2016年秋季新版湘教版七年级数学上学期期中复习试卷8
湘教版七年级上册数学期中考试试卷含答案

湘教版七年级上册数学期中考试试题一、单选题1.《九章算术》中注有“今两算得失相反,要令正负以名之”意思:今有两数若其意义相反,则分别叫做正数与负数.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A .+3℃B .+2℃C .3-℃D .2-℃2.下列5个数中:3-,0,2.0030003,53,π-.有理数的个数是()A .2B .3C .4D .53.数a 在数轴上对应点位置如图,若数b 满足b a <,则b 的值不可能是()A .4-B .1-C .0D .24.下列计算正确的是()A .()253--=-B .21134333--=-C .()()144-⨯-=-D .1362-÷=-5.下列各组代数式中,是同类项的是()A .23m n 与215mnB .26x y -与215yx C .25ax 与215yx D .32与3a 6.用科学记数法表示760万正确的是()A .77.610⨯B .70.7610⨯C .67.610⨯D .60.7610⨯7.用四舍五入法,把7.8446精确到百分位,取得的近似数是()A .7.8B .7.84C .7.845D .7.858.如果33m m -=-,那么m 的取值范围是()A .3m ≤B .3m <C .3m ≥D .3m >9.下列判断中正确的是()A .多项式2322x x π++-的常数项为2B .25m n不是整式C .单项式32x y -的次数是5D .22234x y xy -+是二次三项式10.按照如图所示的操作步骤,若输入值为3-,则输出的值为()A .0B .4C .60D .2411.当3x =时,代数式31px qx +-的值为4,则当3x =-时,31px qx +-的值是()A .4-B .6-C .4D .612.中国文化博大精深,汉字文化是中国古代文化流传下来的一份珍贵遗产.下列图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点,…,依此规律,则图⑨中共有圆点的个数是()A .63B .75C .88D .102二、填空题13.32-的值为________.14.单项式25m n -的系数是________.15.购买3个单价为a 元的面包和4瓶单价为b 元的牛奶,所需钱数为________元.16.若单项式212m x y 与32n x y -的和仍为单项式,则其和为__________.17.若m 、n 互为相反数,a 、b 互为倒数,5p =,则代数式27m n p ab p +-+的值为________.18.定义新运算:x y x y xy *=+-,例如:()()()2323235*-=+--⨯-=,那么当()()222x x -*-*=⎡⎤⎣⎦时,x =________.三、解答题19.计算:(1)112243-+(2)2513624⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭(3)()2611327⎡⎤--⨯--⎣⎦(4)()212123236⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭20.先化简,再求值:22233223x xy y x xy ---+,其中x 和y 满足:()2210x y ++-=.21.有理数a 、b 、c 的位置如图所示,且a b =.(1)填空:a+b 0;a+c 0;c a -0;c b -0.(2)化简式子:b a c b c a b +-+---.22.“滴滴”司机李师傅国庆节某一天下午以湘雅医院为出发地在南北方向的芙蓉路上营运,共连续运载十批乘客.若规定向南为正,向北为负.李师傅营运十批乘客里程如下:(单位:千米)+9、11-、5-、+12、7-、+10、16-、22-、+4、3-.(1)将最后一批乘客送到目的地时,李师傅在湘雅医院的南面还是北面?距离多少千米?(2)若出租车每公里耗油量为m 升,则这辆出租车这天下午耗油多少升?(3)若“滴滴”的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元(不足1千米按1千米计费).则李师傅在这天下午一共收入多少元?23.如图,在一张长方形纸条上画一条数轴.(1)折叠纸条使数轴上表示﹣1的点与表示5的点重合,折痕与数轴的交点表示的数是;如果数轴上两点之间的距离为10,经过上述的折叠方式能够重合,那么左边这个点表示的数是;(2)如图2,点A 、B 表示的数分别是﹣2、4,数轴上有点C ,使点C 到点A 的距离是点C 到点B 距离的3倍,那么点C 表示的数是;(3)如图2,若将此纸条沿A 、B 两处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折5次后,再将其展开,求最右端的折痕与数轴的交点表示的数.24.观察下列三行数:﹣2,4,﹣8,16,﹣32,64,…;①﹣1,2,﹣4,8,﹣16,32,…;②0,6,﹣6,18,﹣30,66,…;③(1)第①行数中的第n 个数为(用含n 的式子表示)(2)取每行数的第n 个数,这三个数的和能否等于﹣318?如果能,求出n 的值;如果不能,请说明理由.(3)如图,用一个矩形方框框住六个数,左右移动方框,若方框中的六个数之和为﹣156,求方框中左上角的数.25.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离AB=a b -,线段AB 的中点表示的数为2a b +.如图,数轴上点A 表示的数为2-,点B 表示的数为8.【综合运用】(1)填空:A ,B 两点间的距离AB=,线段AB 的中点表示的数为;(2)若M 为该数轴上的一点,且满足MA+MB=12,求点M 所表示的数;(3)若点P 从点A 出发,以每秒1个单位长度的速度沿数轴向终点B 匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,Q 到达A 点后,再立即以同样的速度返回B 点,当点P 到达终点后,P 、Q 两点都停止运动,设运动时间为t 秒(0t >).当t 为何值时,P ,Q 两点间距离为4.参考答案1.D【解析】【分析】根据有理数的意义,表示相反意义的量可以用正负数表示,得出答案.【详解】解:根据正负数表示的意义得,如果温度上升3℃,记作+3℃,那么温度下降2℃记作2-℃,故选:D .【点睛】考查有理数的意义,具有相反意义的量一个用正数表示,则与之相反的量就用负数表示.2.C【解析】【分析】根据有理数和无理数的定义逐个判断每个数是否为有理数.【详解】解:有理数有3-,0,2.0030003,53,共4个,故选:C .【点睛】本题考查有理数的概念,如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数,熟悉相关性质是解题的关键.3.D【解析】【分析】根据数轴上a 的位置和b a <判断即可;【详解】解:∵12a <<,∴2b a <<,∴b 的值不可能是2;故选D .【点睛】本题主要考查了数轴上数的大小比较,准确分析判断是解题的关键.4.D【解析】【分析】根据有理数的加减乘除运算法则进行计算即可判断.【详解】A 、()252573--=+=≠-,故计算错误;B 、21213343333⎛⎫--=-+-=- ⎪⎝⎭,故计算错误;C 、()()144-⨯-=,故计算错误;D 、133262-÷=-⨯=-,故计算正确.故选:D .【点睛】本题考查了有理数的四则运算,掌握四则运算的运算法则是关键,另外要注意运算符号.5.B【解析】【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【详解】解:A.相同字母的指数不同,故A 不是同类项;B.字母相同且相同字母的指数也相同,故B 是同类项;C.字母不同,故C 不是同类项;D.字母不同,故D 不是同类项.故选B.【点睛】本题考查了同类项,同类项是字母相同且相同字母的指数也相同.6.C【解析】【分析】根据科学记数法的一般书写格式的性质计算,即可得到答案.【详解】760万用科学记数法表示为:67.610⨯故选:C .【点睛】本题考查了科学记数法的知识;解题的关键是熟练掌握科学记数法的性质,从而完成求解.7.B【解析】【分析】根据题目中的数据可以写出把7.8446精确到百分位的近似数,本题得以解决.【详解】解:由题意得,7.8446≈7.84(精确到百分位),故选B【点睛】本题考查近似数,解答本题的关键是明确近似数的定义.8.A【解析】【分析】根据绝对值的非负性求解即可.【详解】解:∵33m m -=-,3m -是非负数,∴3m -是非负数,∴3m ≤,故选:A .【点睛】本题考查了绝对值非负数的性质,解题关键是明确绝对值的非负性.9.C【解析】【分析】根据整式的性质,对各个选项逐个分析,即可得到答案.【详解】解:∵多项式2322x x π++-的常数项为2π-∴选项A 错误;∵25m n 是整式∴选项B 错误;∵单项式32x y -的次数是5∴选项C 正确;∵22234x y xy -+是三次三项式∴选项D 错误;故选:C .【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式、单项式、多项式的定义,从而完成求解.10.C【解析】【分析】根据给出的程序框图计算即可;【详解】解:由题意得:当输入为3-时,()239312-=+=,12560⨯=;故选C .【点睛】本题主要考查了与程序框图有关的有理数运算,准确计算是解题的关键.11.B【解析】把3x =代入代数式31px qx +-,再把3x =-代入,可得到含有27p+3q 的式子,直接解答即可.【详解】解:当x=3时,代数式31px qx +-=27p+3q -1=4,即27p+3q=5,所以当x=−3时,代数式31px qx +-=−27p−3q -1=−(27p+3q)-1=−5-1=6-,故选:B .【点睛】考查代数式求值,解题关键是掌握整体代入法在解题中的应用.12.C【解析】【分析】观察并比较每两个相邻的“汉字”的相同与不同之处,得出每两个相邻的“汉字”中后一个“汉字”前半部分与前一个“汉字”的前半部分圆点数量相等,后一个“汉字”后半部分与前一个“汉字”的后半部分顶部加上图案序号多2个圆点与底部添加2个圆点,进而解决该题.【详解】设图①中圆点个数为112y =,图②中圆点个数为21618y y =+=,图③中圆点个数为32725y y =+=,图④中圆点个数为43833y y =+=,⋯,以此类推,图⑨中圆点个数为98765413(12)13(11)25(10)36(9)46335588y y y y y y =+=++=++=++=++=+=.故选:C .【点睛】本题考查图形的变化规律,根据图形观察规律写出表达式是解题的关键.13.8-【分析】根据有理数乘方的性质分析,即可得到答案.【详解】32-8=-故答案为:8-.【点睛】本题考查了有理数乘方的知识;解题的关键是熟练掌握有理数乘方运算的性质,从而完成求解.14.15-【解析】【分析】根据单项式中数字因数叫做单项式的系数即可得出答案.【详解】解:22155m n m n -=-,∴单项式25m n -的系数是15-.故答案为:15-.【点睛】本题考查单项式的系数,注意单项式中数字因数叫做单项式的系数.15.()34a b +##()43b a +【解析】【分析】根据题意单价乘以数量等于所需钱数列出代数式即可.【详解】购买3个单价为a 元的面包和4瓶单价为b 元的牛奶,所需钱数为()34a b +元.故答案为:()34a b +【点睛】本题考查了列代数式,根据题意列出代数式是解题的关键.16.2332x y -【解析】【分析】根据同类项的定义,先求出m 、n 的值,然后再合并同类项即可.【详解】解:∵单项式212m x y 与32n x y -的和仍为单项式,∴212m x y 与32n x y -是同类项,∴3m =,2n =,∴23232313(2)22x y x y x y +-=-;故答案为:2332x y -.【点睛】本题考查了合并同类项,以及同类项的定义,解题的关键是掌握运算法则,正确求出m 、n 的值.17.18【解析】【分析】根据相反数的定义、倒数的定义、绝对值运算求出0,1m n ab +==,5p =±分5p =和5p =﹣代入代数式中求解即可.【详解】解:由题意可知:0,1m n ab +==,5p =±∴当5p =时,27m n p ab p +-+=20711855-⨯+=,当5p =﹣时,27m n p ab p +-+=()20571185--⨯+=-,综上,代数式27m n p ab p+-+的值为18,故答案为:18.【点睛】本题考查了代数式求值、相反数的定义、倒数的定义、绝对值的性质,熟记定义和性质是解答的关键.18.4-【解析】【分析】由新运算定义,将()()222x x -*-*=⎡⎤⎣⎦从内向外依次化简,然后求解即可.【详解】解:∵()()2x -*-()()()()=22x x -+---⨯-22x x=---32x =--∴()322x --*()()=32+2322x x -----⨯=34x +又∵()()222x x-*-*=⎡⎤⎣⎦∴34=2x x+4x =-故答案为:4-【点睛】本题考查定义新运算,能够根据新运算的计算原则化简是解题的关键.19.(1)1112;(2)4;(3)67-;(4)7【解析】【分析】(1)根据有理数的加减法进行计算即可;(2)将除法转化为乘法,再根据乘法分配律进行计算即可;(3)(4)根据有理数的混合运算,先进行乘方计算,然后进行乘除运算,最后计算加减【详解】(1)112243-+212443=-+1243=+381212=+11=12(2)2513624⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭()252436⎛⎫=-⨯- ⎪⎝⎭=1620-+4=(3)()2611327⎡⎤--⨯--⎣⎦()11347=--⨯-117=-+67=-(4)()212123236⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭()12=62923⎛⎫-⨯-⨯-+ ⎪⎝⎭()12=6723⎛⎫-⨯-⨯ ⎪⎝⎭()12=4223⎛⎫-⨯- ⎪⎝⎭2128=-+7=【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.20.222x y -,2.【解析】【分析】先去括号、合并同类项化简原式,再根据非负数的性质得出x 和y 的值,继而代入求值可得.【详解】解:22233223x xy y x xy---+222x y =-∵()2210x y ++-=∴20x +=,10y -=,∴2x =-,1y =,∴原式()22221=--⨯42=-2=.【点睛】本题主要考查整式的加减-化简求值及非负数的性质,熟练掌握去括号、合并同类项的法则是解题的关键.21.(1)=,<,>,<;(2)b .【解析】【分析】(1)利用数轴a 、b 、c 的位置,进而得出各式的符号;(2)利用数轴a 、b 、c 的位置,进而得出各式的符号再去绝对值得出即可.【详解】解:(1)根据图中有理数a 、b 、c 的位置和a b =,可得:0a c b <<<,且c a b <-=,∴0a b +=,0a c +<,0c a ->,0c b -<,故答案是:=,<,>,<;(2)根据图中有理数a 、b 、c 的位置和a b =,可得:0b >,0a c -<,0b c ->,0a b -<,∴b a c b c a b+-+---()()()b a c b c a b =+--+----⎡⎤⎡⎤⎣⎦⎣⎦()()()=+--+----b ac b c a b⎡⎤⎡⎤⎣⎦⎣⎦=-++-+-b ac b c a bb=.【点睛】本题主要考查了绝对值的性质以及有理数的加减法等知识,根据数轴得出各式的符号是解题关键.22.(1)北面,29千米;(2)99m升;(3)218元【解析】【分析】(1)将题中数据直接相加,根据得出答案的正负来判断李师傅的位置;(2)将题中数据的绝对值相加,得出答案根据每公里耗油量为m升,即可得出答案;(3)按题中收费方式算出十批乘客的费用和即可.【详解】解:(1)根据题意:规定向南为正,向北为负,则将最后一批乘客送到目的地时距离湘雅医院的距离为:++-+-+++-+++-+-+++-=-,(9)(11)(5)(12)(7)(10)(16)(22)(4)(3)29∴将最后一批乘客送到目的地时,李师傅在湘雅医院的北面,距离29多少千米;(2)十批乘客共行走的路程为:++-+-+++-+++-+-+++-=(千米),91151271016224399则则这辆出租车这天下午耗油:99m升;+-⨯=元,(3)第一批乘客费用:8(93)220+-⨯=元,第二批乘客费用:8(113)224+-⨯=元,第三批乘客费用:8(53)212+-⨯=元,第四批乘客费用:8(123)226+-⨯=元,第五批乘客费用:8(73)216+-⨯=元,第六批乘客费用:8(103)222+-⨯=元,第七批乘客费用:8(163)234+-⨯=元,第八批乘客费用:8(223)246+-⨯=元,第九批乘客费用:8(43)210第十批乘客费用:8(33)28⨯-⨯=元,则十批乘客总费用为:2024122616223446108218+++++++++=元,则李师傅在这天下午一共收入218元.【点睛】此题考查了正负数在实际生活中的应用,解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.23.(1)2,3-;(2)2.5或7;(3)6116.【解析】【分析】(1)设折痕与数轴的交点表示的数为x ,根据折痕与数轴的交点是−1与5对应点的中点可得方程()15x x --=-,解方程即可求得答案;按照(1)的折叠方式,中点为2,两点之间的距离为10,则左边数到中点的距离为5个单位,可得方程12102x -=⨯,解方程即可求得答案;(2)要分点C 在A 、B 之间和B 点右侧两种情况;(3)A 、B 两点之间距离为()426--=,连续对折5次后,共有52段,每两条相邻折痕间的距离为()5423216--=,则最右端的折痕与数轴的交点为3416-,即可解得答案.【详解】解:(1)设折痕与数轴的交点表示的数为x ,则()15x x --=-,解得2x =,故答案为:2;设左边点表示的数为x ,则12102x -=⨯,解得3x =-,故答案为:3-;(2)设点C 表示的数为x ,∵3AC BC =,∴点C 离点B 较近,只有两种情况:①点C 在线段AB 上时,()()234x x --=-,解得: 2.5x =;②当点C 在点B 的右边数轴上时,()()24x x ---=3,解得:7x =.故答案为:2.5或7.(3)对折5次后,每两条相邻折痕间的距离()5423 216 --=,∴最右端的折痕与数轴的交点表示的数为361 41616 -=.【点睛】本题考查实数与数轴,解题的关键是掌握数轴上点的特点,以及理解图形对称的性质.24.(1)(﹣2)n;(2)n=7;(3)64.【解析】【分析】(1)第一行中,从第二个数起,每一个数与前一个数的比为﹣2,从而可表示出第一行中第n个数;(2)设第一行的第n个数为x,找出图中的数字规律,列出方程即可求出x的值;(3)设方框中左上角的数为x,根据题意列出方程即可求出答案.【详解】(1)第一行中,从第二个数起,每一个数与前一个数的比为﹣2,∴第n个数为:﹣2×(﹣2)n﹣1=(﹣2)n,(2)设第一行的第n个数为x,则:x 12+x+(x+2)=﹣318x=﹣128=(﹣2)7,∴n=7,答:n=7时满足题意;(3)设方框中左上角的数为x,则:x+(﹣2x)12+x+(﹣x)+(x+2)+(﹣2x+2)=﹣156x=64答:方框中左上角的数为64.【点睛】本题考查了一元一次方程,解答本题的关键是正确找出题中的等量关系,本题属于基础题型.25.(1)10,3;(2)3-或9;(3)t为2s或143s或6s时,P,Q两点间距离为4【解析】【分析】(1)根据题意即可得到结论;(2)设点M 所表示的数为x ,分2x -≤和28x -<<和8x >三种情况讨论即可;(3)分情况讨论,当P ,Q 未相遇时,点P 表示的数为2+t -,点Q 表示的数为82t -,则()8221034PQ t t t =---+=-=,求解即可;当P ,Q 相遇后,点Q 在向点A 运动时,()2821034PQ t t t =-+--=-+=,求解即可;当P ,Q 相遇后,点Q 在向点B 返回时,点Q 表示的数为()225212t t -+⨯-=-,点P 表示的数为2t -+,()2212104PQ t t t =-+--=-+=,求解即可.【详解】解:(1)A 、B 两点间的距离AB =|−2−8|=10,线段AB 的中点表示的数为:822-=3.故答案是:10,3;(2)设点M 所表示的数为x ,∴28MA x MB x =+=-,,当2x -≤时,282612MA MB x x x +=---+=-+=,∴3x =-,当28x -<<时,MA+MB=()2812x x --+-=,无解,当8x >时,MA+MB=()2812x x --+-=,解得:9x =,综上,点M 所表示的数为-3或9.(3)当P ,Q 未相遇时,1003t <<,点P 表示的数为2+t -,点Q 表示的数为82t -,∴()8221034PQ t t t =---+=-=,∴2t =,当P ,Q 相遇后,1053t <<,点Q 在向点A 运动时,()2821034PQ t t t =-+--=-+=,∴143t =,当P ,Q 相遇后,点Q 在向点B 返回时,510t <<,点Q 表示的数为()225212t t -+⨯-=-,点P 表示的数为2t -+,∴()2212104PQ t t t =-+--=-+=,∴6t ,综上,t为2s或143s或6s时,P,Q两点间距离为4.。
【湘教版】七年级数学上期中试卷(含答案)

一、选择题1.代数式x 2﹣1y的正确解释是( )A .x 与y 的倒数的差的平方B .x 的平方与y 的倒数的差C .x 的平方与y 的差的倒数D .x 与y 的差的平方的倒数2.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7 B .﹣1 C .5 D .11 3.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .64.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b cA .1,6,15a b c ===B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === 5.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ).A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -16.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数 D .a 的平方与b 的倒数的差7.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=-A .1个B .2个C .3个D .4个8.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B.6个单位长度C.4个单位长度或8个单位长度D.6个单位长度或8个单位长度9.有理数a、b在数轴上,则下列结论正确的是()A.a>0 B.ab>0 C.a<b D.b<010.下列说法中,其中正确的个数是()(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则-a一定是负数;(4)a是大于-1的负数,则a2小于a3A.1 B.2 C.3 D.411.按键顺序是的算式是()A.(0.8+3.2)÷45=B.0.8+3.2÷45=C.(0.8+3.2)÷45=D.0.8+3.2÷45=12.在数3,﹣13,0,﹣3中,与﹣3的差为0的数是()A.3 B.﹣13C.0 D.﹣3二、填空题13.在一列数a1,a2,a3,a4,…a n中,已知a1=2,a2111a=-,a3211a=-,a4311a=-,…a nn111a-=-,则a2020=___.14.观察如图,发现第二个和第三个图形是怎样借助第一个图形得到的,概括其中的规律在第n个图形中,它有n个黑色六边形,有_______个白色六边形.15.某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为______.16.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________. 17.计算1-2×(32+12)的结果是 _____. 18.把35.89543精确到百分位所得到的近似数为________. 19.绝对值小于100的所有整数的积是______.20.若2(1)20a b -+-=,则2015()a b -= _______________.三、解答题21.计算:2334[28(2)]--⨯-÷-22.国庆期间,王老师计划组织朋友去晋西北游览两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按八折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人. (1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家. 23.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=; 在数轴上2-与3所对的两点之间的距离:235--=; 在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______; 数轴上表示数x 和3的两点之间的距离表示为_______; 数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.24.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.25.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a、b的式子表示)(2)求出当a=20,b=12时的绿化面积.26.如图,观察下列图形,可得它们是按一定规律排列的,依照此规律,解决下列问题.(1)第5个图形有_______颗五角星,第6个图形有_______颗五角星;(2)第2020个图形有_______颗五角星,第n个图形有_______颗五角星.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x2﹣1y的正确解释是x的平方与y的倒数的差,故选:B.本题考查了代数式,理解题意(代数式的意义)是解题关键.2.A解析:A 【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可. 【详解】解:第1次操作,a 1=|23+4|-10=17; 第2次操作,a 2=|17+4|-10=11; 第3次操作,a 3=|11+4|-10=5; 第4次操作,a 4=|5+4|-10=-1; 第5次操作,a 5=|-1+4|-10=-7; 第6次操作,a 6=|-7+4|-10=-7; 第7次操作,a 7=|-7+4|-10=-7; …第2020次操作,a 2020=|-7+4|-10=-7. 故选:A . 【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.3.C解析:C 【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可. 【详解】 由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩,故224m n +=+=; 故选:C . 【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细.4.B解析:B 【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=. 故选:B . 【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键.5.D解析:D 【分析】根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可. 【详解】解:∵5y 3-4y -6-(3y 2-2y -5)= 5y 3-4y -6-3y 2+2y+5= 5y 3-3y 2-2y -1. 故答案为D . 【点睛】本题考查了整式的加减运算,掌握去括号、合并同类项是解答本题的关键.6.D解析:D 【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果. 【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D. 【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.7.A解析:A 【分析】根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可. 【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-=⎪ ⎪⎝⎭⎝⎭,故③错误;()3-=-,故④错误;0.10.001224-=-,故⑤正确;33故选A.【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则.8.C解析:C【分析】A点移动后可以在B点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C.【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.9.C解析:C【分析】根据数轴的性质,得到b>0>a,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b>0>a,所以A、D错误,C正确;而a和b异号,因此乘积的符号为负号,即ab<0所以B错误;故选C.【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a和b的位置正确判断a和b的大小.10.C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则-a一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.11.B解析:B 【分析】根据计算器的使用方法,结合各项进行判断即可. 【详解】解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=, 故选:B . 【点睛】此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键.12.D解析:D 【分析】与-3的差为0的数就是0+(-3),据此即可求解. 【详解】解:根据题意得:0+(﹣3)=﹣3, 则与﹣3的差为0的数是﹣3, 故选:D . 【点睛】本题考查了有理数的运算.熟练掌握有理数减法法则是解本题的关键.二、填空题13.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可. 【详解】 ∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环, 所以2020÷3=673…1,则a 2020=a 1=2.故答案为:2. 【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.14.【分析】发现规律下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形【详解】解:第一个图形中有6个白色六边形第二个图形有6+4个白色六边形第三个图形有6+4+4个白色六边形根据发现的规 解析:42n +【分析】发现规律,下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形. 【详解】解:第一个图形中有6个白色六边形, 第二个图形有6+4个白色六边形, 第三个图形有6+4+4个白色六边形, 根据发现的规律,第n 个图形中有6+4(n -1)个白色四边形. 故答案是:4n +2. 【点睛】本题考查规律的探究,解题的关键是先发现图形之间的规律,再去归纳总结出公式.15.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7 【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案. 【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌, A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7. 【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.16.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 17.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算解析:-18 【分析】先算乘方、再算括号、然后算乘法、最后算加减即可. 【详解】 解:1-2×(32+12) =1-2×(9+12) =1-2×192=1-19 =-18. 故答案为-18. 【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键.18.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90 【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入. 【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90, 故答案为:35.90. 【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.19.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝解析:0【分析】先找出绝对值小于100的所有整数,再求它们的乘积.【详解】:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.【点睛】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.20.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.故答案为-1.【点睛】本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.三、解答题21.21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.22.(1)甲旅行社收取组团两日游的总费用为425x 元;若人数不超过20人时,乙旅行社收取组团两日游的总费用为450x 元;若人数超过20人时,乙旅行社收取组团两日游的总费用为(4001000x +)元;(2)王老师应选择甲旅行社.【分析】(1)根据总费用等于人数乘以打折后的单价,易得甲旅行社的费用=500 x×0.85,对于乙家旅行社的总费用,应分类讨论:当0≤x≤20时,乙旅行社的费用=500 x×0.9;当x >20时,乙旅行社的费用=500×20×0.9+500(x-20)×0.8;(2)把x=30分别代入(1)中对应关系计算甲旅行社的费用和乙旅行社的费用的值,然后比较大小即可.【详解】(1)甲旅行社收取组团两日游的总费用为:5000.85425x x ⨯=元若人数不超过20人时,乙旅行社收取组团两日游的总费用为:5000.9450x x ⨯=元 若人数超过20人时,乙旅行社收取组团两日游的总费用为:()500(20)0.8500200.94001000-⨯+⨯⨯=+x x 元(2)因为王老师组团参加两日游的人数共有30人,所以甲旅行社收取组团两日游的总费用为:4253012750⨯=元乙旅行社收取组团两日游的总费用为40030100013000⨯+=元1275013000<,王老师应选择甲旅行社.【点睛】本题考查了代数式,能根据具体情境列代数式并求代数式的值是关键.23.(1)3;|x−3|;x ,-2;(2)5;−3或4.【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;(2)①先化简绝对值,然后合并同类项即可;②分为x >3和x <−2两种情况讨论.【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3;数轴上表示数x 和3的两点之间的距离为:|x−3|;数轴上表示数x 和−2的两点之间的距离表示为:|x +2|;故答案为:3,|x−3|,x ,-2;(2)①当x 在-2和3之间移动时,|x +2|+|x−3|=x +2+3−x=5;②当x >3时,x−3+x +2=7,解得:x=4,当x <−2时,3−x−x−2=7.解得x=−3,∴x=−3或x=4.故答案为:5;−3或4.【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.24.图见解析,153 1.50 2.542--<-<-<<<【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5--如图所示:故:153 1.50 2.542--<-<-<<<.【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.25.(1)(5a2+3ab)平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b的式子表示出整个长方形的面积,然后用含有a,b的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a=20,b=12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣(a2+2ab+b2)=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,答:绿化的面积是(5a2+3ab)平方米;(2)当a=20,b=12时5a2+3ab=5×202+3×20×12=2000+720=2720,答:当a=20,b=12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤. 26.(1)16,19;(2)6061,31n+.【分析】(1)将每一个图案分成两部分,最下面位置处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第5、6个图形中★的个数;(2)利用(1)中所得规律可得.【详解】解:(1)观察发现,+=,第1个图形★的颗数是134+⨯=,第2个图形★的颗数是1327+⨯=,第3个图形★的颗数是13310+⨯=,第4个图形★的颗数是13413+⨯=,所以第5个图形★的颗数是13516+⨯=.第6个图形★的颗数是13619故答案为:16,19.+⨯=,(2)由(1)知,第2020个图形★的颗数是1320206061n+.第n个图形★的颗数是31n+.故答案为:6061,31【点睛】本题考查了图形变化规律的问题,把★分成两部分进行考虑,并找出第n个图形★的个数的表达式是解题的关键.。
湘教版七年级上册数学期中考试试卷含答案

湘教版七年级上册数学期中考试试题一、单选题1.2-的相反数是()A .2-B .2C .12D .12-2.若x 与2互为倒数,则2x 的值是()A .﹣2B .0C .2D .13.将2243018000用科学记数法表示为()A .70.224301810⨯B .52.24301810⨯C .62.24301810⨯D .92.24301810⨯4.下列说法正确的是()A .0的倒数是0B .0大于所有正数C .0既不是正数也不是负数D .0没有绝对值5.计算1(2)(4)2⎛⎫-⨯-÷- ⎪⎝⎭的结果为()A .4B .-4C .16D .-166.若262m x y 与225n x y -是同类项,则m n -的值是()A .-2B .2C .-4D .47.如图所示,你认为所画数轴完全正确的是()A .B .C .D .8.下列计算正确的是()A .22232x y yx x y -=B .532y y -=C .277a a a +=D .325a b ab+=9.下列结论中,错误的是()A .单项式237xy 的系数是37,次数是3B .单项式m 的次数是1,系数是1.C .单项式2xy z π-的系数是﹣1,次数是5D .多项式2253x xy -+是三次三项式.10.如图所示,由一些点组成形如三角形的图形,每条边(包括两个顶点)有()1n n >个点,每个图形总的点数为S ,当7n =时,S 的值为()A .15B .18C .21D .24二、填空题11.中国古代数学著作《九章算术》在方程一章首次正式引入“负数”,如果电梯上升3层记为+3.那么电梯下降5层应记为______.12.已知|x|=3,|y|=4,且xy ﹤0,则x +y=___.13.将有理数0,227,1.2,-4,-0.14用“<”号连接起来应为______.14.若23m mn +=-,2318-=n mn ,则224m mn n +-的值为______.15.某种商品的原价每件a 元,第一次降价打“八折”,第二次降价又减10元.则两次降价后的售价为______元.16.已知a 、b 、c 在数轴上的对应点的位置如图所示,化简2a b c b b c ---+-得____.三、解答题17.计算:321(1)242⎛⎫-÷+-⨯ ⎪⎝⎭18.先化简,再求值.()()2222325+2x y xy x y xy --,其中1,2x y =-=.19.如果关于x 的多项式()212223n x y mx +---的值与x 的取值无关,且该多项式的次数是三次,求m ,n 的值.20.如图,正方形ABCD 和正方形ECGF 的边长分别为a 和6,(1)写出表示阴影部分面积的代数式(结果要求化简);(2)求4a =时,阴影部分的面积.21.已知a 是绝对值等于4的负数,b 是最小的正整数,c 的倒数的相反数是-2,求:22(53)2(2)abc a a abc +-+的值.22.观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、﹣15、45、…的第4项是.(2)如果一列数a 1,a 2,a 3,a 4是等比数列,且公比为q .那么有:a 2=a 1q ,a 3=a 2q=(a 1q )q=a 1q 2,a 4=a 3q=(a 1q 2)q=a 1q 3则:a 5=.(用a 1与q 的式子表示)(3)一个等比数列的第2项是10,第4项是40,求它的公比.23.某一出租车一天下午以市民之家为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:+9、-3、-5、+4、-8、+6.(1)将最后一名乘客送到目的地,出租车离市民之家出发点多远?在市民之家的什么方向?(2)若每千米的价格为3元,司机一个下午的营业额是多少?24.由乘方的定义可知:n a a a a a =⨯⨯⨯⋅⋅⋅⨯(n 个a 相乘).观察下列算式回答问题:22223(22)(33)4936(23)⨯=⨯⨯⨯=⨯==⨯33323(222)(333)827216(23)⨯=⨯⨯⨯⨯⨯=⨯==⨯55523(22222)(33333)322437776(23)⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯==⨯(1)2256⨯=_________;(2)22m n ⨯=_________;(3)计算:202220211(2)2⎛⎫-⨯- ⎪⎝⎭.25.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”.【提出问题】三个有理数a ,b ,c ,满足0abc >,求||||||a b c a b c ++的值.【解决问题】.解:由题意得,a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.①当a ,b ,c 都是正数,即0a >,0b >,0c >时,则||||||1113a b c a b c a b c a b c++=++=++=(备注:一个非零数除以它本身等于1,如331÷=,则1a a =,()0a ≠)②当a ,b ,c 有一个为正数,另两个为负数时,设0a >,0b <,0c <,则||||||1(1)(1)1a b c a b c a b c a b c--++=++=+-+-=-.(备注:一个非零数除以它的相反数等于-1,如:331-÷=-,则1,(0)b b b -=-≠).所以||||||a b c a b c++的值为3或一1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a ,b ,c 满足0abc <,求||||||a b c a b c ++的值;(2)已知3a =,1=b ,且a b <,求a b +的值.参考答案1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.D【解析】【分析】根据倒数的定义,互为倒数的两数乘积为1可解.【详解】解:根据题意得:2x=1,故选:D .【点睛】此题主要考查了倒数,倒数的定义,解题的关键是掌握若两个数的乘积是1,我们就称这两个数互为倒数.3.D【解析】【分析】根据科学记数法的形式10n a ⨯(110a ≤<,n 为正整数)求解即可.【详解】解:2243018000=92.24301810⨯.故选:D .【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法的形式,科学记数法的表示形式10na⨯的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.4.C【解析】【分析】根据0的特殊性质,依次判断各项后即可解答.【详解】A、0没有倒数,故选项错误,不符合题意;B、0小于所以正数,故选项错误,不符合题意;C、0既不是正数也不是负数,故选项正确,符合题意;D、0的绝对值是0,故选项错误,不符合题意;故选:C.【点睛】本题考查了0的特殊性质,熟知0的特殊性质是解决问题的关键.5.D【解析】【分析】根据有理数的乘法和除法的运算法则运算即可.【详解】⨯-解:原式=8(2)=-16.故选:D.【点睛】本题考查了有理数的乘除混合运算,解题的关键是掌握有理数乘法和除法的运算法则.6.B【解析】【分析】所含字母相同,并且相同字母的次数也分别相同的项是同类项,根据定义列式得到m、n的值再进行计算即可.【详解】解:由题意得:2m=2,2n=6,∴m=1,n=3,∴m n -=132-=,故选:B.【点睛】此题考查同类项的定义,注意定义中的两个相同,正确掌握同类项的特点是解题的关键.7.B【解析】【分析】根据数轴的三要素和画法判断即可.【详解】A 、数轴没有标注原点,故选项错误,不符合题意;B 、选项正确,符合题意;C 、负半轴数字标注错误,故选项错误,不符合题意;D 、没有正方向,故选项错误,不符合题意;【点睛】本题考查了数轴的三要素和画法,解题的关键是掌握数轴的定义.8.A【解析】【分析】根据整式的加减法法则对各项进行运算即可.【详解】A.22232x y yx x y -=,正确,符合题意;B.532y y y -=,错误,不符合题意;C.78a a a +=,错误,不符合题意;D.3232a b a b +=+,错误,不符合题意;故答案为:A .【点睛】本题考查了整式的加减运算,掌握整式的加减法法则是解题的关键.9.C【解析】【分析】根据单项式和多项式的相关概念,对各个选项逐一分析,即可得到答案.【详解】解:A 、单项式237xy 的系数是37,次数是3,故选项A 正确,不符合题意;B 、单项式m 的次数是1,系数是1,故选项B 正确,不符合题意;C 、单项式2xy z π-的系数是π-,次数是4,故选项C 错误,符合题意;D 、多项式2253x xy -+是三次三项式,故选项D 正确,不符合题意;故选:C .【点睛】本题考查了单项式和多项式的知识;解题的关键是熟练掌握单项式和多项式的性质,从而完成求解.10.B【解析】【分析】根据已知的图形中点的个数得出变化规律,进而求出即可.【详解】解:第一图形中有3×2﹣3=3个点,第二个图形中有3×3﹣3=6个点,第三个图形中有4×3﹣3=9个点,…∴S =3n ﹣3,当n =7时,S =3×7﹣3=18,故选:B .【点睛】此题主要考查了图形的变化类,根据已知的图形中点数的变化得出规律是解题关键.【解析】【分析】根据题意向上为正,下降为负结合负数的定义解答即可.【详解】解:上升3层记为+3,则下降5层记为-5.故答案为:-5.【点睛】本题考查了负数的定义,结合题中所给的信息解答是解答的关键.12.1或−1##-1或1【解析】【分析】根据绝对值的性质求出x 、y 的值,再根据异号,判断出x 、y 的对应关系,然后相加即可.【详解】解:∵3,4x y ==,∴3,4x y =±=±,∵0xy <,∴x =3时,y =-4,x +y =3-4=-1,x =−3时,y =4,x +y =−3+4=1,综上所述,x +y =1或−1.故答案为1或−1.【点睛】本题考查了绝对值,有理数的加减法,代数式的值,熟记运算法,代数式求值的步骤与要求则是解题的关键.13.2240.140 1.27-<-<<<【解析】【分析】根据有理数的比较大小方法比较大小即可.解:﹣4<-0.14<0<1.2<227,故答案为:﹣4<-0.14<0<1.2<227.【点睛】此题考查的是有理数的比较大小,掌握有理数比较大小的方法是解决此题的关键.14.21-【解析】【详解】分析:把题目中23m mn +=-,2318-=n mn ,两式相减,合并同类项即可.详解:∵23m mn +=-,2318-=n mn ,∴2m mn +–(23318n mn -=--),即2m –2421n mn +=-,故答案为:-21.点睛:本题考查了整式的加减,熟练掌握运算法则是解本题的关键.15.()0.810a -【解析】【分析】根据题意列出代数式即可.【详解】解:根据题意得:第一次降价后的售价是0.8a ,第二次降价后的售价是()0.810a -元,故答案为:()0.810a -.【点睛】本题考查列代数式,解题的关键是明确题意,能列出每次降价后的售价.16.a-c【解析】【分析】先根据各点在数轴上的位置判断出各点的符号及绝对值的大小,再去绝对值符号,合并同类项即可.【详解】解:∵由图可知,b <a <0<c ,∴a-b >0,b-c <0,∴原式=a-b-2(c-b )-b+c=a-c .故答案为:a-c .【点睛】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.17.0【解析】【分析】先进行乘方运算,然后再进行乘除,最后进行加减计算即可.【详解】解:原式111428⎛⎫=⨯+-⨯ ⎪⎝⎭1122=-0=【点睛】题目主要考查有理数的四则混合运算、乘方运算,熟练掌握运算法则是解题关键.18.225x y xy -,22.【解析】【分析】利用去括号、合并同类项即可化简,再代入求值即可.【详解】解:原式=22226352x y xy x y xy ---,=22(65)(32)x y xy -+--,=225x y xy -,当1,2x y =-=时,原式=22(1)2(5)(1)2-⨯+-⨯-⨯,=2+20,=22.【点睛】本题考查整式的化简求解,解题的关键是掌握去括号、合并同类项法则.19.2m =-,2n =【解析】【分析】根据整式的加减混合运算法则把原式变形,根据题意列式计算.【详解】解:()212223n x y mx +---212223n x y mx +=-+-21(2)23n m x y +=+--因为21(2)23n m x y ++--的值与x 的取值无关且该多项式的次数为三次,所以20m +=,13n +=所以2m =-,2n =【点睛】本题考查的是整式的加减运算中的无关型问题,掌握整式的加减混合运算法则是解题的关键.20.(1)213182a a -+;(2)14.【解析】【分析】(1)根据题意可以用代数式表示出阴影部分的面积;(2)将a =4代入(1)中的代数式即可解答本题.(1)解:由图可得,阴影部分的面积是:222()•6616318222a a a a a a --- +++,即阴影部分的面积是213182a a -+;(2)解:当a =4时,22131821434182a a -⨯-⨯+=+=8−12+18=14,即a =4时,阴影部分的面积是14.【点睛】本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式.21.2a abc +,14【解析】【分析】根据题意可知4a =-,1b =,12c =,代入求值即可.【详解】解:由已知得4a =-,1b =,12c =.()()225322abc a a abc +-+225324abc a a abc--=+2a abc =+.当4a =-,1b =,12c =时,原式162=-=14.【点睛】本题主要考查了整式的化简求值,掌握绝对值、最小正整数、相反数、倒数的概念以及掌握整式的加减运算法则是解题的关键.22.(1)﹣135;(2)a 5=a 1q 4;(3)±2.【解析】【分析】(1)根据题意可得等比数列5,﹣15,45,…中,从第2项起,每一项与它前一项的比都等于﹣3;故第4项是45×(﹣3)=﹣135;(2)观察数据可得an=a 1qn ﹣1;即可得出a 5的值;(3)根据(2)的关系式,可得公比的性质,进而得出第2项是10,第4项是40时它的公比.【详解】解:(1)等比数列5、﹣15、45、…的第4项是﹣135.(2)则:a 5=a 1q 4.(用a 1与q 的式子表示),(3)设公比为x ,10x 2=40,解得:x=±2.23.(1)3千米,在市民之家正东方向(2)105元【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据单价乘以路程,可得答案.(1)解:+9+(-3)+(-5)+4+(-8)+6=3,答:将最后一名乘客送到目的地,出租车离市民之家出发点3km ,在市民之家的东方向;(2)解:(+9+|-3|+|-5|+4+|-8|+6)×3=35×3=105元,答:司机一个下午的营业额是105元.【点睛】本题考查了正数和负数的应用,利用了有理数的加法运算,掌握有理数的加法法则是解题关键.24.(1)2(56) ;(2)2()mn ;(3)12-【解析】【分析】(1)根据乘方的定义求解即可;(2)根据乘方的定义求解即可;(3)首先根据乘方的定义将(﹣12)2022,化成(﹣12)2021×(﹣12),再根据乘方的定义求解即可.(1)解:(1)52×62=(55)(66)⨯⨯⨯2536=⨯=900=2(56)⨯,故答案为:2(56)⨯;(2)解:m 2×n 2=(mn)2,故答案为:(mn)2;(3)解:(﹣2)2021×(﹣12)2022=(﹣2)2021×(﹣12)2021×(﹣12)=202111(2)()()22⎡⎤-⨯-⨯-⎢⎥⎣⎦=202111(2⨯-=12-.【点睛】本题考查乘方的定义,解答本题的关键熟知乘方的定义.25.(1)-3或1;(2)-2或-4【解析】【分析】(1)分2种情况讨论:①当a ,b ,c 都是负数,即a <0,b <0,c <0时;②a ,b ,c 有一个为负数,另两个为正数时,设a <0,b >0,c >0,分别求解即可;(2)利用绝对值的代数意义,以及a 小于b 求出a 与b 的值,即可确定出a +b 的值.【详解】(1)根据题意,得a ,b ,c 三个有理数都为负数或其中一个为负数,另两个为正数.①当a ,b ,c 都为负数,即0a <,0b <,0c <时,||||||1113a b c a b c a b c a b c---++=++=---=-;②当a ,b ,c 有一个负数,另两个为正数时,设0a <,0b >,0c >,||||||1111a b c a bca b c a b c -++=++=-++=,所以||||||a b c a b c ++的值为-3或1.(2)因为3a =,1=b ,所以3a =±,1b =±.因为a b <,所以3a =-,1b =或3a =-,1b =-.所以312a b +=-+=-或()314a b +=-+-=-.。
湘教版七年级上册数学期中考试试卷及答案

湘教版七年级上册数学期中考试试题一、单选题1.-12的绝对值是()A .-12B .2C .-2D .122.如果收入15元记作+15元,那么支出20元记作()元.A .+5B .+20C .﹣5D .﹣203.有理数(﹣1)2,(﹣1)3,﹣12,|﹣1|,﹣(﹣1),﹣11-中,其中等于1的个数是()A .3个B .4个C .5个D .6个4.下列说法不正确的是()A .0既不是正数,也不是负数B .1是绝对值最小的数C .一个有理数不是整数就是分数D .0的绝对值是05.数字9460500000000用科学记数法表示应该是()千米A .9.4605×1013B .9.4605×1011C .9.4605×1012D .9.4605×10106.下列各代数式中,不是单项式的是()A .﹣m2B .﹣23xy C .0D .1x7.下列计算:①0﹣(﹣5)=﹣5②(﹣3)+(﹣9)=﹣12③293(342⨯-=-④(﹣36)÷(﹣9)=﹣4⑤(﹣3)3=﹣9.其中正确的有()A .1个B .2个C .3个D .4个8.下列各组中是同类项的是()A .2mn 与﹣2mnB .3ab 与3abcC .x 与yD .4x 2y 与4xy 29.化简x y x y --+()的最后结果是()A .0B .2xC .﹣2yD .2x ﹣2y10.如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()A .8B .9C .16D .17二、填空题11.比较大小:﹣4___﹣3(填“>”或“<”或“=”)12.小刚在计算41+n 时,误将“+”看成“﹣”,结果得﹣12,则41+n 的值应是_____.13.绝对值小于3.1的所有整数的积是___.14.某动物园的门票价格是:成人x 元/人,学生y 元/人,有个旅游团有成人12人,学生50人,则该旅游团应付门票费_____元.15.若代数式3x 2+7x 和﹣3x 2+21的值互为相反数,则x =_____.16.若3am ﹣1bc 2和﹣2a 3bn ﹣2c 2是同类项,则m+n =_____.17.若|x ﹣2|+(y ﹣3)2=0,则xy =___.18.已知23C =3212⨯⨯=3,35C =543123⨯⨯⨯⨯=10,46C =65431234⨯⨯⨯⨯⨯⨯=15,…观察以上计算过程,寻找规律计算58C =_____.三、解答题19.计算:(1)111((36)1236-+⨯-.(2)()()227295-⨯+-⨯--.20.合并同类项:(1)3x 2﹣14x ﹣5x 2+4x 2.(2)ab 3+a 3b ﹣2ab 3+5a 3b+8.21.先化简,再求值:3x 2﹣3(x 2﹣2x+1),其中x =1.22.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b -c 0,a +b0,c -a0.(2)化简:|b -c|+|a +b|-|c -a|23.已知a ,b 互为倒数,c ,d 互为相反数,并且m 的绝对值为1,求23325c dab m m +--的值.24.某同学做一道数学题:已知两个多项式A 、B ,计算2A+B ,他误将“2A+B”看成“A+2B”,求得的结果是9x 2﹣2x+7,已知B =x 2+3x ﹣2,求2A+B 的正确答案.25.供电部门检修小组乘汽车进行检修,从A 地出发沿公路东西方向检修,约定向东为正,到收工时,行走记录为(单位:千米):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.(1)计算收工时,小组在A 地的哪一边,距A 地多远?(2)若每千米汽车耗油4升,求出发到收工耗油多少升?26.如图,数轴上点A 表示的数为6,点B 位于A 点的左侧,AB=10,动点P 从点A 出发,以每秒3个单位长度的速度沿数轴向左运动,动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右运动.(1)点B 表示的数是;(2)若点P ,Q 同时出发,求:①当点P 与Q 相遇时,它们运动了多少秒?相遇点对应的数是多少?②当PQ=5个单位长度时,它们运动了多少秒?参考答案1.D 【解析】【分析】根据数轴上的点表示的数到原点的距离是该数的绝对值,可得−12的绝对值.【详解】解:-12的绝对值是:12,故选:D .【点睛】本题考查了绝对值,解题的关键是理解绝对值的意义.2.D 【解析】【详解】解:“正”和“负”相对,所以如果收入15元记作+15元,那么支出20元记作-20元.故选:D 3.B 【解析】【分析】根据乘方、绝对值、相反数等性质,求解出每个式子的值,即可求解.【详解】解:2(1)1-=,3(1)1-=-,211-=-,|1|1-=,(1)1--=,111-=-等于1的个数是4故选B 【点睛】此题考查了绝对值、乘方、相反数等性质,熟练掌握相关基本性质是解题的关键.4.B 【解析】【分析】先根据0既不是正数,也不是负数;整数和分数统称为有理数;0的绝对值是0可判断出,,A C D 正确;再根据绝对值最小的数是0可得出B 错误.【详解】解:A 、0既不是正数,也不是负数,此项说法正确;B 、绝对值最小的数是0,此项说法错误;C 、一个有理数不是整数就是分数,此项说法正确;D 、0的绝对值是0,此项说法正确;故选:B .【点睛】本题考查了有理数的概念、绝对值,熟练掌握有理数的概念和绝对值的性质是解题关键.5.C 【解析】【详解】解:9460500000000=9.4605×1012,故选C .6.D 【解析】【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【详解】解:A 、﹣m 2,是单项式,不合题意;B 、﹣23xy ,是单项式,不合题意;C 、0,是单项式,不合题意;D 、1x不是单项式,符合题意.故选:D .【点睛】本题考查单项式的定义,较为简单,要准确掌握定义.【解析】【分析】利用有理数是加法运算判断①,利用有理数的加法运算判断②,利用有理数的乘法运算判断③,利用有理数的除法运算判断④,利用有理数的乘方判断⑤,从而可得答案.【详解】解:①0﹣(﹣5)=0+5=5,错误;②(﹣3)+(﹣9)=﹣12,正确;③293342⎛⎫⨯-=-⎪⎝⎭,正确;④(﹣36)÷(﹣9)=4,错误;⑤(﹣3)3=﹣27,错误,其中正确的有2个,故选:B.【点睛】本题考查的是有理数的加法,减法,乘法,除法,乘方的运算法则及简单计算,熟悉有理数的加减乘除乘方的运算是解题的关键.8.A【解析】【分析】根据同类项定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项;根据同类项定义分析,即可得到答案.【详解】A.2mn与﹣2mn是同类项,故此选项正确,符合题意;B.3ab与3abc,所含字母不尽相同,不是同类项,不符合题意;C.x与y,所含字母不相同,不是同类项,不符合题意;D.4x2y与4xy2,所含字母相同,但相同字母的指数不相同,不是同类项,不符合题意;故选:A.【点睛】本题考查了同类项的知识;解题的关键是熟练掌握同类项的定义,从而完成求解.【解析】【详解】原式= 2x y x y y ---=-,故选:C .10.C 【解析】【详解】分析:由图可知:第一个图案有三角形1个;第二图案有三角形4个;第三个图案有三角形4+4=8个;第四个图案有三角形4+4+4=12个;第五个图案有三角形4+4+4+4=16个.故选C .11.<【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此法则判断即可得到答案.【详解】根据题意,得:﹣4<﹣3.故答案为:<.【点睛】本题考查了有理数的知识;解题的关键是熟练掌握有理数大小比较的性质,从而完成求解.12.94【解析】【分析】先根据错误算法求出n 的值,然后再代入到代数式进行正确计算,即可得到答案.【详解】根据题意,41﹣n =﹣12,解得n=53,∴41+n=41+53=94.故答案为:94.【点睛】本题考查了一元一次方程和代数式的知识;解题的关键是熟练掌握一元一次方程和代数式的性质,从而完成求解.13.0【解析】【分析】根据绝对值的概念、有理数的大小比较法则得到绝对值小于3.1的整数包括0,根据0乘任何数都得0解答.【详解】解:∵绝对值小于3.1的整数包括0,∴绝对值小于3.1的所有整数的积等于0,故答案为:0.【点睛】本题考查了绝对值,有理数的大小比较,解题的关键是掌握这些知识点.14.(12x+50y)【解析】【分析】门票费=成人门票总价+学生门票总价,根据总价=单价×数量即可求解.【详解】解:x×12+y×50=12x+50y(元).故该旅游团应付门票费(12x+50y)元.故答案为:(12x+50y).【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.15.-3【解析】【分析】利用互为相反数两数之和为0的性质,列方程并求解,即可得到x的值.【详解】根据题意得:3x2+7x﹣3x2+21=0,移项合并得:7x=﹣21,解得:x=﹣3,故答案为:﹣3.【点睛】本题考查了代数式、相反数和一元一次方程的知识;解题的关键是熟练掌握代数式、相反数和一元一次方程的性质,从而完成求解.16.7【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,求得m,n的值,代入求解即可.【详解】解:∵3am﹣1bc2和﹣2a3bn﹣2c2是同类项,∴m﹣1=3,n﹣2=1,∴m=4,n=3,则m+n=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.17.8【解析】【分析】根据非负数的性质求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x﹣2=0,y﹣3=0,解得x=2,y=3,∴xy =23=8,故答案为:8.【点睛】本题考查了绝对值的非负性,非负数的性质:偶次方,解题的关键是掌握这些知识点.18.56【解析】【分析】对于C a b (b <a )来讲,等于一个分式,其中分母是从1到b 的b 个数相乘,分子是从a 开始乘,依次减1,b 个数相乘.【详解】∵23C =3212⨯⨯=3,35C =543123⨯⨯⨯⨯=10,46C =65431234⨯⨯⨯⨯⨯⨯=15,∴588765456.12345C ⨯⨯⨯⨯==⨯⨯⨯⨯故答案为56.【点睛】考查了数字变化规律,观察分母是从1到b 的b 个数相乘,分子是从a 开始乘,依次减1,b 个数相乘是解题的关键.19.(1)3;(2)5【解析】【分析】(1)根据有理数乘法和加减法运算性质,结合乘法分配律计算。
七年级数学上学期期中试题(含解析) 湘教版-湘教版初中七年级全册数学试题

某某省某某市夏明翰中学2015-2016学年七年级数学上学期期中试题一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为正确的选项前的代号填入题后的括号中,每题3分,共30分)1.|﹣3|等于( )A.﹣3 B.﹣C.D.32.下列各组数中相等的是( )A.﹣2与﹣(﹣2)B.﹣2与|﹣2| C.﹣2与﹣|﹣2| D.﹣2与|2|1,﹣2,﹣12各数中,最大的数是( )A.﹣12 B.﹣9 C.﹣0.01 D.﹣54.大于﹣4的负整数个数是( )A.2 B.3 C.4 D.无数个5.绝对值大于或等于1,而小于4的所有的正整数的和是( )A.8 B.7 C.6 D.56.下列运算正确的是( )A.(﹣3)+5=﹣2 B.(﹣)÷(﹣3)=1 C.(﹣3)×(﹣4)×(﹣5)=60 D.(﹣6)+(﹣3)=﹣97.下列各式中,代数式的个数为( )①b;②;③x>5;④.A.1 B.2 C.3 D.48.下列说法正确的是( )A.近似数3B.近似数3.0×103与3000的意义完全一样C.0.37万与3.2×103精确度不一样2=0.7396,若x2=0.7396,则x的值等于( )10.有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n.若a1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.请计算a2000( )A.2020 B.2 C.D.﹣1二、填空题(本题共有10个小题,每小题3分,共30分)11.﹣3的相反数是__________.12.如果数轴上的点A对应有理数为﹣2,那么与A点相距3个单位长度的点所对应的有理数为__________.13.如图,是在一个直角三角尺中去掉一半径为r的圆,则阴影部分面积为__________.14.如果a、b互为倒数,c、d互为相反数,则代数式2ab﹣(c+d)=__________.15.已知a﹣b=1,则代数式3a﹣3b﹣1=__________.16.已知|﹣a|﹣a=0,则a是__________数.17.﹣32=__________.18.我国南海海域面积为3500000km2,用科学记数法表示3500000为__________.19.计算:﹣99×18=__________.20.已知:1+=22×,3+=32,×,4+=42×,…若10+=102×(a,b均为整数),则a+b=__________.三、解答题(本题共8个小题,满分60分,解答应写出文字说明、证明过程或演算步骤)21.计算:(1)12﹣(﹣7)﹣(+10)+(﹣8)(2)×(﹣12)+|﹣|×(﹣10)2(3)(﹣6)÷3+(﹣)×30(4)2×(﹣2)3+(﹣)2÷(﹣)3.22.画一条数轴,并在数轴上表示:3.5和它的相反数,﹣4和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.23.已知|a|=2,|b|=7,且a<b,求a﹣b.24.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩记录,其中“+”表示成绩大于15秒.+1 0问:(1)这个小组男生的达标率为多少?(2)这个小组男生的平均成绩是多少秒?25.定义一种新运算“”,规定a※b=(a+2)×2﹣b,例如:3※5=(3+2)×2﹣5=5,根据上面的规定解答下面的问题:(1)计算7※(﹣3);(2)7※(﹣3)与(﹣7)※3相等吗?请说明理由.26.同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=__________.(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是__________.(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.2015-2016学年某某省某某市夏明翰中学七年级(上)期中数学试卷一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为正确的选项前的代号填入题后的括号中,每题3分,共30分)1.|﹣3|等于( )A.﹣3 B.﹣C.D.3【考点】绝对值.【分析】根据负数的绝对值等于它的相反数求解即可.【解答】解:|﹣3|=3.故选:D.【点评】本题主要考查的是绝对值的性质,掌握绝对值的性质是解题的关键.2.下列各组数中相等的是( )A.﹣2与﹣(﹣2)B.﹣2与|﹣2| C.﹣2与﹣|﹣2| D.﹣2与|2|【考点】绝对值;相反数.【专题】计算题.【分析】根据相反数的定义对A进行判断;先根据绝对值的意义得到|﹣2|=2,|2|=2,然后分别对B、C、D进行判断.【解答】解:A、﹣2与﹣(﹣2)互为相反数,所以A选项错误;B、|﹣2|=2,则﹣2与|﹣2|互为相反数,所以B选项错误;C、|﹣2|=2,则﹣2与﹣|﹣2|相等,所以C选项正确;D、|2|=2,则﹣2与|2|互为相反数,所以D选项错误.故选C.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了相反数.3.在﹣5,﹣9,﹣3.5,﹣0.01,﹣2,﹣12各数中,最大的数是( )A.﹣12 B.﹣9 C.﹣0.01 D.﹣5【考点】有理数大小比较.【分析】根据两个负数比较大小,其绝对值大的反而小可得答案.【解答】解:∵﹣12<﹣9<﹣5<﹣3.5<﹣2<﹣0.01,∴﹣0.01最大.故选:C.【点评】本题考查了有理数的大小比较的应用,主要考查学生的比较能力,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.4.大于﹣4的负整数个数是( )A.2 B.3 C.4 D.无数个【考点】有理数大小比较.【分析】在数轴上表示出﹣4,根据数轴的特点即可得出结论.【解答】解:如图所示,,故大于﹣4的负整数有:﹣3,﹣2,﹣1.故选B.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.5.绝对值大于或等于1,而小于4的所有的正整数的和是( )A.8 B.7 C.6 D.5【考点】绝对值.【分析】根据绝对值的性质,求出所有符合题意的数,进行计算求得结果.【解答】解:根据题意,得:符合题意的正整数为1,2,3,∴它们的和是1+2+3=6.故选C.【点评】此题考查了绝对值的性质.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.下列运算正确的是( )A.(﹣3)+5=﹣2 B.(﹣)÷(﹣3)=1 C.(﹣3)×(﹣4)×(﹣5)=60 D.(﹣6)+(﹣3)=﹣9【考点】有理数的混合运算.【分析】根据有理数的加法法则判断A;根据有理数的除法法则判断B;根据有理数的乘法法则判断C;根据有理数的加法法则判断D.【解答】解:A、(﹣3)+5=2,故本选项错误;B、(﹣)÷(﹣3)=,故本选项错误;C、(﹣3)×(﹣4)×(﹣5)=﹣60,故本选项错误;D、(﹣6)+(﹣3)=﹣9,故本选项正确;故选D.【点评】本题考查了有理数的运算,熟练掌握运算法则是解题的关键.7.下列各式中,代数式的个数为( )①b;②;③x>5;④.A.1 B.2 C.3 D.4【考点】代数式.【分析】根据代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式可得答案.【解答】解:①②④是代数式,共3个.故选:C.【点评】此题主要考查了代数式,关键是掌握代数式的定义.8.下列说法正确的是( )B.近似数3.0×103与3000的意义完全一样C.0.37万与3.2×103精确度不一样【考点】近似数和有效数字.【分析】根据近似数的精确度对各选项进行判断.【解答】解:A、近似数3.20精确到百分位,3.2精确到十分位,所以A选项错误;B、近似数3.0×103精确到百位,3000精确到个位,所以B选项错误;C、0.37万精确到百位,3.2×103精确到百位,所以C选项错误;D、3.36万精确到百位,所以D选项正确.故选D.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.2=0.7396,若x2=0.7396,则x的值等于( )【考点】有理数的乘方.【专题】计算题.【分析】根据题意,利用平方根定义开方即可求出解.【解答】2=0.7396,x2=0.7396,∴x=±0.862.故选C.【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.10.有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n.若a1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.请计算a2000( )A.2020 B.2 C.D.﹣1【考点】规律型:数字的变化类.【分析】利用规定的运算方法计算前几个数字,找出循环的数字,利用循环的规律计算得出答案即可.【解答】解:∵a1=,∴a2==2,a3==﹣1,a4==,…数字,2,﹣1三个不断循环出现,∵2000÷3=666…2,∴a2000与a2相同是2.故选:B.【点评】此题考查数字的变化规律,根据规定的运算方法,找出数字循环的规律,利用规律解决问题.二、填空题(本题共有10个小题,每小题3分,共30分)11.﹣3的相反数是3.【考点】相反数.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣(﹣3)=3,故﹣3的相反数是3.故答案为:3.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.12.如果数轴上的点A对应有理数为﹣2,那么与A点相距3个单位长度的点所对应的有理数为1或﹣5.【考点】数轴.【分析】此题注意考虑两种情况:当点在已知点的左侧;当点在已知点的右侧.根据题意先画出数轴,便可直观解答.【解答】解:如图所示:与A点相距3个单位长度的点所对应的有理数为1或﹣5.【点评】由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.13.如图,是在一个直角三角尺中去掉一半径为r的圆,则阴影部分面积为ab﹣πr2.【考点】列代数式.【分析】用三角形的面积减去圆的面积即可.【解答】解:阴影部分面积为ab﹣πr2.故答案为:ab﹣πr2.【点评】此题考查列代数式,掌握三角形的面积与圆的面积计算公式是解决问题的关键.14.如果a、b互为倒数,c、d互为相反数,则代数式2ab﹣(c+d)=2.【考点】代数式求值;相反数;倒数.【专题】计算题.【分析】利用倒数,相反数的定义求出ab,c+d的值,代入原式计算即可得到结果.【解答】解:根据题意得:ab=1,c+d=0,则原式=2.故答案为:2.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.已知a﹣b=1,则代数式3a﹣3b﹣1=2.【考点】代数式求值.【专题】计算题.【分析】原式前两项提取3变形后,将已知等式代入计算即可求出代数式3a﹣3b﹣1的值.【解答】解:∵a﹣b=1,∴原式=3(a﹣b)﹣1=3﹣1=2.故答案为:2.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.已知|﹣a|﹣a=0,则a是非负数.【考点】绝对值.【分析】由题意可知|﹣a|=a,然后根据绝对值的性质解答即可.【解答】解:∵|﹣a|﹣a=0,∴|﹣a|=a.∴a≥0.故答案为:非负.【点评】本题主要考查的是绝对值的性质,掌握绝对值的性质是解题的关键.17.﹣32=﹣9.【考点】有理数的乘方.【分析】﹣32即32的相反数.【解答】解:﹣32=﹣(3×3)=﹣9.【点评】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.乘方的意义就是多少个某个数字的乘积.负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.18.我国南海海域面积为3500000km2,用科学记数法表示3500000为3.5×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3500000用科学记数法表示为3.5×106.故答案为:3.5×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.计算:﹣99×18=﹣1799.【考点】有理数的乘法.【分析】首先把﹣99变为﹣100+,再用乘法分配律进行计算即可.【解答】解:原式=(﹣100+)×18,=﹣100×18+×18,=﹣1800+1,=﹣1799.故答案为:﹣1799.【点评】此题主要考查了有理数的乘法,关键是掌握有理数的乘法法则.20.已知:1+=22×,3+=32,×,4+=42×,…若10+=102×(a,b均为整数),则a+b=109.【考点】规律型:数字的变化类.【分析】易得分子与前面的整数相同,分母=分子2﹣1.【解答】解:10+=102×中,根据规律可得a=10,b=102﹣1=99,∴a+b=109.故答案为:109.【点评】此题考查了数字变化的规律,找到所求字母相应的规律是本题的关键.三、解答题(本题共8个小题,满分60分,解答应写出文字说明、证明过程或演算步骤)21.计算:(1)12﹣(﹣7)﹣(+10)+(﹣8)(2)×(﹣12)+|﹣|×(﹣10)2(3)(﹣6)÷3+(﹣)×30(4)2×(﹣2)3+(﹣)2÷(﹣)3.【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=12+7﹣10﹣8=19﹣18=1;(2)原式=﹣3+25=22;(3)原式=﹣2+15﹣12=1;(4)原式=﹣8×(2+)=﹣8×3=﹣24.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.画一条数轴,并在数轴上表示:3.5和它的相反数,﹣4和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.【考点】有理数大小比较;数轴.【分析】在数轴上表示出各数,再从左到右用“<”把它们连接起来即可.【解答】解:3.5的相反数是﹣3.5,﹣4的倒数是﹣,绝对值等于3的数是±3,最大的负整数是﹣1,(﹣1)2=1,在数轴上表示为:故﹣4<﹣3.5<﹣3<﹣1<﹣<1<3<3.5.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.23.已知|a|=2,|b|=7,且a<b,求a﹣b.【考点】有理数的减法;绝对值.【分析】计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下2组.a=2时,b=7或a=﹣2时,b=5,所以a﹣b=﹣5或a﹣b=﹣9.【解答】解:∵|a|=2,|b|=7,∴a=±2,b=±7.∵a<b,∴当a=2时,b=7,则a﹣b=﹣5.当a=﹣2时,b=7,则a﹣b=﹣9.【点评】本题是绝对值性质的逆向运用,此类题要注意答案一般有2个.两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下两组答案符合要求,解此类题目要仔细,看清条件,以免漏掉答案或写错.24.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩记录,其中“+”表示成绩大于15秒.+1 0问:(1)这个小组男生的达标率为多少?(2)这个小组男生的平均成绩是多少秒?【考点】正数和负数.【分析】(1)根据非正数为达标成绩,求得达标人数,然后计算达标率即可;(2)根据题意列出算式,然后计算平均成绩即可.【解答】解:(1)根据题意可知达标人数为6人,达标率==75%.答:(1)这个小组男生的达标率为75%;(2)15+=15+=14.79125(秒).答:这个小组男生的平均成绩是14.79125秒.【点评】本题主要考查的是正数和负数,理解正负号的意义是解题的关键.25.定义一种新运算“”,规定a※b=(a+2)×2﹣b,例如:3※5=(3+2)×2﹣5=5,根据上面的规定解答下面的问题:(1)计算7※(﹣3);(2)7※(﹣3)与(﹣7)※3相等吗?请说明理由.【考点】有理数的混合运算.【专题】新定义.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)分别利用新定义求出各自的值,比较即可.【解答】解:(1)根据题中的新定义得:原式=18﹣(﹣3)=18+3=21;(2)由(1)得:7※(﹣3)=21;(﹣7)※3=﹣10﹣3=﹣13,故7※(﹣3)与(﹣7)※3不相等.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=7.(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2.(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.【考点】绝对值;数轴.【分析】(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要x的整数值可以进行分段计算,令x+5=0或x﹣2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.【解答】解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(X围内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(X围内不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|有最小值为3.【点评】本题主要考查了去绝对值和数轴相联系的综合试题以及去绝对值的方法和去绝对值在数轴上的运用,难度较大,去绝对的关键是确定绝对值里面的数的正负性.。
湘教版七年级上册数学期中考试试题及答案

湘教版七年级上册数学期中考试试卷一、单选题1.下列说法正确的是( )A .整数和小数统称为有理数B .a 是正数,a -是负数C .最大的负整数是-1D .相反数等于它本身的数是0,±1 2.|5|-的相反数是( )A .5-B .5C .15D .15-3.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xy C .0与3- D .3与a4.数据690000000用科学记数法表示为( )A .6.9×107B .6.9×108C .6.9×109D .6.9×1010 5.下列各组有理数的大小比较中,正确的是( )A .()()12--<-+B .()32-->--C . 3.14π-<-D .()10.33--<--6.如果a+b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <0 7.下列去括号正确的是( )A .221135135122x y x x y y ⎛⎫--+=-++ ⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y x x y x +--=+-+D .()()223423422x y x x y x --+=--+8.在2x 2,1-2x = 0,ab ,a >0,0,1a ,π中,是代数式的有( )A .5个B .4个C .3个D .2个9.单项式63225x y -的系数和次数分别是( )A .2,55-B .3,115-C .62,115- D .62,55-10.下列化简正确的是( )A .2325a a a +=B .33a a -=C .325a b ab +=D .2222a a a -+= 11.若A 与B 均是三次多项式,则A+B 一定是( )A .六次多项式B .次数低于三次的多项式C .三次多项式D .次数不高于三次的多项式或单项式12.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=.用你发现的规律得出2020202122+的末位数字是( )A .2B .4C .8D .6二、填空题13.如果整式352n x x --+是关于x 的二次三项式,那么n 等于______.14.已知23x y =+,则代数式489x y -+的值是_____.15.若单项式-x 6y 3m 与2x 2ny 3是同类项,则常数m+n 的值是______.16.一个两位数的十位上的数字为x ,个位上的数字为y ,则这个两位数表示为__________.17.下列各式:-(-2)、-|-2|、-22、-(-2)2、2(1)3-,则计算结果为负数的有____个.18.观察如图所示图形构成的规律,根据此规律,第42个图中小圆点的个数为_____.三、解答题19.计算下列各式:(1)()11124364⎛⎫-+⨯- ⎪⎝⎭(2)22128(2)2-⨯+÷-20.先化简,再求值:()()22225333a b ab ab a b ---+,其中()21102a b ++-=.21.在数轴上表示下列各数:0,–4.2,132,–2,+7,113,并用“<”号连接22.老师在黑板上写了一个正确的演算过程,然后用手掌捂住了一个多项式,形式如下:(1)求被捂住的多项式;(2)当1,1a b ==-时,求被捂住的多项式的值.23.阅读材料:对于任何数,我们规定符号a bc d 的意义是a bad bc c d =-.例如:121423234=⨯-⨯=-.(1)按照这个规定,请你计算1231--的值;(2)按照这个规定,请你计算()221205x y ⎛⎫-++= ⎪⎝⎭时,22332x y x y -+-+值.24.已知多项式()22133212x mx y x y nx +-+--+-的值与字母x 的取值无关. (1)求,m n 的值;(2)求多项式()()233m n m n +--的值.25.某学校准备组织部分教师到杭州旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为500元/人,同时两家旅行社都对10人以上的团体推出了优惠举措:甲旅行社对每位游客八折优惠;而乙旅行社是免去一位带队老师的费用,其余老师八五折优惠.(1)如果设参加旅游的老师共有()10x x >人,则甲旅行社的费用为___________元,乙旅行社的费用为___________元;(要求用含x 的代数式表示,并化简.)(2)假如某校组织18名教师到杭州旅游,该校选择哪一家旅行社比较优惠?请说明理由.26.如图,在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,其中b 是最小的正整数,且多项式()323492a x x x ++++是关于x 的二次多项式,一次项系数为c .(1)=a ______,b =______,c =______;(2)若将数轴折叠,使得点A 与点C 重合,则点B 与某数表示的点重合,求出此数; (3)若点A 、点B 和点C 分别以每秒2个单位长度、1个单位长度和4个单位长度的速度在数轴上同时向左运动时,小明同学发现:当点C 在点B 右侧时,3m BC AB ⋅+的值是个定值,求此时m 的值.参考答案1.C【解析】【分析】根据有理数的性质即可依次判断.【详解】A.整数和分数统称为有理数,故A 错误;B.a 是非负数,a -是可以是正数、零或负数,故B 错误;C.最大的负整数是-1,正确;D.相反数等于它本身的数是0,故D 错误;故选C .【点睛】此题主要考查有理数的性质判断,解题的关键是熟知绝对值、相反数的性质特点. 2.A【解析】【分析】先化简|5|=5-,再求5的相反数即可.【详解】解:|5|=5---故选:A .【点睛】此题主要考查求一个式子的相反数,关键是化简式子.3.C【解析】【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项;C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.4.B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:690000000=6.9×108,故选:B .【点睛】本题考查了科学记数法表示较大的数,正确移动小数点位数是解题的关键.5.C【解析】【分析】先将多重符号和绝对值化简,然后根据有理数的比较大小方法逐一判断即可.【详解】解:A .()()1=12=2---+-,,而1>-2,所以()()12-->-+,故错误;B .()33,22--=---=,而-3<2,所以()32--<--,故错误;C ., 3.14 3.14ππ-=-=,而 3.14π>,所以 3.14π-<-,故正确;D .()110.30.3,33--=--=- ,而10.33>-,所以()10.33-->--,故错误.故选C .【点睛】此题考查的是有理数的比较大小,解题关键是先将多重符号和绝对值化简.6.A【解析】【分析】根据0ab >,利用同号得正,异号得负可得a 与b 同号,再根据0a b +<即可得.【详解】∵0ab >,∵a 与b 同号,又∵0a b +<,0,0a b ∴<<,故选:A .【点睛】本题考查了有理数的乘法与加法,熟练掌握运算法则是解题关键.7.C【解析】【分析】依据去括号法则计算即可判断正误.【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+- ⎪⎝⎭,故此选项错误; B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y x x y x +--=+-+,此选项正确;D. ()()223423422x y x x y x --+=---,故此选项错误;故选:C.【点睛】此题考查整式的化简,注意去括号法则.8.A【解析】【分析】代数式是有数和字母组成,表示加、减、乘、除、乘方、开方等运算的式子,或含有字母的数学表达式,注意不能含有=、<、>、≤、≥、≈、≠等符号.【详解】∵1-2x=0,a >0,含有=和>,所以不是代数式,∵代数式的有2x 2,ab ,0,1a,π,共5个.故选A .【点睛】考查了代数式的定义,掌握代数式的定义是本题的关键,注意含有=、<、>、≤、≥、≈、≠等符号的不是代数式.9.D【解析】【详解】 单项式63225x y -的系数和次数分别是625- ,5. 故选D.【点睛】本题主要考查单项式与多项式的基本概念.根据定义,表示数或字母的积的式子叫做单项式.单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数.10.D【解析】【分析】根据整式的加减运算法则即可求解.【详解】A. 325a a a +=,故错误;B. 32a a a -=,故错误;C. 32a b +不能合并,故错误;D. 2222a a a -+=,正确故选D.【点睛】此题主要考查整式的加减,解题的关键是熟知合并同类项的方法.11.D【解析】【分析】根据多项式的次数和合并同类项法则进行判断即可.【详解】∵A ,B 都是三次多项式,∵A +B 一定是3次或比次数3小的多项式或单项式,故选D .本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键. 12.C【解析】【分析】观察发现此列数的末尾数是2,4,8,6的循环,据此规律可推断2020202122+的尾数.【详解】解:观察122=,224=,328=,4216=,5232=,6264=,72128=,82256=,⋯发现尾数是2,4,8,6的循环,20204505,20214505...1÷=÷=,20202∴是循环中的最后一个,20212∴是循环中的第一个,20202∴的尾数是6,20212∴的尾数是2,2020202122∴+的末位数字是:628+=,故选:C .【点睛】本题主要考查数字找规律,解题的关键是要能发现尾数是2,4,8,6的循环. 13.5【解析】【分析】根据多项式的特点即可求解.【详解】∵整式352n x x --+是关于x 的二次三项式,∵n -3=2∵n=5故答案为:5.【点睛】此题主要考查多项式的次数与项数,解题的关键是熟知多项式的次数的判断方法. 14.21【分析】由已知可得x-2y=3,继而对所求的式子进行变形后,利用整体代入思想即可求得答案.【详解】∵x=2y+3,∵x-2y=3,∵4x-8y+9=4(x-2y)+9=4×3+9=21,故答案为21.【点睛】本题考查了代数式求值,正确的进行变形是解题的关键.15.4【解析】【分析】直接利用同类项的定义分析得出答案.【详解】解:∵单项式-x6y3m与2x2ny3是同类项,∵6=2n,3m=3,解得:n=3,m=1则常数m+n的值是4.故答案为4【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程求解即可.16.10x y【解析】【分析】十位上的数字表示几个十,十位上的数字是x,就是x个十,即10x,个位上的数字表示几个一,个位上的数字是y,把十位和个位加起来就是这个两位数.【详解】解:十位上的数字是x ,就是x 个十,即x ×10=10x ,个位上的数字是y ,这两位数是10x y +.故答案为:10x y +.【点睛】本题考查列代数式,属于基础题型.17.3【解析】【分析】分别把各数进行化简,判断即可求解.【详解】解:-(-2)=2,是正数;-|-2|=-2,是负数;-22=-4,是负数;-(-2)2=-4,是负数;2(1)1=33-,是正数. 所以计算结果为负数的有3个.故答案为:3【点睛】本题考查了正负数、相反数、绝对值、乘方等知识,理解正负数、相反数、绝对值、乘方的意义是解题关键.18.1805.【解析】【分析】观察图形的变化并寻找规律,最后按规律解答即可.【详解】解:观察图形可知:第1个图中小圆点的个数为1个,即1=0+12;第2个图中小圆点的个数为5个,即5=1+22;第3个图中小圆点的个数为11个,即11=2+32;第4个图中小圆点的个数为19个,即19=3+42;…第n 个图中小圆点的个数为(n ﹣1)+n 2;所以第42个图中小圆点的个数为41+422=1805.故答案为1805.【点睛】本题考查了图形的规律问题,解答的关键在于根据图形找到排布规律.19.(1)-10;(2)0【解析】【分析】(1)根据乘法分配律简便计算;(2)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算.【详解】解:(1)111()(24)364-+⨯-, 111(24)(24)(24)364=⨯--⨯-+⨯-, 846=-+-,10=-;(2)22128(2)2-⨯+÷-, 22=-+0=.【点睛】考查了有理数的混合运算,解题的关键是掌握有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.2262a b ab -,132【解析】【分析】去括号,合并同类项得2262a b ab -,根据21(1)02a b ++-=得1a =-,12b =,将1a =-,12b =代入2262a b ab -中,进行计算即可得.【详解】原式=2222222215539(159)(35)62a b ab ab a b a b ab a b ab -+-=-+-=- ∵21(1)02a b ++-=, ∵10a +=,102b -= 解得:1a =-,12b =当1a =-,12b =时,原式=221116(1)2(1)()3222⨯-⨯-⨯-⨯= 【点睛】 本题考查了整式的化简求值,绝对值的非负性,解题的关键是掌握整式加减的运算法则,绝对值的非负性.21.-4.2<-2<0<113<312<+7 【解析】【分析】首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的两个有理数,右边的数总比左边的数大用“<”连接.【详解】如图所示,-4.2<-2<0<113<312<+7 22.(1)8b 2+4ab ;(2)4【解析】【分析】(1)根据减式=被减式-差的关系进行解答即可;(2)将1,1a b ==-代入(1)求出的多项式即可.【详解】(1)所捂的多项式为:(a 2+4ab +4b 2)-(a 2-4b 2)=a 2+4ab +4b 2-a 2+4b 2=8b 2+4ab.(2)当a =1,b =-1时,原式=8×(-1)2+4×1×(-1)=8-4=4【点睛】本题考查了整式的加减,解答的关键在于理解减式、被减式和差之间的关系以及精确的计算能力.23.(1)5;(2)13【解析】【分析】(1)根据定义即可求出答案.(2)首先根据非负数的和为0得到x y ,的值,然后根据定义以及整式的运算法则进行化简求值,即可求出答案.【详解】解:(1)由题意可知: 121(1)(2)316531-=⨯---⨯=-+=-; (2)∵()221205x y ⎛⎫-++= ⎪⎝⎭, ∵2x =,15y =-, ∵()()2222323332x y x y x y x y -++=--+-+- 226233x y x y =---235x y =-13455⎛⎫=⨯-⨯- ⎪⎝⎭12113=+=.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.24.(1)3m =,1n =-;(2)-10.【解析】【分析】(1)先化简代数式,再根据多项式的值与字母x 的取值无关,即可得到含x 项的系数等于0,即可得出m ,n 的值;(2)化简多项式,再把3m =,1n =-代入计算即可.【详解】解:(1)()22133212x mx y x y nx +-+--+- 22133212x mx y x y nx =+-+-+-+ ()()233122n x m x y =++-++, ∵当多项式的值与字母x 的取值无关时,10n +=,30m -=,∵3m =,1n =-;(2)()()233m n m n +--263m n m n =+-+7m n =-+当3m =,1n =-时,原式()371=-+⨯-10=-【点睛】本题主要考查了整式的加减,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.25.(1)400x ,(425x -425);(2)甲旅行社比较优惠,理由见解析.【解析】【分析】(1)根据题意可得甲旅行社的费用=500×80%×人数,乙旅行社的费用=500×85%×(总人数-1),列出代数式化简即可;(2)将x=18分别代入两个代数式求出代数式的值,然后比较大小进行选择即可.【详解】解:(1)由题意得,甲旅行社的费用=500×80%x=400x元;乙旅行社的费用=500×85%(x-1)=(425x-425)元;故答案为:400x;(425x-425);(2)甲旅行社比较优惠,理由如下:将x=18代入得,甲旅行社的费用=400×18=7200(元);乙旅行社的费用=425×18-425=7225(元);∵7200<7225,∵甲旅行社比较优惠.【点睛】本题考查了整式的实际应用,弄清题意,正确列出代数式是解题的关键.26.(1)-3,1,9;(2)此数为5;(3)m=1.【解析】【分析】(1)根据多项式与单项式的概念即可求出答案;(2)求出AC的中点对应的数值,由于点B关于这个中点对称,利用这一性质即可得出结论;(3)设三点运动的时间为t秒,依据图形分别表示出线段BC,AB的长度,代入m•BC+3AB 中,整理后利用m•BC+3AB的值是个定值可令t的系数为0即可求出答案.【详解】解:(1)∵b是最小的正整数,∵b=1.∵多项式(a+3)x3+4x2+9x+2是关于x的二次多项式,∵a+3=0,∵a=-3.∵多项式为:4x2+9x+2.∵它的一次项系数为c,∵c=9.∵a=-3,b=1,c=9,故答案为:-3,1,9;(2)线段AC的中点对应的数为:392-+=3,∵点B到3的距离为2,∵与点B重合的数是:3+2=5;(3)当点C在点B右侧时:设三点运动的时间为t秒,则m•BC+3AB=m(9-4t-1+t)+3(1-t+3+2t)=8m+12+3t(1-m),∵m•BC+3AB的值是个定值,∵1-m=0,∵m=1.即当m=1时,m•BC+3AB为定值20.。
湘教版七年级上册数学期中考试试卷带答案

湘教版七年级上册数学期中考试试题一、单选题1.水位上升0.5米记为0.5+米,则0.2-米表示()A .水位上升0.2米B .水位下降0.2米C .水位上升0.7米D .水位下降0.2-米2.下列各数:0,74-,1.010010001,833,π-,4.2, 2.626626662-…,其中有理数的个数是()A .2B .3C .4D .53.数据393000米用科学记数法表示为()A .70.39310⨯米B .63.9310⨯米C .53.9310⨯米D .439.310⨯米4.下列是同类项的一组是()A .m 与n B .2-a b 与2-ab C .ab 与abcD .3b a 与3-3b a 5.下列各对数中,互为相反数的是()A .23-与()23-B .()3--与3-C .()2+-与()2-+D .32-与()32-6.下列各式去括号正确的是()A .(2)2-+=-+x y x yB .3(2)32-+=--x y z x y zC .()--=-x y x yD .2()2-=-x y x y7.下列说法中,正确的是()A .1不是单项式B .5xy -的系数是﹣5C .﹣x 2y 是3次单项式D .2x 2+3xy ﹣1是四次三项式8.下列说法正确的是()A .a -表示负数B .只有正数的绝对值是它本身C .正数、负数和0统称有理数D .互为相反数的两个数的绝对值相等9.已知|a|=2,b =2,且a ,b 异号,则a b +=()A .0B .4C .0或4D .不能确定10.如图,数轴上的点A 所表示的数为a ,化简4a a --的结果为()A .24a -B .aC .4-D .411.小明同学做一道数学题时,误将求“A B -”看成求“A B +”,结果求出的答案是2325x x -+,已知2436A x x =--,请你帮助小明同学求出A B -应为()A .25417x x --B .23417x x --C .211x x -++D .2525x x -+12.在某一段时间里,计算机按如图所示的程序工作,若输入的数为5-,则输出的数为()A .15B .135C .135-D .615二、填空题13.213-的倒数等于_______.14.某地某天的最高气温为3℃,最低气温为﹣8℃,这天的温差是__℃.15.在数轴上,与表示数-3的点的距离为四个单位长度的点所表示的数是________.16.若m 2﹣2m ﹣1=0,则代数式2m 2﹣4m+3的值为___.17.李老师用长为6a 的铁丝做了一个长方形教具,其中一边长为b -a ,则另一边的长为________.18.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n 个图案中正三角形的个数为_____个(用含n 的代数式表示).三、解答题19.计算(1)()()1218915--+--(2)()332424⎛⎫-⨯÷-⨯ ⎪⎝⎭(3)()228811633⎛⎫⎛⎫-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭(4)()4415243-⨯+-÷--(5)1111123236⎛⎫⎛⎫-+-÷- ⎪⎝⎭⎝⎭(简便运算)(6)()512.5131821122⎛⎫⨯--⨯+⨯- ⎪⎝⎭(简便运算)(7)23964a b a b b+--+(8)()222332232x xy y xy x ⎛⎫+--- ⎪⎝⎭20.先化简,再求值:()()22222a b ab 3a b 12ab 1---++,其中a 2=,1b 4=.21.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,每人每周计划生产2100个口罩,由于种种原因,实际每天生产量与计划量相比有出入.如表是工人小王某周的生产情况(超产记为正,减产记为负):星期一二三四五六日增减产量/个5+2-4-13+9-15+8-(1)根据表格记录的数据,求出小王本周实际生产口罩数量;(2)若该厂实行每周计件工资制,每生产一个口罩可得0.5元,若超额完成每周计划工作量,则超过部分每个另外奖励0.15元,若完不成每周的计划量,则少生产一个扣0.2元,求小王这一周的工资总额是多少?22.(1)如果()2560m n -++=,求()20213m n m ++的值;(2)已知实数a ,b ,c ,d ,e ,且ab 互为倒数,c ,d 互为相反数,e 的绝对值为2,求2125c d ab e +-⨯+-的值.23.如图,已知点A 距离数轴原点2个单位长度,且位于原点左侧,将点A 先向右平移10个单位长度,再向左平移4个单位长度,得到点B ,点P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)当点P 在数轴上移动,满足2PA PB =时,求P 点表示的数;(3)动点P 从数轴上某一点0K 出发,第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,……①若0K 在原点处,按以上规律移动,则点P 第n 次移动后表示的数为__________;②若按以上规律移动了(21)n +次时,点P 在数轴上所表示的数恰是32n -,则动点P 的初始位置K 点所表示的数是___________.24.观察下列各式的计算结果:2113131124422-=-==⨯;2118241139933-=-==⨯;2111535114161644-=-==⨯;2112446115252555-=-==⨯⋯(1)用你发现的规律填写下列式子的结果:2116-=⨯;21110-=⨯.(2)用你发现的规律计算:22222111111111123420202021⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⋅⋅⋅⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭25.甲乙两家体育用品店出售同款羽毛球拍和羽毛球.每副羽毛球拍定价80元,每个羽毛球2元.甲商店推出的优惠方案是:买一副球拍赠送5个羽毛球;乙商店的优惠方案是:按总价的九折优惠.我校想购买20副羽毛球拍和x 个羽毛球.(x≥100)(1)若到甲商店购买,应付元.(用含x 的代数式表示)(2)若到乙商店购买,应付元.(用含x 的代数式表示)(3)若x =200时,应选择去哪家商店购买更合算?为什么?26.已知代数式2122A x xy y =++-,2221B x xy x =-+-(1)求2A B -;(2)当1x =-,2y =-时,求2A B -的值.参考答案1.B【解析】【分析】根据正数和负数表示相反意义的量,水位升高记为正,可得水位下降的表示方法.【详解】解:水位升高0.5米记为+0.5米,那么﹣0.2米表示水位下降0.2米.故选:B .【点睛】本题考查了正数和负数的意义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.D【解析】【分析】根据有理数分为整数和分数,进而可得答案.【详解】解:0,74-,1.010010001,833,π-,4.2,2.626626662-…,其中有理数有:0,74-,1.010010001,833, 4.2,个数是5.故选:D .【点睛】此题主要考查了有理数,关键是掌握有理数的分类.3.C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将393000用科学记数法表示为:53.9310⨯.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.D【解析】【分析】根据同类项的定义“如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两单项式为同类项”逐项判断即可.【详解】A 、m 与n ,所含字母不相同,不符定义B 、2a b -与2ab -,所含字母相同,但相同字母的指数不同,不符定义C 、ab 与abc ,所含字母不相同,不符合定义D 、3b a 与33b a -,所含字母相同,并且相同字母的指数也分别相同,符合定义故答案为:D.【点睛】本题考查了同类项的定义,熟记定义是解题关键.5.A【解析】【分析】先根据乘方运算、绝对值和相反数的意义化简各数,然后根据相反数的定义判断即可.【详解】解:A 、239-=-,()239-=,﹣9和9互为相反数,故A 选项符合题意;B 、()33--=,33-=,3和3不互为相反数,故B 选项不符合题意;C 、()22+-=-,()22-+=-,﹣2和﹣2不互为相反数,故C 选项不符合题意;D 、328-=-,()328-=-,﹣8和﹣8不互为相反数,故D 选项不符合题意;故选:A .【点睛】本题考查了乘方运算、绝对值和相反数的意义,掌握相反数的定义是解题的关键,只有符号不同的两个数互为相反数.6.B【解析】【分析】根据去括号的法则逐一判断即可.【详解】A 、括号前为“-”号,去括号时括号里的第二项没有变号,故错误;B 、正确;C 、括号前为“-”号,去括号时括号里的项没有变号,故错误;D 、括号里的第二项没有乘2,出现了漏乘的现象,故错误.故选:B .【点睛】本题考查了去括号法则,当括号前是“-”时,去年“-”号及括号,括号里的各项都要变号;当括号前是“+”时,去年“+”号及括号,括号里的各项都不变号;另外运用乘法分配律时,不要出现漏乘.7.C【解析】【分析】根据单项式和多项式的定义逐个判断即可.【详解】解:A.1是单项式,原选项错误,不符合题意;B.5xy -的系数是15-,原选项错误,不符合题意;C.﹣x 2y 是3次单项式,正确,符合题意;D.2x 2+3xy ﹣1是二次三项式,原选项错误,不符合题意;【点睛】本题考查了多项式和单项式的定义,解题关键是熟练掌握定义,准确进行判断.8.D【解析】【分析】根据绝对值的意义、有理数的分类及相反数的意义逐个判断即可.【详解】解:A、当a是负数时,-a就是正数,故A选项错误,不符合题意;B、绝对值等于本身的数是正数和0,故B选项错误,不符合题意;C、正有理数、0、负有理数统称为有理数,故C选项错误,不符合题意;D、互为相反数的两个数的绝对值相等,故D选项正确,符合题意,故选:D.【点睛】本题考查了有理数的分类以及绝对值和相反数的意义,熟练掌握相关概念是解决本题的关键.9.A【解析】【分析】先求a的值,再根据a,b异号,确定a、b值,再求出最后结果即可.【详解】解:∵|a|=2,∴a=±2,∵a,b异号,b=2,∴a=﹣2,∴a+b=﹣2+2=0.故选:A.【点睛】本题考查有理数的加法、绝对值,掌握有理数的加法法则、绝对值性质是解题关键.10.C【解析】由数轴知−2<a <−1,据此得a−4<0,再根据绝对值的性质去绝对值化简即可.【详解】解:由数轴知−2<a <−1,∴a−4<0,则|a|−|a−4|=−a−(4−a )=−a−4+a =−4,故选:C .【点睛】此题主要考查了数轴和绝对值,关键是掌握负数的绝对值等于它的相反数.11.A【解析】【分析】先将答案减去A ,即得到B ,再根据多项式的减法计算A B -即可.【详解】依题意,22222325(436)32543611B x x x x x x x x x x =-+---=-+-++=-++,()2222243611436115417A B x x x x x x x x x x ∴-=----++=--+--=--故选A .【点睛】本题考查了整式的加减法,根据题意求得多项式B 是解题的关键.12.D【解析】【分析】把﹣5代入计算程序中计算,即可确定出输出结果.【详解】解:把x =﹣5代入计算程序中得:[(﹣5)2﹣20]×3=15,把x =15代入计算程序中得:(152﹣20)×3=615,∵615>20,∴输出结果为615,故选:D .此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.3 5 -【解析】【分析】先把待分数化为假分数,然后根据倒数的定义求解.【详解】解:∵25 133 -=-,∴53-的倒数为35-.故答案为:3 5 -.【点睛】本题考查了倒数的定义:a(a≠0)的倒数为1a,把带分数化为假分数是解答此题的关键.14.11【解析】【分析】根据温差的定义,解题即可.【详解】由于一天的温差等于这一天的最高气温减去这一天的最低气温,故这天的温差可以表示为3-(-8)=3+8=11(°C),即这天的温差是11°C.故本题应填写:11.【点睛】本题主要查查代数式的计算.15.-7和1【解析】【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3-4=-7;②当点在表示-3的点的右边时,数为-3+4=1;故答案为1或-7.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.16.5【解析】【分析】先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.【详解】解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=5.故答案为:5【点睛】考点:代数式求值.17.4a-b【解析】【分析】求出邻边之和,即可解决问题【详解】解:由题意可得长方形的邻边之和为:3a∴另一边长=3a-(b-a)=3a-b+a=4a-b.故答案为:4a-b.【点睛】本题考查整式的加减,熟练掌握去括号法则、合并同类项法在是解题的关键.18.(4n+2)##(2+4n)【解析】【分析】分析前面几个图形的规律可知:每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,由此即可求解.【详解】解:第一个图案正三角形个数为6个;第二个图案正三角形个数为6+4=(6+1×4)个;第三个图案正三角形个数为6+4+4=(6+2×4)个;…;第n 个图案正三角形个数为:6+(n-1)×4=(4n+2)个.故答案为:(n+2).19.(1)6;(2)16;(3)2156-;(4)4-;(5)9;(6)50;(7)7a b -+;(8)2263x y -【解析】【分析】(1)先化简,再计算加减法即可求解;(2)先把除法运算转化成乘法运算,再根据乘法交换律和结合律简便计算;(3)(4)先乘方,再乘除,最后计算加减;(5)将除法变为乘法,再根据乘法分配律简便计算;(6)先整理,再逆用乘法分配律简便计算;(6)合并同类项即可;(8)去括号,再合并同类项即可.【详解】解:(1)()()1218915--+--=12+18-9-15=6;(2)()332424⎛⎫-⨯÷-⨯ ⎪⎝⎭342423=⨯⨯⨯=16;(3)()228811633⎛⎫⎛⎫-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭481819316=-⨯+⨯1366=-+2156=-;(4)()4415243-⨯+-÷--151643=-⨯+÷-543=-+-=-4;(5)1111123236⎛⎫⎛⎫-+-÷- ⎪⎝⎭⎝⎭111(36)1232⎛⎫=-+-⨯- ⎝⎭111(36)(36)(36)1232=-⨯-+⨯--⨯-31218=-+=9;(6)()512.5131821122⎛⎫⨯--⨯+⨯- ⎪⎝⎭555131811222=⨯+-⨯5(131811)2=⨯+-5202=⨯=50;(7)23964a b a b b+--+7a b =-+;(8)()222332232x xy y xy x ⎛⎫+--- ⎪⎝⎭22236363x xy y xy x =+--+2263x y =-.【点睛】本题考查了整式的加减运算,有理数的混合运算.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.2a b 4-+,3.【解析】【分析】直接利用整式的加减运算法则分别化简合并同类项,进而把已知代入即可.【详解】解:()()22222a b ab 3a b 12ab 1---++22222a b 2ab 3a b 32ab 1=--+++,2a b 4=-+,把a 2=,1b 4=代入上式得:原式212434=-⨯+=.【点睛】此题主要考查了有理数的混合运算以及整式的加减运算,正确掌握相关运算法则是解题关键.21.(1)2110个;(2)1056.5元【解析】【分析】(1)根据题意列加减算式即可;(2)先求出本周多生产口罩的数量,再根据单价及奖励求工资总额.【详解】解:(1)由题意得,2100(524139158)2110+--+-+-=(个),∴小王本周实际生产口罩数量是2110个;(2)∵本周多生产口罩数为52413915810--+-+-=(个),∴小王这一周的工资总额是21000.510(0.50.15)1056.5⨯+⨯+=(元)【点睛】此题考查有理数加减法是实际应用,有理数四则混合运算的实际应用,正确理解题意是解题的关键.22.(1)124;(2)92-【解析】【分析】(1)直接利用绝对值和平方的非负性得出m ,n 的值进而代入计算得出答案;(2)直接利用倒数、相反数以及绝对值的定义得出各式的值,进而代入计算求出答案.【详解】解:(1)2|5|(6)0m n -++= ,且|5|0m - ,2(6)0n +,50m ∴-=,60n +=,5m ∴=,6n =-,∴原式20213[5(6)]5=+-+2021(1)125=-+1125=-+124=;(2)ab 互为倒数,1ab ∴=,c ,d 互为相反数,0c d ∴+=,e 的绝对值为2,22||4e e ∴==,∴原式101425=-⨯+-142=--92=-.【点睛】本题主要考查了有理数的混合运算,理解倒数(乘积是1的两个数互为倒数),相反数(互为相反数的两个数和为0)以及绝对值和平方的非负性是解题关键.23.(1)数轴见解析,A 、B 之间的距离为6;(2)2或10;(3)①(-1)n •n ;②4【解析】【分析】(1)根据数轴的定义得到点A 和点B 表示的数,从而得到A 、B 之间的距离;(2)设点P 表示的数为x ,表示出PA 和PB ,令PA=2PB ,得到方程,解之即可;(3)①根据点P 前几次表示的数找出规律即可得出结论;②设动点P 的初始位置K 点所表示的数是m ,根据①中所得规律,列出方程即可求出m 值.【详解】解:(1)∵点A 距离数轴原点2个单位长度,且位于原点左侧,∴点A 表示的数为-2,将点A 先向右平移10个单位长度,再向左平移4个单位长度,得到点B ,∴点B 表示的数为:-2+10-4=4,数轴如下:A 、B 之间的距离为:4-(-2)=6;(2)设点P 表示的数为x ,∴PA=2x +,PB=4x -,∵PA=2PB ,∴224x x +=-,若点P 在点A 左侧,228x x --=-+,解得:x=10,不符合;若点P 在A 、B 之间,228x x --=-,解得:x=2;若点P 在点B 右侧,228x x +=-,解得:x=10,综上:点P 表示的数为2或10;(3)①∵0K 在原点处,第一次移动后点P 表示的数为0-1=-1,第二次移动后点P 表示的数为0-1+3=2,第三次移动后点P 表示的数为0-1+3-5=-3,第四次移动后点P 表示的数为0-1+3-5+7=4,...∴第n 次移动后点P 表示的数为:(-1)n •n ;②设动点P 的初始位置K 点所表示的数是m ,由①可得:第n 次移动后点P 表示的数为:m+(-1)n •n ,∵移动了2n+1次时,点P 在数轴上所表示的数恰是3-2n ,∴m+(-1)2n+1•(2n+1)=3-2n ,即m-(2n+1)=3-2n ,解得:m=4,即点P 的初始位置K 点所表示的数是4.【点睛】本题考查了数轴,两点之间的距离,数字型规律,一元一次方程,解题的关键是注意分类讨论和数形结合思想的运用,同时要善于总结规律.24.(1)3536,99100;(2)10112021【解析】【分析】(1)由题意可总结出规律21111n n n n n-+-=⨯,进而即可解答;(2)将原式通过总结的规律变形,再进行约分即可.(1)由题意可总结出规律21111n n n n n -+-=⨯∴211665733566-=⨯=,21110101901011909-=⨯=.故答案为:3536,99100;(2)22222111111111123420202021⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⋅⋅⋅⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭13243520192021202020223344202020202021201222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1324320212020202233420202022212021⎛⎫⎛⎫⎛⎫=⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12022=⨯220211011=.2021【点睛】本题考查有理数的混合运算,数字类规律探索.读懂题意,找出数字运算的规律是解本题的关键.25.(1)(2x+1400);(2)(1440+1.8x);(3)选择甲乙两家商店购买一样,见解析.【解析】【分析】(1)根据题意和甲商店的优惠方案分别列出代数式即可;(2)根据题意和乙商店的优惠方案分别列出代数式即可;(3)根据(1)(2)得出的代数式,再把200代入求出两家花的钱数,然后进行比较即可得出答案.【详解】解:(1)在甲店购买需付款:80×20+2(x﹣20×5)=(2x+1400)元,故填:(2x+1400);(2)在乙店购买需付款::(80×20+2x)×0.9=(1440+1.8x)元,故填:(1440+1.8x);(2)当x=200时,2x+1400=2×200+1400=1800(元),当x=200时,1440+1.8x=1800(元),∴x=200时,选择甲乙两家商店购买一样.【点睛】本题主要考查了列代数式,代数式的值,根据题意列出正确的代数式是解答本题的关键.26.(1)4xy-x+4y;(2)1【解析】【分析】(1)把A与B代入2A-B中,去括号合并即可得到结果;(2)把x与y的值代入2A-B计算即可得到结果.【详解】解:(1)2A-B=2(x2+xy+2y-1)-(2x2-2xy+x-1)2=2x2+2xy+4y-1-2x2+2xy-x+1=4xy-x+4y;(2)当x=-1,y=-2时,原式=4×(-1)×(-2)-(-1)+4×(-2)=8+1-8=1.【点睛】本题考查了整式的化简求值的应用,主要考查学生的化简能力和计算能力.注意:代入时要用括号.。
湘教版七年级上册数学期中考试试卷附答案

湘教版七年级上册数学期中考试试题一、单选题1.若盈余2万元记作2+万元,则2-万元表示()A .盈余2万元B .亏损2万元C .亏损2-万元D .不盈余也不亏损2.﹣10的绝对值是()A .110B .﹣110C .10D .﹣103.一种面粉的质量标识为“250.25±”千克,则下列面粉中合格的有()A .25.30B .25.51C .24.80D .24.704.将101000用科学记数法表示为()A .101×103B .1.01×105C .101×107D .1.01×1095.已知a 、b 两数在数轴上的位置如图所示,将0、a 、b 用“<”连接,其中错误的是()A .b <0<aB .-a <b <0C .0<-a <-bD .0<-b <a6.在6-,0.13,0,3,19各数中,正有理数有()个A .1个B .2个C .3个D .4个7.当m=-1时,代数式2m+3的值是()A .-1B .0C .1D .28.苹果原价是每千克a 元,现在按八折出售,假如现在要买1kg ,那么需要付费()A .80%a 元B .()180%a -元C .()180%a +元D .()80%a +元9.如果a+b=0,那么a 、b 两个有理数一定是()A .都等于0B .一正一负C .互为相反数D .互为倒数10.对于单项式24ab c ,下列说法中,正确的是()A .系数是a ,次数是6B .没有系数,次数是7C .系数是1,次数是6D .系数是1,次数是711.若│a│=4,│b│=9,则│a+b│的值是()A .13B .5C .13或5D .以上都不是12.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后,细胞存活的个数是()A .31B .33C .35D .37二、填空题13.小艳家的冰箱冷冻室的温度是5-℃,调高2℃后的温度是_____℃.14.比较大小:-10________-9.15.a 的相反数是8,则a 的值为______.16.数轴的单位长度为1,如果点A 表示的数是-2,那么点B 表示的数是_________.17.用四舍五入法将3.025精确到0.01的近似数为______.18.等边ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和1-,若ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2021次后,则数2021对应的点为______.(填“A ”或“B ”或“C ”)三、解答题19.计算:(1)510327-+-(2)2123722÷-⨯+20.如图,数轴,求大于3-且小于4的所有整数的和.21.已知单项式246x y 与223m y z +-的次数相同,求m 的值.22.如图是一个圆环,外圆与内圆的半径分别是R 和r .(1)直接写出圆环的面积(用含R 、r 的代数式表示);(2)当R =5、r =3时,求圆环的面积(结果保留π).23.已知a ,b 互为相反数,c ,d 互为倒数,2m =,求2a b cd m +++的值.24.规定一种新的运算;a b a b a =⨯-★,例如()()34343-=⨯--★,请用上述规定计算下面各式:(1)28★;(2)()152-⎡⎤⎣⎦★★25.某公司5天内货品进出仓库的吨数如下:(“+”表示进库,“-”表示出库).23+,30-,16-,35+,33-(1)经过这5天,仓库里的货品是______(填“增多了”还是“减少了”).(2)经过这5天,仓库管理员结算发现仓库里还有货品500吨,那么5天前仓库里存有货品多少吨?(3)如果进出货的装卸费都是每吨4元,那么这5天一共要付多少元装卸费?26.如图,在数轴上的A点表示数a,B点表示数b,a、b满足930++-=.a b(1)分别求出点A表示的数a和点B表示的数b.(2)在数轴上的C点表示的数c为最大的负整数.①求C点分别到A点和B点的距离.②若有动点P从点A出发,以每秒3个单位长度的速度向右移动,动点Q从点C出发,以每t t>,当时间t为多少时,P、Q两点相距秒1个单位长度的速度向左移动,运动时间为()04个单位长度?参考答案1.B【解析】【分析】根据正数和负数表示具有相反意义的量解答.【详解】解:∵盈余2万元记作+2万元,∴-2万元表示亏损2万元,故选:B.【点睛】本题考查了正数和负数的意义,熟练掌握正数与负数的意义是解题的关键.2.C【分析】任何一个数的绝对值均为非负数,0的绝对值为0,负数的绝对值为正数.【详解】因为-10为负数,故-10的绝对值为10,本题选C.【点睛】绝对值是指一个数在数轴上所对应点到原点的距离,本题主要考查绝对值的定义.3.C【解析】【分析】根据一种面粉的质量标识为“25±0.25千克”,可以求出合格面粉的质量的取值范围,从而可以解答本题.【详解】说明合格范围为24.75千克~25.25千克之间,解:250.25则C正确.【点睛】本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.4.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解:101000=1.01×105,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.C【分析】根据a 、b 在数轴上的位置,可对a 、b 赋值,然后即可用“<”连接.【详解】解:令b=-0.6,a=1.3,则-b=0.6,-a=-1.3,则可得:-a <b <0<-b <a .所以选项A 、B 、D 都正确,错误的是选项C ,故选:C .【点睛】本题考查了有理数的大小比较及数轴的知识,同学们注意赋值法的运用,这可以给我们解题带来很大的方便.6.C 【解析】【分析】根据有理数的分类,比0大的数为正有理数对各数进行一一判断即可.【详解】解:6-负有理数,0.13正有理数,0有理数,3正有理数,19正有理数,正有理数有0.13,3,19,共三个.故选择C .【点睛】本题考查有理数的概念,掌握正有理数的概念是解题关键.7.C 【解析】【分析】将=1m -代入代数式即可求值;【详解】解:将=1m -代入232(1)31m +=⨯-+=;故选C .【点睛】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.8.A 【解析】【分析】苹果原价是每千克a 元,现在按八折出售,那么现价为80%a ⨯,再根据质量×单价=支付费用即可求解.【详解】解:苹果原价是每千克a 元,现在按八折出售,那么现价为80%a ⨯,∴根据“质量×单价=支付费用”可知需要付费为180%80%a a ⋅⨯=(元).故选A .【点睛】本题主要考查了列代数,解题的关键在于能够准确求出现价.9.C 【解析】【分析】根据有理数的加法,可得a 、b 的关系,可得答案.【详解】∵a+b=0,∴a 、b 是互为相反数.故选C 【点睛】本题考查了相反数,互为相反数的两个数的和为0是解题关键.10.D 【解析】【分析】根据单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:根据单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.得单项式24ab c 的系数是1,次数是1247++=.故选:D .本题考查了单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.11.C【解析】【分析】根据绝对值的定义解答即可.【详解】解:∵|a|=4,∴a=±4,∵|b|=9,∴b=±9,∴|a+b|=4+9=13或|a+b|=|−4+9|=5或|a+b|=|−4−9|=13或|a+b|=|4−9|=5,∴|a+b|的值为13或5.故选C.【点睛】本题主要考查了绝对值的定义,解答时注意分类讨论.12.B【解析】【分析】根据题意可以写出前几个小时分裂的个数,从而可以总结出变化规律,本题得以解决.【详解】解:根据题意可知,1小时后分裂成4个并死去1个,剩3个,3=2+1;2小时后分裂成6个并死去1个,剩5个,5=22+1;3小时后分裂成10个并死去1个,剩9个,9=23+1;…故5小时后细胞存活的个数是25+1=33个.故选B.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.本题的解题关键是能够从已知数据中发现规律,从而进一步计算.13.-3.【分析】列式计算即可得到答案.【详解】-5+2=-3故填:-3【点睛】此题考查有理数加法的实际应用,正确理解题意是解题的.14.<【解析】【分析】根据有理数的大小比较方法即可求解.【详解】∵10=10-,9=9-又10>9,∴-10<-9故填:<.【点睛】此题主要考查有理数的大小比较,解题的关键是熟知绝对值的性质.15.-8【解析】【分析】根据相反数定义得出a 的值即可.【详解】解:∵a 的相反数是8,∴a=-8.故答案为:-8.【点睛】本题考查了相反数的定义,属于基础题,灵活掌握相反数的概念是解题的关键.16.2【解析】【分析】AB=点A表示的数是-2,把点A往右移动4个单位可得答案.由4,【详解】AB=解: 点A表示的数是-2,4,∴把点A往右移动4个单位可得点B,-+=B∴表示的数为:242,故答案为:2.【点睛】本题考查的是数轴上两点之间的距离,及点的移动后对应的数的表示,掌握以上知识是解题的关键.17.3.03【解析】【分析】把千分位上的数字5进行四舍五入即可.【详解】解:3.025精确到0.01的近似值为3.03.故答案为:3.03.【点睛】本题考查的知识点是近似数与有效数字,近似数精确到哪一位,就看它的后面一位,进行四舍五入计算即可.18.C【解析】【分析】根据题意得出每3次翻转为一个循环,2021能被3整除余2说明跟翻转2次对应的点是一样的.【详解】解:翻转1次后,点B所对应的数为1,翻转2次后,点C所对应的数为2翻转3次后,点A 所对应的数为3翻转4次后,点B 所对应的数为4经过观察得出:每3次翻转为一个循环,∵202136732 ÷=,∴数2021对应的点跟2一样,为点C .故答案为C .【点睛】本题是一道找规律的题目,关键是通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.19.(1)20;(2)-6【解析】【分析】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方,然后计算乘除法,最后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)510327-+-=-5+32-7=27-7=20;(2)2123722÷-⨯+=123724÷-⨯+=4-14+4=-6【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.3【解析】【分析】根据题意找出大于3-且小于4的所有整数为-2、-1、0、1、2、3,然后根据有理数加法进行求和即可.【详解】解:由题意得:大于3-且小于4的所有整数为-2、-1、0、1、2、3,它们的和为:()2101233-+-++++=.【点睛】本题主要考查根据有理数的范围选出整数,有理数的加法运算,熟练掌握有理数的加法法则,根据有理数范围准确选出整数是解题的关键.21.m=2.【解析】【分析】根据两个单项式的次数相同列出方程,求出m 的值即可.【详解】解:由题意得,2+m+2=2+4,解得m=2.【点睛】本题考查单项式的次数,理解单项式次数的意义是解决问题的关键.22.(1)πR 2﹣πr 2;(2)16π【解析】【分析】(1)根据题意,圆环的面积为半径为R 的圆的面积减去半径为r 的圆的面积,根据圆的面积公式,列出代数式即可;(2)将字母的值代入(1)的代数式中求解即可.【详解】(1)解:环形的面积=πR 2﹣πr 2(2)解:当R =5,r =3时,原式=25π﹣9π=16π【点睛】本题考查了列代数式并求值,根据题意列出代数式是解题的关键.23.5【解析】【分析】由相反数、倒数的定义、绝对值的意义,求出0a b +=,1cd =,2m =±,然后代入计算,即可得到答案.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,2m =,∴0a b +=,1cd =,2m =±,∴24m =,∴20145a b cd m +++=++=.【点睛】本题考查了相反数、倒数的定义、绝对值的意义,解题的关键是熟练掌握所学的知识进行解题.24.(1)14;(2)-16【解析】【分析】(1)根据a b a b a =⨯-★进行计算28★即可;(2)先计算()52=15--★,然后计算()115-★即可得到答案.【详解】解:(1)∵a b a b a =⨯-★,∴28282=162=14=⨯--★;(2)∵()()52525=105=15-=⨯-----★,()()1151151=151=16-=⨯-----★,∴()152=16--⎡⎤⎣⎦★★【点睛】本题主要考查了有理数的混合计算,解题的关键在于能够理解公式a b a b a =⨯-★.25.(1)减少了;(2)5天前仓库里存有货品521吨;(3)这5天一共要付548元装卸费.【解析】【分析】(1)求出这5天的进出货的总和,根据总和的结果的正负即可判断货品的增多或减少;(2)根据现在的货品的吨数及(1)中结果即可得出5天前的货品的吨数;(3)计算进出货的绝对值的和,再乘以单价即可.【详解】(1)+23+(-30)+(-16)+(+35)+(-33)=﹣21(吨),∴仓库的货品减少了21吨,故答案为:减少了(2)500-(-21)=521(吨)答:5天前仓库里存有货品521吨.(3)2330163533++-+-++-=137(吨)137×4=548(元),答:这5天一共要付548元装卸费.【点睛】本题考查了正数和负数在实际生活中的应用及有理数运算,掌握有理数的运算法则,正数和负数的意义是解题关键.26.(1)点A 表示的数-9和点B 表示的数3;(2)①AC=8,BC=4;②当时间t =1或3时,P 、Q 两点相距4个单位长度.【解析】【分析】(1)根据绝对值的非负性质得出9=030a b +-=,,解得93a b =-=,即可;(2)①根据数轴上表示的数离原点最近的负整数-1是最大负整数,利用数轴两点距离的求法得出AC=-1-(-9)=-1+9=8,BC=3-(-1)=3+1=4;②分两种情况,相遇前与相遇后AP=3t ,QC=t ,根据P 行程+Q 行程=AC-QP 的距离或P 行程+Q 行程=AC+QP 的距离,列出方程3t+t=8-4或3t+t=8+4,解方程即可.【详解】解:(1)∵930a b ++-=,9030a b +≥-≥,∴9=030a b +-=,,解得93a b =-=,,∴点A 表示的数-9和点B 表示的数3.(2)①∵在数轴上的C点表示的数c为最大的负整数.∴点C表示-1,c=-1,∴AC=-1-(-9)=-1+9=8,BC=3-(-1)=3+1=4,②分两种情况:相遇前:AP=3t,QC=t,∴3t+t=8-4,解得t=1,相遇后:∴3t+t=8+4,解得t=3,∴当时间t=1或3时,P、Q两点相距4个单位长度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年下期七年级期中质量检测试卷
数 学
时量:100分钟 总分:120分 一、选择题:请将正确答案的代号填入下表。
(3′×10=30′) 8 1、在数0,)2(--,2--,2
)2(-,3)2(-,22-中,负数的个数是( )
A 、2个
B 、3个
C 、4个
D 、5个
2、2
)1(-的结果为( )
A .1
B .1-
C .2
D .2-
3、-(-32)的相反数是( )
A. 9
B. -9
C. 6
D. -6
4、据邵阳市统计局2013年公布的数据显示,邵阳市总人口为801.34万人,那么用科学记数法表示为( )人.
A .8.01346
B .8.0134×106
C .8.0134×107
D .8.0134×108
5、下列计算正确的是( )
A .6)3
1
(2-=-
÷
B .
121211-=-- C .6)2(3-=- D .32
1-=+-
6、下列说法不正确的是 ( )
A .0既不是正数,也不是负数。
B .0的绝对值是0
C .1是绝对值最小的数。
D .两个整式的和或差仍然是整式。
7、下列各组式子中,是同类项是( ) A .
2
3
与
23
B .1
x
与2 C .-0.5x 3y 2与2x 2y 3 D .5m 2n 与-2nm 2
班级 姓 考 考
8、某商店上月的营业额是a 万元,本月比上月增长15%,那么本月的营业额是( )
A .15%(a +1)万元
B .15% a 万元
C .(1+15%)a 万元
D .(1+15﹪)2a 万元 9、当1,2x y ==-时,代数式21x y +-的值是( )
A .1
B .2-
C .2
D .1-
10、已知a 、b 在数轴上的位置如图所示,那么下面结论正确的是
( )
A .
<-b a B .
0>+b a C .0<ab
D .0>b
a
二、填空题:在各题的横线处填写最简答案。
(3′×10=30′)
11、已知一个数的倒数的相反数为53
,则这个数为 。
12、若5||=y ,则y= .
13、计算:()2
2
22---= ;
)9
1
(91-⨯÷-= 。
14、“比数x 的3倍小5的数”用代数式表示为 . 15、若21
3bc a
m -和2232c b a n --是同类项,则m n +=
16、单项式5
32b
a -的系数是 .次数是 .
17、-2ax +7abx
4
-4ax 3y 2-5是 次 项式,常数项是 .
18、若 A -(-3x ) = x 2 + 3x -1 ,则 A= 。
19、a >0,b <0,b >a ,则a ,-a ,b ,-b ,这四个数按从小到大的顺序,
用“<”号连接起来是 .
20、如右图,数轴上一动点A 向左移动2个单位长度到达点B , 再向右移动5个单位长度到达点C ,若点C 数为1,则点A 表示的数为 。
三、解答题:要有解答过程。
(60分)
21、(6′×3=18′)计算:(1)、-18÷(-3)2+5×(-2)3-(-15) ÷5
(2)、4
22
21(1
0.5)()2(3)3
⎡⎤---⨯÷---⎣⎦
(3)、)2()4
15
37811(
)1()31()92
(2015
42-⨯-+--⨯-÷-
22、(6分)已知一个多项式加上5x 2 + 3x - 2 的2倍得 1-3x 2 + x , 求这个多项式。
23、(6分)先化简再求值:)]2
1(321[31b a b a ---其中 a = 6,b = -2 。
24、(6分)如图是一个数值转换机的示意图。
请观察示意图,理解运算原理,用代数式表示出来。
若输入x的值为3,y的值为-2,输出的结果是多少?
25.(8分)已知:A-B=7x2-7xy,且B= -4x2+6xy+7.
(1)求A等于多少?
(2)若0
+
x,求A的值.
+y
-
)2
(
12=
26、(8分)出租车司机小李某天下午的营运全是在东西走向的人民大街上行驶的,
如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6。
(1)若小李下午出发地记为0,他将最后一名乘客送抵目的地时距出发地点有多远?
(2)若汽车耗油量为0.41升/ 千米,这天下午小李共耗油多少升?
27、(8分)某居民统计了家里的用水量x(立方米)与应缴水费w(元)之间的关
(1)写出用水量x(立方米)与水费w(元)之间的关系式。
(2)计算用水量是35立方米时的水费是多少元?
期中质量检测《数学》答案
一、选择题:
二、填空题:
11、;12、5或-5;13、-8、;14、3x-5;
15、7;16、、3;17、6、4,-5;18、x2-1;
19、b<-a<a<-b;20、-2;
21、计算:
(1)、原式=-46 (2)、原式= (3)、原式=
22、(1-3x2 + x)-2(5x2 + 3x- 2)= -13x2-5x+5
23、原式化简得:a-2b;当a=6,b=-2时,
a-2b=×6-2×(-2)=24
24、代数式是:当x=3,y=-2时,原式=5
25、(1) A=7x2-7xy+( -4x2+6xy+7)= 3x2-xy+7
(2) 由条件得:x=-1,y=2时,A=3+2+7=12
26、(1) 15-2+5-1+10-3-2+12+4-5+6=39
最后小李在出发点东39千米处。
(2) 这天下午他跑了:15+2+5+1+10+3+2+12+4+5+6=65千米。
共耗油:65×0.41=26.65(升)
27、(1) w=1.2x+0.5
(2) 当x=35时,w=1.2×35+0.5=42.5(元)。