3﹣a=a2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据幂的乘方,可判断A,根据合并同类项,可判断B,根据同底数幂的除法,可判断C、D.解答:解:A、底数不变指数相乘,故A正确;B、不是同类项不能合并,故B错误;C、底数不变指数相减,故C错误;D、不是同底数幂的除法,指数不能相减,故D错误;故选:A.点评:本题考查了幂的运算,根据法则计算是解题关键.4. (•湖北宜昌,第7题3分)下列计算正确的是()A.a+2a2=3a3B.a3•a2=a6C.a6+a2=a3D.(ab)3=a3b3考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据合并同类项法则,同底数幂的乘法,积的乘方分别求出每个式子的结果,再判断即可.解答:解:A、a和2a2不能合并,故本选项错误;B、a3•a2=a5,故本选项错误;C、a6和a2不能合并,故本选项错误;D、(ab)3=a3b3,故本选项正确;故选D.点评:本题考查了合并同类项法则,同底数幂的乘法,积的乘方的应用,主要考查学生的计算能力.5. (•湖南衡阳,第6题3分)下列运算结果正确的是()A.x2+x3=x5B.x3•x2=x6C.x5÷x=x5D.x3•(3x)2=9x5考点:同底数幂的除法;合并同类项;同底数幂的乘法;单项式乘单项式.分析:根据合并同类项,可判断A,根据同底数幂的乘法,可判断B,根据同底数幂的除法,可判断C,根据单项式乘单项式,可判断D.解答:解:A、指数不能相加,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相减,故C错误;D、x3(3x)2=9x5,故D正确;故选:D.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.6. (•湖南衡阳,第8题3分)下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C. 1个 D. 0个考点:因式分解-运用公式法;因式分解-提公因式法.分析:直接利用提取公因式法以及公式法分别分解因式进而判断得出即可.解答:解:①x3+2xy+x=x(x2+2y+1),故原题错误;②x2+4x+4=(x+2)2;正确;③﹣x2+y2=(x+y)(y﹣x),故原题错误;故正确的有1个.故选:C.点评:此题主要考查了运用公式法以及提取公因式法分解因式,熟练掌握公式法分解因式是解题关键.7. (•湖南永州,第3题3分)下列运算正确的是()A.a2•a3=a6 B.﹣2(a﹣b)=﹣2a﹣2bC.2x2+3x2=5x4D.(﹣)﹣2=4考点:同底数幂的乘法;合并同类项;去括号与添括号;负整数指数幂..分析:根据同底数幂的乘法,单项式乘以多项式法则,合并同类项法则,负整数指数幂分别求出每个式子的值,再判断即可.解答:解:A、结果是a5,故本选项错误;B、结果是﹣2a+2b,故本选项错误;C、结果是5x2,故本选项错误;D、结果是4,故本选项正确;故选D.点评:本题考查了同底数幂的乘法,单项式乘以多项式法则,合并同类项法则,负整数指数幂的应用,主要考查学生的计算能力和判断能力.8. (•湖南永州,第8题3分)在求1+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a的值?你的答案是()A.B.C.D.a﹣1考点:同底数幂的乘法;有理数的乘方..分析:设S=1+a+a2+a3+a4+…+a,得出aS=a+a2+a3+a4+…+a+a2015,相减即可得出答案.解答:解:设S=1+a+a2+a3+a4+…+a,①则aS=a+a2+a3+a4+…+a+a2015,②,②﹣①得:(a﹣1)S=a2015﹣1,∴S=,即1+a+a2+a3+a4+…+a=,故选B.点评:本题考查了有理数的乘方,同底数幂的乘法的应用,主要考查学生的阅读能力和计算能力.9. (•河北,第3题2分)计算:852﹣152=( )A . 70B . 700C . 4900D . 7000考点: 因式分解-运用公式法.分析: 直接利用平方差进行分解,再计算即可.解答: 解:原式=(85+15)(85﹣15)=100×70=7000.故选:D .点评: 此题主要考查了公式法分解因式,关键是掌握平方差公式:a 2﹣b 2=(a +b )(a ﹣b ).10、(衡阳,第8题3分)下列因式分解中正确的个数为【 】 ①()3222x xy x x x y ++=+; ②()22442x x x ++=+; ③()()22x y x y x y -+=+-。

2022年全国中考数学真题分项汇编专题2:专题02 整式与因式分解(含解析)

2022年全国中考数学真题分项汇编专题2:专题02 整式与因式分解(含解析)

专题02 整式与因式分解一.选择题1.(2022·浙江温州)计算的结果是A.6 B.C.3D.2.(2022·江苏宿迁)下列运算正确的是()A. B. C. D.3.(2022·陕西)计算:()A.B.C.D.4.(2022·浙江嘉兴)计算a2·a()A.a B.3a C.2a2D.a35.(2022·四川眉山)下列运算中,正确的是()A.B.C.D.6.(2022·江西)下列计算正确的是()A. B. C. D.7.(2022·浙江宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积 B.四边形的面积 C.的面积 D.的面积8.(2022·浙江温州)化简的结果是()A.B.C.D.9.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.1210.(2022·浙江绍兴)下列计算正确的是()A. B. C. D.11.(2022·云南)按一定规律排列的单项式:x,3x²,5x³,7x,9x,……,第n个单项式是()A.(2n-1)B.(2n+1)C.(n-1)D.(n+1)12.(2022·重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.913.(2022·安徽)下列各式中,计算结果等于的是()A.B.C.D.14.(2022·四川成都)下列计算正确的是()A. B. C. D.15.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.16.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.4117.(2022·湖南湘潭)下列整式与为同类项的是()A.B.C.D.18.(2022·江苏苏州)下列运算正确的是()A.B.C.D.19.(2022·重庆)对多项式任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3二.填空题20.(2022·江苏苏州)已知,,则______.21.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为______.22.(2022·四川乐山)已知,则______.23.(2022·湖南邵阳)已知,则_________.24.(2022·天津)计算的结果等于___________.25.(2022·江苏扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量与震级的关系为(其中为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.26.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.27.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.28.(2022·山东滨州)若,,则的值为_______.29.(2022·山东泰安)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是_____(用科学记数法表示,保留2位有效数字)30.(2022·四川德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=___.31.(2022·浙江嘉兴)分解因式:m2-1=_____.32.(2022·湖南怀化)因式分解:_____.33.(2022·浙江绍兴)分解因式:= ______.34.(2022·浙江宁波)分解因式:x2-2x+1=__________.35.(2022·江苏连云港)若关于的一元二次方程的一个解是,则的值是___.36.(2022·浙江丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,且.(1)若a,b是整数,则的长是___________;(2)若代数式的值为零,则的值是___________.37.(2022·四川德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是,第三个三角形数是,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是,第三个正方形数是,……由此类推,图④中第五个正六边形数是______.38.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,24 68 10 1214 16 18 20……则第27行的第21个数是______.三.解答题39.(2022·江苏苏州)已知,求的值.40.(2022·江苏宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为元;乙超市的购物金额为元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?41.(2022·湖南衡阳)先化简,再求值:,其中,.42.(2022·浙江金华)如图1,将长为,宽为的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形. (1)用关于a的代数式表示图2中小正方形的边长.(2)当时,该小正方形的面积是多少?43.(2022·安徽)观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.44.(2022·浙江丽水)先化简,再求值:,其中.45.(2022·重庆)若一个四位数的个位数字与十位数字的平方和恰好是去掉个位与十位数字后得到的两位数,则这个四位数为“勾股和数”.例如:,∵,∴2543是“勾股和数”;又如:,∵,,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”的千位数字为,百位数字为,十位数字为,个位数字为,记,.当,均是整数时,求出所有满足条件的.46.(2022·重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵,∴247是13的“和倍数”.又如:∵,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且.在a,b,c中任选两个组成两位数,其中最大的两位数记为,最小的两位数记为,若为整数,求出满足条件的所有数A.47.(2022·浙江嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.专题02 整式与因式分解一.选择题1.(2022·浙江温州)计算的结果是A.6 B.C.3D.【答案】A【分析】根据有理数的加法法则计算即可.【详解】解:.故选:A.【点评】本题考查了有理数的加法,掌握绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值是解题的关键.2.(2022·江苏宿迁)下列运算正确的是()A. B. C. D.【答案】C【分析】由合并同类项可判断A,由同底数幂的乘法可判断B,由积的乘方运算可判断C,由幂的乘方运算可判断D,从而可得答案.【详解】解:,故A不符合题意;,故B不符合题意;,故C符合题意;,故D不符合题意;故选:C【点睛】本题考查的是合并同类项,同底数幂的乘法,积的乘方运算,幂的乘方运算,掌握以上基础运算是解本题的关键.3.(2022·陕西)计算:()A.B.C.D.【答案】C【分析】利用单项式乘单项式的法则进行计算即可.【详解】解:.故选:C.【点睛】本题考查了单项式乘单项式的运算,正确地计算能力是解决问题的关键.4.(2022·浙江嘉兴)计算a2·a()A.a B.3a C.2a2D.a3【答案】D【分析】根据同底数幂的乘法法则进行运算即可.【详解】解:故选D【点睛】本题考查的是同底数幂的乘法,掌握“同底数幂的乘法,底数不变,指数相加”是解本题的关键.5.(2022·四川眉山)下列运算中,正确的是()A.B.C.D.【答案】D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A. ,根据同底数幂的乘法法则可知:,故选项计算错误,不符合题意;B. ,和不是同类项,不能合并,故选项计算错误,不符合题意;C. ,根据完全平方公式可得:,故选项计算错误,不符合题意;D. ,根据单项式乘多项式的法则可知选项计算正确,符合题意;故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则.6.(2022·江西)下列计算正确的是()A. B. C. D.【答案】B【分析】利用同底数幂的乘法,去括号法则,单项式乘多项式,完全平方公式对各选项依次判断即可.【详解】解:A、,故此选项不符合题意;B、,故此选项符合题意;C、,故此选项不符合题意;D、,故此选项不符合题意.故选:B.【点睛】本题考查了整式的混合运算,涉及到同底数幂的乘法,去括号法则,单项式乘多项式的运算法则,完全平方公式等知识.熟练掌握各运算法则和的应用是解题的关键.7.(2022·浙江宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积 B.四边形的面积 C.的面积 D.的面积【答案】C【分析】设正方形纸片边长为x,小正方形EFGH边长为y,得到长方形的宽为x-y,用x、y表达出阴影部分的面积并化简,即得到关于x、y的已知条件,分别用x、y列出各选项中面积的表达式,判断根据已知条件能否求出,找到正确选项.【详解】根据题意可知,四边形EFGH是正方形,设正方形纸片边长为x,正方形EFGH边长为y,则长方形的宽为x-y,所以图中阴影部分的面积=S正方形EFGH+2S△AEH+2S△DHG==2xy,所以根据题意,已知条件为xy的值,A.正方形纸片的面积=x2,根据条件无法求出,不符合题意;B.四边形EFGH的面积=y2,根据条件无法求出,不符合题意;C.的面积=,根据条件可以求出,符合题意;D.的面积=,根据条件无法求出,不符合题意;故选 C.【点睛】本题考查整式与图形的结合,熟练掌握正方形、长方形、三角形等各种形状的面积公式,能正确用字母列出各种图形的面积表达式是解题的关键.8.(2022·浙江温州)化简的结果是()A.B.C.D.【答案】D【分析】先化简乘方,再利用单项式乘单项式的法则进行计算即可.【详解】解:,故选:D.【点睛】本题考查单项式乘单项式,掌握单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式是解题的关键.9.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B【分析】列举每个图形中H的个数,找到规律即可得出答案.【详解】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H的个数,找到规律:每个图形比上一个图形多2个H是解题的关键.10.(2022·浙江绍兴)下列计算正确的是()A. B. C. D.【答案】A【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A、,原式计算正确;B、,原式计算错误;C、,原式计算错误;D、,原式计算错误;故选:A.【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键.11.(2022·云南)按一定规律排列的单项式:x,3x²,5x³,7x,9x,……,第n个单项式是()A.(2n-1)B.(2n+1)C.(n-1)D.(n+1)【答案】A【分析】系数的绝对值均为奇数,可用(2n-1)表示;字母和字母的指数可用xn表示.【详解】解:依题意,得第n项为(2n-1)xn,故选:A.【点睛】本题考查的是单项式,根据题意找出规律是解答此题的关键.12.(2022·重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【答案】C【分析】根据第①个图案中菱形的个数:;第②个图案中菱形的个数:;第③个图案中菱形的个数:;…第n个图案中菱形的个数:,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:;第②个图案中菱形的个数:;第③个图案中菱形的个数:;…第n个图案中菱形的个数:,∴则第⑥个图案中菱形的个数为:,故C正确.故选:C.【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.13.(2022·安徽)下列各式中,计算结果等于的是()A.B.C.D.【答案】B【分析】利用整式加减运算和幂的运算对每个选项计算即可.【详解】A.,不是同类项,不能合并在一起,故选项A不合题意;B.,符合题意;C.,不是同类项,不能合并在一起,故选项C不合题意;D.,不符合题意,故选B【点睛】本题考查了整式的运算,熟练掌握整式的运算性质是解题的关键.14.(2022·四川成都)下列计算正确的是()A. B. C. D.【答案】D【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.,故该选项错误,不符合题意;B.,故该选项错误,不符合题意;C.,故该选项错误,不符合题意;D.,故该选项正确,符合题意;故选:D.【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.15.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.【答案】C【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、,该选项错误;B、,该选项错误;C、,该选项正确;D、,该选项错误;故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.16.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.17.(2022·湖南湘潭)下列整式与为同类项的是()A.B.C.D.【答案】B【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解.【详解】解:由同类项的定义可知,a的指数是1,b的指数是2.A、a的指数是2,b的指数是1,与不是同类项,故选项不符合题意;B、a的指数是1,b的指数是2,与是同类项,故选项符合题意;C、a的指数是1,b的指数是1,与不是同类项,故选项不符合题意;D、a的指数是1,b的指数是2,c的指数是1,与不是同类项,故选项不符合题意.故选:B.【点睛】此题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.18.(2022·江苏苏州)下列运算正确的是()A.B.C.D.【分析】通过,判断A选项不正确;C选项中、不是同类项,不能合并;D 选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B选项正确.【详解】A. ,故A不正确;B. ,故B正确;C. ,故C不正确;D. ,故D不正确;故选B.【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.19.(2022·重庆)对多项式任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【答案】D【分析】给添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.【详解】解:∵∴①说法正确∵又∵无论如何添加括号,无法使得的符号为负号∴②说法正确∵当括号中有两个字母,共有4种情况,分别是、、、;当括号中有三个字母,共有3种情况,分别是、、;当括号中有四个字母,共有1种情况,∴共有8种情况∴③说法正确∴正确的个数为3故选D.【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.20.(2022·江苏苏州)已知,,则______.【答案】24【分析】根据平方差公式计算即可.【详解】解:∵,,∴,故答案为:24.【点睛】本题考查因式分解的应用,先根据平方差公式进行因式分解再整体代入求值是解题的关键.21.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为______.【答案】5【分析】设正方形a、b、c、d的边长分别为a、b、c、d,分别求得b=c,c=d,由“优美矩形”ABCD的周长得4d+2c=26,列式计算即可求解.【详解】解:设正方形a、b、c、d的边长分别为a、b、c、d,∵“优美矩形”ABCD的周长为26,∴4d+2c=26,∵a=2b,c=a+b,d=a+c,∴c=3b,则b=c,∴d=2b+c=c,则c=d,∴4d+d =26,∴d=5,∴正方形d的边长为5,故答案为:5.【点睛】本题考查了整式加减的应用,认真观察图形,根据长方形的周长公式推导出所求的答案是解题的关键.22.(2022·四川乐山)已知,则______.【答案】【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得的值,进而代入代数式即可求解.【详解】解:,,即,,,故答案为:.【点睛】本题考查了因式分解的应用,掌握完全平方公式是解题的关键.23.(2022·湖南邵阳)已知,则_________.【答案】2【分析】将变形为即可计算出答案.【详解】∵∴故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识.24.(2022·天津)计算的结果等于___________.【答案】【分析】根据同底数幂的乘法即可求得答案.【详解】解:,故答案为:.【点睛】本题考查了同底数幂的乘法,熟练掌握计算方法是解题的关键.25.(2022·江苏扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量与震级的关系为(其中为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.【答案】1000【分析】分别求出震级为8级和震级为6级所释放的能量,然后根据同底数幂的除法即可得到答案.【详解】解:根据能量与震级的关系为(其中为大于0的常数)可得到,当震级为8级的地震所释放的能量为:,当震级为6级的地震所释放的能量为:,,震级为8级的地震所释放的能量是震级为6级的地震所释放能量的1000倍.故答案为:1000.【点睛】本题考查了利用同底数幂的除法底数不变指数相减的知识,充分理解题意并转化为所学数学知识是解题的关键.26.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n个“○”的个数是;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=;n=2时,“○”的个数是,n=3时,“○”的个数是,n=4时,“○”的个数是,……∴第n个“○”的个数是,由图形中的“○”的个数和“.”个数差为2022①,②解①得:无解解②得:故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.27.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.28.(2022·山东滨州)若,,则的值为_______.【答案】90【分析】将变形得到,再把,代入进行计算求解.【详解】解:∵,,∴.故答案为:90.【点睛】本题主要考查了代数式求值,完全平方公式的应用,灵活运用完全平方公式是解答关键.29.(2022·山东泰安)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是_____(用科学记数法表示,保留2位有效数字)【答案】7.1×10-7【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【详解】∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10-7.故答案是:7.1×10-7.【点睛】本题主要考查了用科学记数法表示数的除法与有效数字,正确掌握运算法则是解题关键.30.(2022·四川德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=___.【答案】4【分析】根据完全平方公式的运算即可.【详解】∵,∵+=4=16,∴=4.【点睛】此题主要考查完全平方公式的灵活运用,解题的关键是熟知完全平方公式的应用. 31.(2022·浙江嘉兴)分解因式:m2-1=_____.【答案】【分析】利用平方差公式进行因式分解即可.【详解】解:m2-1=故答案为:【点睛】本题考查的是利用平方差公式分解因式,掌握“平方差公式的特点”是解本题的关键.32.(2022·湖南怀化)因式分解:_____.【答案】【分析】根据提公因式法和平方差公式进行分解即可.【详解】解:,故答案为:【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.33.(2022·浙江绍兴)分解因式:= ______.【答案】【分析】利用提公因式法即可分解.【详解】,故答案为:.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解.34.(2022·浙江宁波)分解因式:x2-2x+1=__________.【答案】(x-1)2【详解】由完全平方公式可得:故答案为.【点睛】错因分析容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.35.(2022·江苏连云港)若关于的一元二次方程的一个解是,则的值是___.【答案】1【分析】根据一元二次方程解的定义把代入到进行求解即可.【详解】∵关于x的一元二次方程的一个解是,∴,∴,故答案为:1.【点睛】本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.36.(2022·浙江丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,且.(1)若a,b是整数,则的长是___________;(2)若代数式的值为零,则的值是___________.【答案】【分析】(1)根据图象表示出PQ即可;(2)根据分解因式可得,继而求得。

中考数学专题复习题:整式的乘法与因式分解

中考数学专题复习题:整式的乘法与因式分解

中考数学专题复习题:整式的乘法与因式分解一、单项选择题(共10小题)1.下列算式中能用平方差公式计算的是( )A .(2x +y )(2y −x )B .(x +y )+(y −x )C .(3a −b )(−3a +b )D .(−m +n )(−m −n )2.下列各式从左到右的变形中,属于因式分解的是( )A .1x 2−1=(1x +1)(1x −1)B .(a +b)2=a 2+2ab +b 2C .x 2−x −2=(x +1)(x −2)D .ax −ay −a =a(x −y)−1 3.下列运算正确的是( )A .a 2⋅a 4=a 8B .210+(−2)10=211C .(−1−3a)2=1−6a +9a 2D .(−3x 2y)3=−9x 6y 3 4.若4x 2-mx +9是完全平方式,则m 的值是( )A .3B .4C .12D .±125.如果a −b =2,那么代数式a 3−2a 2b +ab 2−4a 的值是( )A .−1B .0C .1D .26.如图:把长和宽分别为a 和b 的四个完全相同的小长方形(a >b )拼成的一个“回形”正方形,图中的阴影部分的面积正好可以验证下面等式的正确性的是( )A .(a +b )2=a 2−2ab +b 2B .a 2−b 2=(a +b )(a −b )C .(a −b )2=a 2−2ab +b 2D .(a +b )2−(a −b )2=4ab 7.计算(35)2023×(−53)2024的结果等于( ) A .53 B .35 C .−35 D .−53 8.若x 3y m−1⋅(x m+n y 2n+2)=x 9y 9,则3m −4n 的值为( )A .3B .4C .5D .69.2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1的个位数字为( )A.1B.3C.7D.910.设有边长分别为a和b(a>b)的A类和B类正方形纸片,长为a宽为b的C类长方形纸片若干张.如图所示要拼一个边长为a+b的正方形,需要1张A类纸片、1张B类纸片和2张C类纸片.若要拼一个长为3a+b、宽为a+3b的长方形,则需要C类纸片的张数为()A.11B.10C.9D.8二、填空题(共6小题)11.计算:(x+2)(x−8)=________.12.分解因式:m2(x-2)+(2-x) =________.13.已知多项式4x2+1与一个单项式的和是一个完全平方式,那么加上的单项式可能是________(写出一个即可)14.如果a-b=3,ab=7,那么a2b-ab2=________.15.若(x−a)(x2−3x+1)的展开式化简后不含x2项,则常数a的值是________.16.如下所示,(a+b)n与相应的杨辉三角中的一行数相对应.由以上规律可知:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5请你写出下列式子的结果:(a+b)6=________.三、解答题(共8小题)17.分解因式:(1)a3b−ab;(2)(m+n)2−4m(m+n)+4m2.18.计算:(1)(−4xy3)(−18xy)−(12xy2)2(2)[(ab+1)(ab−2)−2a2b2+2]÷(−ab)19.先化简,再求值[(2a+b)2−(a−b)(3a−b)−2a]÷(−12a),a=−1,b=12.20.老师布置了这样一道作业题:“(2x2−1)(3x+2)−x(6x2+4x−3),要求先化简再求值,其中x=2022”某同学把x=2022错抄成x=202,但他的计算结果却是正确的,你知道原因吗?21.计算:(1)已知a m=3,a n=4,求a2m+n的值.(2)已知10a=2.5,100b=4,求3a+6b−2的值.22.阅读材料,回答问题.已知a>0,b>0,若a3=2,b4=3,则a,b的大小关系是a_______b(填“<”或“>”).解:因为a3=2,b4=3,所以a12=(a3)4=24=16,b12=(b4)3=33=27,由于16<27,所以a12<b12.因为a>0,b>0,所以a<b.(1)上述求解过程中,逆用了哪一条幂的运算性质()A.同底数幂的乘法B.同底数幂的除法C.幂的乘方D.积的乘方(2)已知a m=2,a n=3,利用材料中的逆向思维分别求a m+n和a2m的值.23.如图,某小区有一块长为(2a+4b)米,宽为(2a−b)米的长方形地块,角上有四个边长为(a−b)米的小正方形空地,开发商计划将阴影部分进行绿化.(1)用含有a、b的代数式表示绿化的总面积;(2)物业找来某团队完成此项绿化任务,已知该队每小时可绿化8b平方米,每小时收费200元,求完成此项绿化任务所需的费用.(用含a、b的代数式表示)24.解答下列问题:(1)如图①,它是一个长为2m,宽为2n的长方形,沿图中的虚线剪开,分成四个全等的小长方形,然后按图②形状拼成一个正方形.结合图形,直接写出(m+n)2,(m−n)2,mn这三个代数式之间的等量关系;(2)若a−b=8,ab=6,求(a+b)2的值;(3)若a+2a =7,求(a−2a)2的值.。

2022年中考《整式与因式分解》精品专项练习 附答案

2022年中考《整式与因式分解》精品专项练习 附答案

整式与因式分解一、选择题1. 〔2021•安徽省,第2题4分〕x2•x3=〔〕A.x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:根据同底数幂的乘法法那么,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n 计算即可.解答:解:x2•x3=x2+3=x5.应选A.点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2. 〔2021•安徽省,第4题4分〕以下四个多项式中,能因式分解的是〔〕A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;应选:B.点评:此题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.3. 〔2021•安徽省,第7题4分〕x2﹣2x﹣3=0,那么2x2﹣4x的值为〔〕A.﹣6 B.6C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×〔x2﹣2x﹣3〕=02×〔x2﹣2x〕﹣6=02x2﹣4x=6应选:B.点评:此题考查代数式求值,解题的关键是化出要求的2x2﹣4x.4. 〔2021•福建泉州,第2题3分〕以下运算正确的选项是〔〕A.a3+a3=a6B.2〔a+1〕=2a+1 C.〔ab〕2=a2b2D.a6÷a3=a2考点:同底数幂的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方.分析:根据二次根式的运算法那么,乘法分配律,幂的乘方及同底数幂的除法法那么判断.解答:解:A、a3+a3=2a3,应选项错误;B、2〔a+1〕=2a+2≠2a+1,应选项错误;C、〔ab〕2=a2b2,应选项正确;D、a6÷a3=a3≠a2,应选项错误.应选:C.点评:此题主要考查了二次根式的运算法那么,乘法分配律,幂的乘方及同底数幂的除法法那么,解题的关键是熟记法那么运算5. 〔2021•福建泉州,第6题3分〕分解因式x2y﹣y3结果正确的选项是〔〕A.y〔x+y〕2B.y〔x﹣y〕2C.y〔x2﹣y2〕D.y〔x+y〕〔x﹣y〕考点:提公因式法与公式法的综合运用分析:首先提取公因式y,进而利用平方差公式进行分解即可.解答:解:x2y﹣y3=y〔x2﹣y2〕=y〔x+y〕〔x﹣y〕.应选:D.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.6. 〔2021•广东,第3题3分〕计算3a﹣2a的结果正确的选项是〔〕A.1B.a C.﹣a D.﹣5a考点:合并同类项.分析:根据合并同类项的法那么,可得答案.解答:解:原式=〔3﹣2〕a=a,应选:B.点评:此题考查了合并同类项,系数相加字母局部不变是解题关键.7. 〔2021•广东,第4题3分〕把x3﹣9x分解因式,结果正确的选项是〔〕A.x〔x2﹣9〕B.x〔x﹣3〕2C.x〔x+3〕2D.x〔x+3〕〔x﹣3〕考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣9x,=x〔x2﹣9〕,=x〔x+3〕〔x﹣3〕.应选D.点评:此题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8. 〔2021•珠海,第3题3分〕以下计算中,正确的选项是〔〕A.2a+3b=5ab B.〔3a3〕2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a考点:合并同类项;幂的乘方与积的乘方.分析:根据合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.解答:解:A、不是同类项,不能加减,故本选项错误;B、〔3a3〕2=9a6≠6a6,故本选项错误;C、不是同类项,不能加减,故本选项错误;D、﹣3a+2a=﹣a正确应选:D.点评:此题主要考查了合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;熟记计算法那么是关键.9.(2021四川资阳,第3题3分)以下运算正确的选项是〔〕A.a3+a4=a7B.2a3•a4=2a7C.〔2a4〕3=8a7D.a8÷a2=a4考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据合并同类项法那么,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.解答:解:A、a3和a4不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、〔2a4〕3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;应选B.点评:此题考查了合并同类项法那么,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.10.〔2021•新疆,第3题5分〕以下各式计算正确的选项是〔〕11.〔2021年云南省,第2题3分〕以下运算正确的选项是〔〕A. 3x2+2x3=5x6B.50=0 C.2﹣3=D.〔x3〕2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解答:解:A、系数相加字母局部不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;应选:D.点评:此题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.12.〔2021•温州,第5题4分〕计算:m6•m3的结果〔〕A.m18B.m9C.m3D.m2考点:同底数幂的乘法.分析:根据同底数幂的乘法法那么:同底数幂相乘,底数不变,指数相加,进行计算即可.解答:解:m6•m3=m9.应选B.点评:此题考查了同底数幂的乘法,解答此题的关键是掌握同底数幂的乘法法那么.13.〔2021•舟山,第6题3分〕以下运算正确的选项是〔〕A.2a2+a=3a3B.〔﹣a〕2÷a=a C.〔﹣a〕3•a2=﹣a6D.〔2a2〕3=6a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方专题:计算题.分析:A、原式不能合并,错误;B、原式先计算乘方运算,再计算除法运算即可得到结果;C、原式利用幂的乘方及积的乘方运算法那么计算得到结果,即可做出判断;D、原式利用幂的乘方及积的乘方运算法那么计算得到结果,即可做出判断.解答:解:A、原式不能合并,应选项错误;B、原式=a2÷a=a,应选项正确;C、原式=﹣a3•a2=﹣a5,应选项错误;D、原式=8a6,应选项错误.应选B.点评:此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法那么是解此题的关键.14.〔2021•毕节地区,第3题3分〕以下运算正确的选项是〔〕A.π﹣3.14=0 B.+=C.a•a=2a D.a3÷a=a2考点:同底数幂的除法;实数的运算;同底数幂的乘法.分析:根据是数的运算,可判断A,根据二次根式的加减,可判断B,根据同底数幂的乘法,可判断C,根据同底数幂的除法,可判断D.解答:解;A、π,故A错误;B、被开方数不能相加,故B错误;C、底数不变指数相加,故C错误;D、底数不变指数相减,故D正确;应选:D.点评:此题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.15.〔2021•毕节地区,第4题3分〕以下因式分解正确的选项是〔〕A.2x2﹣2=2〔x+1〕〔x﹣1〕B.x2+2x﹣1=〔x﹣1〕2C.x2+1=〔x+1〕2D.x2﹣x+2=x〔x﹣1〕+2考点:提公因式法与公式法的综合运用分析:A直接提出公因式a,再利用平方差公式进行分解即可;B和C不能运用完全平方公式进行分解;D是和的形式,不属于因式分解.解答:解:A、2x2﹣2=2〔x2﹣1〕=2〔x+1〕〔x﹣1〕,故此选项正确;B、x2﹣2x+1=〔x﹣1〕2,故此选项错误;C、x2+1,不能运用完全平方公式进行分解,故此选项错误;D、x2﹣x+2=x〔x﹣1〕+2,还是和的形式,不属于因式分解,故此选项错误;应选:A.点评:此题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16.〔2021•毕节地区,第13题3分〕假设﹣2a m b4与5a n+2b2m+n可以合并成一项,那么m n的值是〔〕A.2B.0C.﹣1 D.1考点:合并同类项分析:根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,根据乘方,可得答案.解答:解:假设﹣2a m b4与5a n+2b2m+n可以合并成一项,,解得,m n=20=1,应选:D.点评:此题考查了合并同类项,同类项是字母相同且相同字母的指数也相同是解题关键.17.〔2021•武汉,第5题3分〕以下代数运算正确的选项是〔〕18.〔2021•襄阳,第2题3分〕以下计算正确的选项是〔〕19.〔2021•襄阳,第18题5分〕:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.考点:二次根式的化简求值;因式分解的应用分析:根据x、y的值,先求出x﹣y和xy,再化简原式,代入求值即可.解答:解:∵x=1﹣,y=1+,∴x﹣y=〔1﹣〕〔1+〕=﹣2,xy=〔1﹣〕〔1+〕=﹣1,∴x2+y2﹣xy﹣2x+2y=〔x﹣y〕2﹣2〔x﹣y〕+xy=〔﹣2〕2﹣2×〔﹣2〕+〔﹣1〕=7+4.点评:此题考查了二次根式的化简以及因式分解的应用,要熟练掌握平方差公式和完全平方公式.20.〔2021•邵阳,第2题3分〕以下计算正确的选项是〔〕A.2x﹣x=x B.a3•a2=a6C.〔a﹣b〕2=a2﹣b2D.〔a+b〕〔a﹣b〕=a2+b2考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式专题:计算题.分析:A、原式合并同类项得到结果,即可作出判断;B、原式利用同底数幂的乘法法那么计算得到结果,即可作出判断;C、原式利用完全平方公式展开得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.解答:解:A、原式=x,正确;B、原式=x5,错误;C、原式=a2﹣2ab+b2,错误;D、原式=a2﹣b2,应选A点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及平方差公式,熟练掌握公式是解此题的关键.21.〔2021•邵阳,第7题3分〕地球的外表积约为511000000km2,用科学记数法表示正确的选项是〔〕A.5.11×1010km2B.5.11×108km2C.51.1×107km2D.0.511×109km2考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于511000000有9位,所以可以确定n=9﹣1=8.解答:解:511 000 000=5.11×108.应选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.22.〔2021•四川自贡,第2题4分〕〔x4〕2等于〔〕A.x6B.x8C.x16D.2x4考点:幂的乘方与积的乘方分析:根据幂的乘方等于底数不变指数相乘,可得答案.解答:解:原式=x4×2=x8,应选:B.点评:此题考查了幂的乘方,底数不变指数相乘是解题关键.23.〔2021•四川自贡,第11题4分〕分解因式:x2y﹣y=y〔x+1〕〔x﹣1〕.考点:提公因式法与公式法的综合运用分析:观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.解答:解:x 2y ﹣y , =y 〔x 2﹣1〕,=y 〔x +1〕〔x ﹣1〕.点评: 此题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.24.〔2021·台湾,第2题3分〕假设A 为一数,且A =25×76×114,那么以下选项中所表示的数,何者是A 的因子?( )A .24×5B .77×113C .24×74×114D .26×76×116分析:直接将原式提取因式进而得出A 的因子.解:∵A =25×76×114=24×74×114(2×72),∴24×74×114,是原式的因子.应选:C .点评:此题主要考查了幂的乘方运算法那么以及同底数幂的乘方,正确分解原式是解题关键.25.〔2021·台湾,第15题3分〕计算多项式10x 3+7x 2+15x ﹣5除以5x 2后,得余式为何?( )A .15x -55x 2B .2x 2+15x ﹣5C .3x ﹣1D .15x ﹣5分析:利用多项式除以单项式法那么计算,即可确定出余式.解:(10x 3+7x 2+15x ﹣5)÷(5x 2)=(2x +75)…(15x ﹣5). 应选D .点评:此题考查了整式的除法,熟练掌握运算法那么是解此题的关键.26.〔2021·台湾,第17题3分〕(3x +2)(﹣x 6+3x 5)+(3x +2)(﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)与以下哪一个式子相同?( )A .(3x 6﹣4x 5)(2x +1)B .(3x 6﹣4x 5)(2x +3)C .﹣(3x 6﹣4x 5)(2x +1)D .﹣(3x 6﹣4x 5)(2x +3)分析:首先把前两项提取公因式(3x +2),再进一步提取公因式﹣(3x 6﹣4x 5)即可.解:原式=(3x +2)(﹣x 6+3x 5﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)=(3x +2)(﹣3x 6+4x 5)+(x +1)(3x 6﹣4x 5)=﹣(3x 6﹣4x 5)(3x +2﹣x ﹣1)=﹣(3x 6﹣4x 5)(2x +1).应选:C .点评:此题主要考查了因式分解,关键是正确找出公因式,进行分解.27.〔2021·云南昆明,第4题3分〕以下运算正确的选项是〔 〕A . 532)(a a =B . 222)(b a b a -=-C . 3553=-D . 3273-=-考点: 幂的乘方;完全平方公式;合并同类项;二次根式的加减法;立方根.分析: A、幂的乘方:mn n m a a =)(; B 、利用完全平方公式展开得到结果,即可做出判断;C 、利用二次根式的化简公式化简,合并得到结果,即可做出判断.D 、利用立方根的定义化简得到结果,即可做出判断;解答: 解:A 、632)(a a =,错误;B 、 2222)(b ab a b a +-=- ,错误;C 、52553=-,错误;D 、3273-=-,正确.应选D点评: 此题考查了幂的乘方,完全平方公式,合并同类项,二次根式的化简,立方根,熟练掌握公式及法那么是解此题的关键.28.〔2021•浙江湖州,第2题3分〕计算2x 〔3x 2+1〕,正确的结果是〔 〕A .5x 3+2xB . 6x 3+1C . 6x 3+2xD . 6x 2+2x分析:原式利用单项式乘以多项式法那么计算即可得到结果.解:原式=6x 3+2x ,应选C点评:此题考查了单项式乘多项式,熟练掌握运算法那么是解此题的关键.29.〔2021·浙江金华,第7题4分〕把代数式22x 18-分解因式,结果正确的选项是【 】A .()22x 9-B .()22x 3- C .()()2x 3x 3+- D .()()2x 9x 9+- 【答案】C .【解析】30. 〔2021•湘潭,第2题,3分〕以下计算正确的选项是〔〕A.a+a2=a3B.2﹣1= C.2a•3a=6a D.2+=2考点:单项式乘单项式;实数的运算;合并同类项;负整数指数幂.分析:A、原式不能合并,错误;B、原式利用负指数幂法那么计算得到结果,即可做出判断;C、原式利用单项式乘以单项式法那么计算得到结果,即可做出判断;D、原式不能合并,错误.解答:解:A、原式不能合并,应选项错误;B、原式=,应选项正确;C、原式=6a2,应选项错误;D、原式不能合并,应选项错误.应选B.点评:此题考查了单项式乘单项式,熟练掌握运算法那么是解此题的关键.31. 〔2021•益阳,第2题,4分〕以下式子化简后的结果为x6的是〔〕A.x3+x3B.x3•x3C.〔x3〕3D.x12÷x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的运算法那么进行计算即可.解答:解:A、原式=2x3,故本选项错误;B、原式=x6,故本选项错误;C、原式=x9,故本选项错误;D、原式=x12﹣2=x10,故本选项错误.应选B.点评:此题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法那么、合并同类项的法那么、幂的乘方与积的乘方法那么是解答此题的关键.32. 〔2021年江苏南京,第2题,2分〕计算〔﹣a2〕3的结果是〔〕A.a5B.﹣a5C.a6D.﹣a6考点:幂的乘方分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解答:原式=﹣a2×3=﹣a6.应选:D.点评:此题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.33. 〔2021•泰州,第2题,3分〕以下运算正确的选项是〔〕A.x3•x3=2x6B.〔﹣2x2〕2=﹣4x4C.〔x3〕2=x6D.x5÷x=x5考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:分别根据同底数幂的除法,熟知同底数幂的除法及乘方法那么、合并同类项的法那么、幂的乘方与积的乘方法那么对各选项进行计算即可.解答:解:A、原式=x6,故本选项错误;B、原式=4x4,故本选项错误;C、原式=x6,故本选项正确;D、原式=x4,故本选项错误.应选C.点评:此题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法那么、合并同类项的法那么、幂的乘方与积的乘方法那么是解答此题的关键.34.〔2021•扬州,第2题,3分〕假设□×3xy=3x2y,那么□内应填的单项式是〔〕A.xy B.3xy C.x D.3x考点:单项式乘单项式专题:计算题.分析:根据题意列出算式,计算即可得到结果.解答:解:根据题意得:3x2y÷3xy=x,应选C点评:此题考查了单项式乘单项式,熟练掌握运算法那么是解此题的关键.35.〔2021•呼和浩特,第5题3分〕某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,那么它最后的单价是〔〕元.A.a B.a C.a D.a考点:列代数式.分析:原价提高10%后商品新单价为a〔1+10%〕元,再按新价降低10%后单价为a〔1+10%〕〔1﹣10%〕,由此解决问题即可.解答:解:由题意得a〔1+10%〕〔1﹣10%〕a〔元〕.应选:B.点评:此题主要考查列代数式的应用,属于应用题型,找到相应等量关系是解答此题的关键.36.〔2021•滨州,第2题3分〕一个代数式的值不能等于零,那么它是〔〕A.a2B.a0C.D.|a|考点:零指数幂;绝对值;有理数的乘方;算术平方根.分析:根据非0的0次幂等于1,可得答案.解答:解:A、C、D、a=0时,a2=0,故A、C、D错误;B、非0的0次幂等于1,故B正确;应选:B.点评:此题考查了零指数幂,非0的0次幂等于1是解题关键.37.〔2021•济宁,第2题3分〕化简﹣5ab+4ab的结果是〔〕A.﹣1 B.a C.b D.﹣ab考点:合并同类项.分析:根据合并同类项的法那么:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变作答.解答:解:﹣5ab+4ab=〔﹣5+4〕ab=﹣ab应选:D.点评:此题考查了合并同类项的法那么.注意掌握合并同类项时把系数相加减,字母与字母的指数不变,属于根底题.38.〔2021年山东泰安,第2题3分〕以下运算,正确的选项是〔〕A.4a﹣2a=2 B.a6÷a3=a2C.〔﹣a3b〕2=a6b2D.〔a﹣b〕2=a2﹣b2分析:合并同类项时不要丢掉字母a,应是2a,B指数应该是3,D左右两边不相等.解:A、是合并同类项结果是2a,不正确;B、是同底数幂的除法,底数不变指数相减,结果是a3;C、是考查积的乘方正确;D、等号左边是完全平方式右边是平方差,所以不相等.应选C.点评:这道题主要考查同底数幂相除底数不变指数相减以及完全平方式和平方差的形式,熟记定义是解题的关键.二.填空题1. 〔2021•广东,第11题4分〕计算2x3÷x=2x2.考点:整式的除法.分析:直接利用整式的除法运算法那么求出即可.解答:解:2x3÷x=2x2.故答案为:2x2.点评:此题主要考查了整式的除法运算法那么,正确掌握运算法那么是解题关键.2. 〔2021•珠海,第7题4分〕填空:x2﹣4x+3=〔x﹣2〕2﹣1.考点:配方法的应用.专题:计算题.分析:原式利用完全平方公式化简即可得到结果.解答:解:x2﹣4x+3=〔x﹣2〕2﹣1.故答案为:2点评:此题考查了配方法的应用,熟练掌握完全平方公式是解此题的关键.3. 〔2021•广西贺州,第13题3分〕分解因式:a3﹣4a=a〔a+2〕〔a﹣2〕.考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,进而利用平方差公式分解因式得出即可.解答:解:a3﹣4a=a〔a2﹣4〕=a〔a+2〕〔a﹣2〕.故答案为:a〔a+2〕〔a﹣2〕.点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.4. 〔2021•广西玉林市、防城港市,第3题3分〕计算〔2a2〕3的结果是〔〕A.2a6B.6a6C.8a6D.8a5考点:幂的乘方与积的乘方.分析:利用幂的乘方与积的乘方的性质求解即可求得答案.解答:解:〔2a2〕3=8a6.应选C.点评:此题考查了幂的乘方与积的乘方的性质.此题比拟简单,注意掌握指数的变化是解此题的关键.5.〔2021•广西玉林市、防城港市,第4题3分〕下面的多项式在实数范围内能因式分解的是〔〕A.x2+y2B.x2﹣y C.x2+x+1 D.x2﹣2x+1考点:实数范围内分解因式.分析:利用因式分解的方法,分别判断得出即可.解答:解;A、x2+y2,无法因式分解,故此选项错误;B、x2﹣y,无法因式分解,故此选项错误;C、x2+x+1,无法因式分解,故此选项错误;D、x2﹣2x+1=〔x﹣1〕2,故此选项正确.应选:D.点评:此题主要考查了公式法分解因式,熟练应用公式是解题关键.6.(2021年天津市,第13题3分)计算x5÷x2的结果等于.考点:同底数幂的除法.分析:同底数幂相除底数不变,指数相减,解答:解:x5÷x2=x3故答案为:x3.点评:此题考查了同底数幂的除法,解题要注意细心明确指数相减.7.〔2021•温州,第11题5分〕分解因式:a2+3a=.考点:因式分解-提公因式法.分析:直接提取公因式a,进而得出答案.解答:解:a2+3a=a〔a+3〕.故答案为:a〔a+3〕.点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.8.〔2021年广东汕尾,第12题5分〕a+b=4,a﹣b=3,那么a2﹣b2=.分析:根据a2﹣b2=〔a+b〕〔a﹣b〕,然后代入求解.解:a2﹣b2=〔a+b〕〔a﹣b〕=4×3=12.故答案是:12.点评:此题重点考查了用平方差公式.平方差公式为〔a+b〕〔a﹣b〕=a2﹣b2.此题是一道较简单的题目.9.〔2021•武汉,第12题3分〕分解因式:a3﹣a= a〔a+1〕〔a﹣1〕.10.〔2021•邵阳,第12题3分〕将多项式m2n﹣2mn+n因式分解的结果是n〔m﹣1〕2.11.〔2021•孝感,第15题3分〕假设a﹣b=1,那么代数式a2﹣b2﹣2b的值为1.考点:完全平方公式分析:运用平方差公式,化简代入求值,解答:解:因为a﹣b=1,a2﹣b2﹣2b=〔a+b〕〔a﹣b〕﹣2b=a+b﹣2b=a﹣b=1,故答案为:1.点评:此题主要考查了平方差公式,关键要注意运用公式来求值.12.〔2021•浙江湖州,第17题分〕计算:〔3+a〕〔3﹣a〕+a2.分析:原式第一项利用平方差公式计算,合并即可得到结果.解:原式=9﹣a2+a2=9.点评:此题考查了整式的混合运算,熟练掌握运算法那么是解此题的关键.13.〔2021•浙江宁波,第16题4分〕一个大正方形和四个全等的小正方形按图①、②两种方式摆放,那么图②的大正方形中未被小正方形覆盖局部的面积是ab〔用a、b的代数式表示〕.考点:平方差公式的几何背景分析:利用大正方形的面积减去4个小正方形的面积即可求解.解答:解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,大正方形中未被小正方形覆盖局部的面积=〔〕2﹣〔〕2=ab.故答案为:ab.点评:此题考查了平方差公式的几何背景,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.14.〔2021•浙江宁波,第19题6分〕〔1〕化简:〔a+b〕2+〔a﹣b〕〔a+b〕﹣2ab;〔2〕解不等式:5〔x﹣2〕﹣2〔x+1〕>3.考点:整式的混合运算;解一元一次不等式分析:〔1〕先运用完全平方公式和平方差公式展开,再合并同类项即可;〔2〕先去括号,再移项、合并同类项.解答:解:〔1〕原式=a2+2ab+b2+a2﹣b2﹣2ab15. 〔2021•湘潭,第10题,3分〕分解因式:ax﹣a=a〔x﹣1〕.16. 〔2021•益阳,第9题,4分〕假设x2﹣9=〔x﹣3〕〔x+a〕,那么a=3.考点:因式分解-运用公式法.分析:直接利用平方差公式进行分解得出即可.解答:解:∵x2﹣9=〔x+3〕〔x﹣3〕=〔x﹣3〕〔x+a〕,∴a=3.故答案为:3.点评:此题主要考查了公式法分解因式,熟练掌握平方差公式是解题关键.17. 〔2021•株洲,第9题,3分〕计算:2m2•m8=2m10.考点:单项式乘单项式.分析:先求出结果的系数,再根据同底数幂的乘法进行计算即可.解答:解:2m2•m8=2m10,故答案为:2m10.点评:此题考查了单项式乘以单项式,同底数幂的乘法的应用,主要考查学生的计算能力.18. 〔2021•株洲,第14题,3分〕分解因式:x2+3x〔x﹣3〕﹣9=〔x﹣3〕〔4x+3〕.考点:因式分解-十字相乘法等.分析:首先将首尾两项分解因式,进而提取公因式合并同类项得出即可.解答:解:x2+3x〔x﹣3〕﹣9=x2﹣9+3x〔x﹣3〕=〔x﹣3〕〔x+3〕+3x〔x﹣3〕=〔x﹣3〕〔x+3+3x〕=〔x﹣3〕〔4x+3〕.故答案为:〔x﹣3〕〔4x+3〕.点评:此题主要考查了分组分解法分解因式,正确分组得出是解题关键.19.〔2021•株洲,第14题,3分〕分解因式:x2+3x〔x﹣3〕﹣9=〔x﹣3〕〔4x+3〕.考点:因式分解-十字相乘法等.分析:首先将首尾两项分解因式,进而提取公因式合并同类项得出即可.解答:解:x2+3x〔x﹣3〕﹣9=x2﹣9+3x〔x﹣3〕=〔x﹣3〕〔x+3〕+3x〔x﹣3〕=〔x﹣3〕〔x+3+3x〕=〔x﹣3〕〔4x+3〕.故答案为:〔x﹣3〕〔4x+3〕.点评:此题主要考查了分组分解法分解因式,正确分组得出是解题关键.20.〔2021•呼和浩特,第14题3分〕把多项式6xy2﹣9x2y﹣y3因式分解,最后结果为﹣y 〔3x﹣y〕2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式﹣y,进而利用完全平方公式分解因式得出即可.解答:解:6xy2﹣9x2y﹣y3=﹣y〔y2﹣6xy+9x2〕=﹣y〔3x﹣y〕2.故答案为:﹣y〔3x﹣y〕2.点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握完全平方公式是解题关键.21.〔2021•滨州,第14题4分〕写出一个运算结果是a6的算式a2•a4.考点:幂的乘方与积的乘方;同底数幂的乘法;同底数幂的除法专题:开放型.分析:根据同底数幂的乘法底数不变指数相加,可得答案.解答:解:a2•a4=a6,故答案为:a2•a4=a6.点评:此题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加.22.〔2021•菏泽,第11题3分〕分解因式:2x3﹣4x2+2x= 2x〔x﹣1〕2=__________ .考点:提公因式法与公式法的综合运用.分析:先提取公因式2x,再对余下的多项式利用完全平方公式继续分解.解答:解:2x3﹣4x2+2x,=2x〔x2﹣2x+1〕,=2x〔x﹣1〕2.故答案为:2x〔x﹣1〕2.点评:此题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.23.〔2021•济宁,第11题3分〕如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.考点:列代数式〔分式〕.分析:这卷电线的总长度=截取的1米+剩余电线的长度.解答:解:根据1米长的电线,称得它的质量为a克,只需根据剩余电线的质量除以a,即可知道剩余电线的长度.故总长度是〔+1〕米.点评:注意代数式的正确书写,还要注意后边有单位,故该代数式要带上括号.解决问题的关键是读懂题意,找到所求的量的等量关系.三.解答题1. 〔2021•安徽省,第16题8分〕观察以下关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决以下问题:〔1〕完成第四个等式:92﹣4×42=17;〔2〕写出你猜测的第n个等式〔用含n的式子表示〕,并验证其正确性.考点:规律型:数字的变化类;完全平方公式.分析:由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:〔1〕32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;〔2〕第n个等式为:〔2n+1〕2﹣4n2=2〔2n+1〕﹣1,左边=〔2n+1〕2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2〔2n+1〕﹣1=4n+2﹣1=4n+1.左边=右边∴〔2n+1〕2﹣4n2=2〔2n+1〕﹣1.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.2. 〔2021•福建泉州,第19题9分〕先化简,再求值:〔a+2〕2+a〔a﹣4〕,其中a=.考点:整式的混合运算—化简求值分析:首先利用完全平方公式和整式的乘法计算,再进一步合并得出结果,最后代入求得数值即可.解答:解:〔a+2〕2+a〔a﹣4〕=a2+4a+4+a2﹣4a=2a2+4,当a=时,原式=2×〔〕2+4=10.点评:此题考查整式的化简求值,注意先化简,再代入求值.3.〔2021•温州,第17题10分〕〔1〕计算:+2×〔﹣5〕+〔﹣3〕2+20210;〔2〕化简:〔a+1〕2+2〔1﹣a〕考点:实数的运算;整式的混合运算;零指数幂.分析:〔1〕分别根据有理数乘方的法那么、数的开放法那么及0指数幂的运算法那么计算出各数,再根据实数混合运算的法那么进行计算即可;〔2〕根据整式混合运算的法那么进行计算即可.解答:解:〔1〕原式=2﹣10+9+1=2;〔2〕原式=a2+2a+1+2﹣2a=a2+3.点评:此题考查的是实数的运算,熟知有理数乘方的法那么、数的开放法那么及0指数幂的运算法那么是解答此题的关键.4.〔2021•舟山,第17题6分〕〔1〕计算:+〔〕﹣2﹣4cos45°;〔2〕化简:〔x+2〕2﹣x〔x﹣3〕考点:实数的运算;整式的混合运算;负整数指数幂;特殊角的三角函数值专题:计算题.分析:〔1〕原式第一项化为最简二次根式,第二项利用负指数幂法那么计算,第三项利用特殊角的三角函数值计算即可得到结果;〔2〕原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法那么计算即可得到结果.解答:解:〔1〕原式=2+4﹣4×=2+4﹣2=4;〔2〕原式=x2+4x+4﹣x2+3x=7x+4.点评:此题考查了实数的运算,熟练掌握运算法那么是解此题的关键.。

中考数学总复习《整式与因式分解》专题训练-附答案

中考数学总复习《整式与因式分解》专题训练-附答案

中考数学总复习《整式与因式分解》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式. (1)代数式求值:用数值代替代数式里的未知数,按照代数式的运算关系计算得出结果.(2)代数推理:通过数学证明,等式变换等方式将复杂的问题简单化,形成一般性的公式,最终达到想要的结果.【练习】1-1.用代数式表示“x 的13与y 的12的差”为 . 【练习】1-2.某种弹簧秤能称不超过10kg 的物体,不挂物体时弹簧的长为8cm ,每挂重1kg 物体,弹簧伸长2cm ,在弹性限度内,当挂重xkg 的物体时,弹簧长度是 cm .(用含x 的代数式表示)【练习】1-3.若4a ﹣3b =3,则7﹣12a +9b = .【练习】1-4.观察一列数:12,24,38,416…根据规律,请你写出第n 个数是 .2. 整式的相关概念:(1)单项式:由数或字母的积组成的式子叫做单项式.单独的一个数或一个字母也是单项式.(2)多项式:几个单项式的和叫做多项式. 多项式中,_____________的项的次数,叫做这个多项式的次数.(3)整式:单项式与多项式统称为整式.(4)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.【练习】2-1.单项式3πx 4y 7的系数是 ,次数是 . 【练习】2-2.多项式12a 2bc −3ab +8是 次 项式.【练习】2-3.若单项式﹣2x m y 4与12x 3y m+n 的和仍是单项式,则m ﹣n = . 3. 整式的运算:知识梳理(1)整式的加减法:①合并同类项:把同类项的_____________相加,字母和字母的__________不变.②去括号法则:括号前为“+”,去括号后原括号里的每一项都不变号;括号前为“-”,去括号后原括号里的每一项都要变号.如a+(b+c)=________________,a-(b-c)=_______________.(2)幂的运算法则:①同底数幂相乘:a m·a n=_____________(m,n均为正整数).②同底数幂相除:a m÷a n=_____________(a≠0,m,n均为正整数,并且m>n).③幂的乘方:(a m)n=_____________(m,n均为正整数).④积的乘方:(a b)n=_____________(n为正整数).⑤负整数指数幂:a-n=____________(a≠0,n为正整数).⑥零指数幂:a0=_____________(a≠0).(3)整式的乘法:①单项式乘单项式:把它们的系数、同底数幂分别_____________,对于只在一个单项式里含有的字母,则连同它的_____________作为积的一个因式.②单项式乘多项式:m(a+b)=_________________.③多项式乘多项式:(a+b)(c+d)=__________________________.④乘法公式:平方差公式:(a+b)(a-b)=_____________.完全平方公式:(a±b)2=____________________.常用的公式变形:a2+b2=(a+b)2-2ab; a2+b2=(a-b)2+2ab;(a+b)2=(a-b)2+4ab; (a-b)2=(a+b)2-4ab.(4)整式的除法:①单项式除以单项式:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【练习】3-1.计算:(a3)2•2a=.【练习】3-2.计算:2x2•3xy的结果是.【练习】3-3.计算(2x)2(﹣3xy2)=.【练习】3-4.计算:(1)3xy•5x3=;(2)6m2÷3m=.【练习】3-5.计算:28x4y2÷7x3y2=.【练习】3-6.计算:(2x﹣1)(3x+2)=.【练习】3-7.计算:(6x3y2−2x2y3)÷13x2y2=.【练习】3-8.计算:(2x+y)(2x﹣y)=.【练习】3-9.已知(x﹣3)2=x2+2mx+9,则m的值是.4. 因式分解:把一个多项式化成几个整式的积的形式.(1)提公因式法:ma+mb+mc=m(a+b+c).(2)公式法:①平方差公式:a2-b2=___________________________.②完全平方公式:a2±2ab+b2=________________.(3)(拓展)十字相乘法:x2+(a+b)x+ab=(x+a)(x+b).【练习】4-1.因式分解:3a2b﹣9ab=.【练习】4-2.分解因式:m2﹣36=.【练习】4-3.分解因式:a2+8a+16=.【练习】4-4.因式分解:am+an﹣bm﹣bn=.【练习】4-5.分解因式:2ax2﹣4ax+2a=.【练习】4-6.因式分解:x2﹣8x+12=.【练习】4-7.分解因式:m2﹣4m﹣5=.参考答案1-1.【答案】13x−12y.1-2.【答案】(8+2x).1-3.【答案】﹣2.1-4.【答案】n2n2-1.【答案】3π75.2-2.【答案】四;三.2-3.【答案】2.3-1.【答案】2a7.3-2.【答案】6x3y.3-3.【答案】﹣12x3y2.3-4.【答案】(1)15x4y;(2)2m.3-5.【答案】18x-6y.3-6.【答案】6x2+x-23-7.【答案】18x﹣6y.3-8.【答案】4x2-y2.3-9.【答案】﹣3.4-1.【答案】3ab(a﹣3).4-2.【答案】(m﹣6)(m+6).4-3.【答案】(a+4)2.4-4.【答案】(m+n)(a﹣b).4-5.【答案】2a(x﹣1)2.4-6.【答案】(x﹣2)(x﹣6).4-7.【答案】(m﹣5)(m+1).考点一:整式的相关概念1.单项式﹣2x2y的系数是;多项式x4y2﹣x2y+23y4的次数是.2.如果单项式﹣a n﹣2b n﹣1与12ab m+3的和仍是单项式,那么m n=.考点突破考点二:整式的运算3.下列计算正确的是()A.a3•a3=2a3B.(ab2)3=ab6C.2ab2•(﹣3ab)=﹣6ab3D.10ab3÷(﹣5ab)=﹣2b24.已知x m=2,x n=3,则x m+n的值是()A.5B.6C.8D.95.观察图,用等式表示图中图形面积的运算为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.a(a+b)=a2+ab D.(a+b)2=a2+2ab+b26.下列计算正确的是()A.(x+2y)(x﹣2y)=x2﹣2y2B.(﹣x+y)(x﹣y)=x2﹣y2C.(2x﹣y)(x+2y)=2x2﹣2y2D.(﹣x﹣2y)(﹣x+2y)=x2﹣4y27.下列计算正确的是()A.2a2•3a2=6a2B.(3a2b)2=6a4b2C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a2考点三:代数式求值8.若x2﹣2x+1的值为10,则代数式﹣2x2+4x+3的值为.9.已知a2+3a﹣2023=0,则2a2+6a﹣1的值为.10.图是一数值转换机的示意图,若输入的x值为18,则输出的结果为.11.已知m=2,n=−12求代数式m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)的值.12.已知(a+b)2+(a﹣b)2=20.(1)求a2+b2的值;(2)若ab=3,求(a+1)(b+1)的值;(3)若2a﹣3b=m,3a﹣2b=n求mn的最大值.考点四:因式分解13.分解因式:(1)m2﹣1=;(2)a2+5a=;(3)x2﹣4x+4=.14.若x2﹣mx+25可以用完全平方式来分解因式,则m的值为.15.如果关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,那么整数k等于.考点五:规律探究16.已知S1=10 S2=11−S1S3=11−S2S4=11−S3…按此规律,则S2024=.17.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察右图中的数字排列规律,求a+b﹣c的值为.18.一组按规律排列的单项式a、2a2、3a3、4a4,…,依这个规律用含字母n(n为正整数,且n≥1)的式子表示第n个单项式为.19.如图,把每个正方形等分为4格,在每格中填入数字,在各正方形中的四个数之间都有相同的规律,根据此规律,x=.(用a,b表示)20.一列数:13,26,311,418,527,638…它们按一定的规律排列,则第n个数(n为正整数)为.参考答案与试题解1.【答案】﹣2,7.【解答】解:单项式﹣2x2y的系数是﹣2,多项式x4y2﹣x2y+23y4的次数是7.故答案为:﹣2,7.2.【答案】﹣1.【解答】解:由题意,n﹣2=1,n﹣1=m+3∴m=﹣1,n=3∴m n=(﹣1)3=﹣1.故答案为:﹣1.3.【答案】D【解答】解:A、a3•a3=a6本选项错误,不符合题意;B、(ab2)3=a3b6本选项错误,不符合题意;C、2ab2•(﹣3ab)=﹣6a2b3本选项错误,不符合题意;D、10ab3÷(﹣5ab)=﹣2b2本选项正确,符合题意;故选:D.4.【答案】B【解答】解:∵x m=2,x n=3∴x m+n=x m×x n=2×3=6.故选:B.5.【答案】B【解答】解:由题意得:图1的面积=(a+b)(a﹣b)图2的面积=a2﹣b2∴(a+b)(a﹣b)=a2﹣b2故选:B.6.【答案】D【解答】解:A、(x+2y)(x﹣2y)=x2﹣4y2,本选项错误,不符合题意;B、(﹣x+y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,本选项错误,不符合题意;C、(2x﹣y)(x+2y)=2x2+3xy﹣2y2,本选项错误,不符合题意;D、(﹣x﹣2y)(﹣x+2y)=(﹣x)2﹣(2y)2=x2﹣4y2,必须执行正确,符合题意.故选:D.7.【答案】D【解答】解:A、2a2•3a2=6a4,故A不符合题意;B、(3a2b)2=9a4b2,故B不符合题意;C、(a﹣b)2=a2﹣2ab+b2,故C不符合题意;D、﹣a2+2a2=a2,故D符合题意;故选:D.8.【答案】﹣15.【解答】解:∵x2﹣2x+1=10∴x2﹣2x=9∴﹣2x2+4x+3=﹣2(x2﹣2x)+3=﹣2×9+3=﹣15.故答案为:﹣15.9.【答案】4045.【解答】解:∵a2+3a﹣2023=0∴a2+3a=2023∴2a2+6a﹣1=2(a2+3a)﹣1=2×2023﹣1=4045故答案为:4045.10.【答案】见试题解答内容【解答】解:若输入的数为18,代入得:3(18﹣10)=24<100;此时输入的数为24,代入得:3(24﹣10)=42<100;此时输入的数为42,代入得:3(42﹣10)=96<100此时输入的数为96,代入得:3(96﹣10)=258>100则输出的结果为258.故答案为:258.11.【答案】﹣2mn,原式=2.【解答】解:m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)=m3n﹣2n3m2﹣4mn+2m2n3+2mn﹣m3n =﹣2mn当m=2,n=−12时,原式=﹣2×2×(−12)=2.12.【答案】(1)10;(2)8或0;(3)125.【解答】解:(1)∵(a+b)2+(a﹣b)2=20∴a2+2ab+b2+a2﹣2ab+b2=202a2+2b2=20∴a2+b2=10;(2)∵ab=3∴2ab=6∵a2+b2=10∴a2+2ab+b2=10+6=16(a+b)2=16a+b=±4∴当a+b=4时(a+1)(b+1)=ab+a+b+1=3+4+1=8当a+b=﹣4时(a+1)(b+1)=ab+a+b+1=3+(﹣4)+1=0∴(a+1)(b+1)的值为8或0;(3)由(1)可知:a2+b2=10∵(a+b)2≥0∴a2+b2+2ab≥010+2ab≥02ab≥﹣10ab≥﹣5∵(a﹣b)2≥0∴a2+b2﹣2ab≥010﹣2ab≥0﹣2ab≥﹣10ab≤5∴﹣5≤ab≤5∴ab的最小值为﹣5∵2a﹣3b=m,3a﹣2b=n∴mn=(2a﹣3b)(3a﹣2b)=6a2﹣4ab﹣9ab+6b2=6a2+6b2﹣13ab=6(a2+b2)﹣13ab=6×10﹣13ab=60﹣13ab∴mn的最大值为:60﹣13×(﹣5)=60+65=125.13.【答案】(1)(m+1)(m﹣1);(2)a(a+5);(3)(x﹣2)2.【解答】解:(1)m2﹣1=(m+1)(m﹣1)故答案为:(m+1)(m﹣1);(2)a2+5a=a(a+5)故答案为:a(a+5);(3)x2﹣4x+4=(x﹣2)2故答案为:(x﹣2)2.14.【答案】±10.【解答】解:∵x2﹣mx+25可以用完全平方式来分解因式∴m=±10.故答案为:±10.15.【答案】±6.【解答】解:∵关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,5=1×5或5=(﹣1)×(﹣5)∴k=1+5=6或k=(﹣1)+(﹣5)=﹣6故答案为:±6.16.【答案】−1 9.【解答】解:由题知因为S1=10所以S2=11−S1=11−10=−19;S3=11−S2=11−(−19)=910;S4=11−S3=11−910=10;…由此可见,这列数按10,−19,910循环出现又因为2024÷3=674余2所以S2024=−1 9.故答案为:−1 9.17.【答案】1.【解答】解:根据杨辉三角形的特点确定a=1+5=6b=5+10=15c=10+10=20a+b﹣c=6+15﹣20=1.故答案为:1.18.【答案】n•a n.【解答】解:第n个单项式是n•a n.故答案为:n•a n.19.【答案】a+18b(答案不唯一).【解答】解:由所给表格可知9=2×4+1;20=3×6+2;35=4×8+3;…所以表格中的左下角与右上角的数字之积加上左上角的数字等于右下角的数字; 则x =a +18b .故答案为:a +18b (答案不唯一).20.【答案】nn 2+2.【解答】解:∵一列数:13,26,311,418,527,638…其的分子与序号相同,分母为分子的平分加2∴第n 个数(n 为正整数)为:nn 2+2.故答案为:nn 2+2.。

人教版九年级数学中考因式分解专项练习及参考答案

人教版九年级数学中考因式分解专项练习及参考答案

人教版九年级数学中考因式分解专项练习1.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2.分解因式的一般方法: (1)提公共因式法. (2)运用公式法.①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=±(3)十字相乘法。

利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.①对于二次三项式2x bx c ++,若存在pq cp q b=⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++②首项系数不为1的十字相乘法在二次三项式2ax bx c ++(a ≠0)中,如果二次项系数a 可以分解成两个因数之积,即12a a a =,常数项c 可以分解成两个因数之积,即12c c c =,把1212a a c c ,,,排列如下:按斜线交叉相乘,再相加,得到1221a c a c +,若它正好等于二次三项式2ax bx c ++的一次项系数b ,即1221a c a c b +=,那么二次三项式就可以分解为两个因式11a x c +与22a x c +之积,即()()21122ax bx c a x c a x c ++=++.(4)分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式. 3.分解因式的步骤:专题知识回顾(1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解; (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.若有公因式,先提公因式;然后再考虑用公式法(平方差公式:a 2-b 2=(a +b )(a -b ),完全平方公式:a 2±2ab +b 2=(a ±b )2)或其它方法分解;直到每个因式都不能再分解为止.【例题1】(2019•江苏无锡)分解因式4x 2-y 2的结果是( ) A .(4x +y )(4x ﹣y ) B .4(x +y )(x ﹣y ) C .(2x +y )(2x ﹣y ) D .2(x +y )(x ﹣y ) 【答案】C【解析】此题主要考查了公式法分解因式,正确应用公式是解题关键.直接利用平方差公式分解因式得出答案. 4x 2-y 2=(2x )2-y 2 =(2x +y )(2x ﹣y ).【例题2】(2019贵州省毕节市) 分解因式:x 4﹣16= . 【答案】(x 2+4)(x +2)(x ﹣2). 【解析】运用公式法.x 4﹣16=(x 2+4)(x 2﹣4)=(x 2+4)(x +2)(x ﹣2). 【例题3】(2019广东深圳)分解因式:ab 2-a=____________. 【答案】a (b+1)(b -1)【解析】提公因式法与公式法的综合运用 原式=a (b 2-1)=a (b+1)(b -1).【例题4】(2019黑龙江哈尔滨)分解因式:22396ab b a a +-= . 【答案】a (a ﹣3b )2.【解析】先提取公因式,再用完全平方公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档