高数学(人教A版)空间向量的应用(1)教学设计

合集下载

1.1.1+空间向量及其线性运算+教学设计-高二上学期数学人教A版(2019)选择性必修第一册

1.1.1+空间向量及其线性运算+教学设计-高二上学期数学人教A版(2019)选择性必修第一册

《1.1.1空间向量及其线性运算》教学设计一、教学内容解析《1.1空间向量及其运算》是人教A版《普通高中教科书·数学(选择性必修)》第一册(以下简称“教科书”) 第一章《空间向量与立体几何》的第一节内容,包括“空间向量及其线性运算”和“空间向量的数量积运算”两小节内容,其中第1课时“空间向量及其线性运算”要学习的核心知识有: 空间向量的概念;零向量、单位向量、相等向量、相反向量、共线向量、共面向量;空间向量的加法、减法以及数乘运算.这些核心知识是后续学习空间向量基本定理、空间向量运算的坐标表示、应用空间向量解决立体几何图形位置关系与度量关系的基石.二、学情分析在学习本节课内容之前,学生已在人教A版必修第二册中学习了《平面向量及其应用》和《立体几何初步》内容.大致了解了平面向量的基本研究思路与框架即“实际背景→基本概念→向量运算( 线性运算、数量积) →向量基本定理及坐标表示→向量的应用”,这也是研究和学习空间向量的基本研究思路.三、教学目标(1)了解空间向量的实际背景;理解空间向量及相关概念;掌握空间向量的加法、减法和数乘运算;(2)经历由平面向量的概念、运算推广到空间向量的过程;通过空间向量加法结合律的证明体会维数增加对向量推广带来的变化;(3)在借助几何图形解释空间向量相关概念中进一步发展直观想象核心素养,领悟数形结合的思想方法,提升数学运算和逻辑推理能力; 从平面向量推广得到空间向量、空间向量问题转化为平面向量问题的过程中提升数学抽象素养,领悟类比、特殊与一般、转化与化归等思想.四、教学重难点重点: 空间向量及其相关概念,空间向量的线性运算;难点: 空间向量加法结合律的证明,空间向量的线性运算.五、教学策略分析本节课采用创设问题情境,设置问题链引导学生类比平面向量层层深入学习空间向量的概念、线性运算、运算律和位置关系等内容.学生通过自主探究、交流、师生互动等教学活动参与学习过程,突破学习中的难点和疑点.利用PPT等教学软件绘制图形、平移图形、展示图片,借助几何直观图形帮助学生分析和理解概念.六、教学过程设计1、情境引入如图所示,一只蚂蚁从A点出发,一直沿着棱爬行,先爬行到B点,再爬行到C点,那么它的实际位移是什么?若蚂蚁继续沿着棱从C点向上爬行到C1点,那么它的实际位移是什么?追问:位移在数学中可以用什么概念表示?这些向量是否位于同一平面?【设计意图】通过学生情境引入,引导学生回忆熟悉的平面向量,同时发现空间向量,感受到与平面向量的差异,进而激发学生的求知欲.师:通过平面向量及其应用的学习,我们知道平面内的点、直线可以通过平面向量及其运算来表示,他们之间的平行、垂直、夹角、距离等关系,可以通过平面向量运算得到,从而有关平面图形的问题可以利用平面向量的方法解决。

1.4.2 用空间向量研究距离、夹角问题(1)教学设计-人教A版高中数学选择性必修第一册

1.4.2 用空间向量研究距离、夹角问题(1)教学设计-人教A版高中数学选择性必修第一册

1.4.2 用空间向量研究距离、夹角问题(1)本节课选自《2019人教A 版高中数学选择性必修第一册》第一章《空间向量与立体几何》,本节课主要学习运用空间向量解决计算空间距离问题。

在向量坐标化的基础上,将空间中点到线、点到面、两条平行线及二平行平面角的距离问题,首先转化为向量语言,进而运用向量的坐标表示,从而实现运用空间向量解决空间距离问题,为学生学习立体几何提供了新的方法和新的观点,为培养学生思维提供了更广阔的空间。

1.教学重点:理解运用向量方法求空间距离的原理2.教学难点:掌握运用空间向量求空间距离的方法多媒体一、情境导学如图,在蔬菜大棚基地有一条笔直的公路,某人要在点A 处,修建一个蔬菜存储库。

如何在公路上选择一个点,修一条公路到达A 点,要想使这个路线长度理论上最短,应该如何设计?问题:空间中包括哪些距离?求解空间距离常用的方法有哪些? 答案:点到直线、点到平面、两条平行线及两个平行平面的距离; 传统方法和向量法. 二、探究新知一、点到直线的距离、两条平行直线之间的距离 1.点到直线的距离已知直线l 的单位方向向量为μ,A 是直线l 上的定点,P 是直线l 外一点.设AP ⃗⃗⃗⃗⃗ =a ,则向量AP ⃗⃗⃗⃗⃗ 在直线l 上的投影向量AQ ⃗⃗⃗⃗⃗ =(a ·μ)μ.点P 到直线l 的距离为PQ=√a 2-(a ·μ)2. 2.两条平行直线之间的距离求两条平行直线l ,m 之间的距离,可在其中一条直线l 上任取一点P ,则两条平行直线间的距离就等于点P 到直线m 的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E ,F 分别是C 1C ,D 1A 1的中点,则点A 到直线EF 的距离为 . 答案:√1746通过生活中的现实情况,帮助学生回顾空间距离的概念,并提出运用向量解空间距离的问题,引导学生回顾空间中线线、线面、面面的平行问题的解法方法,进一步体会空间几何问题代数化的基本思想详细解析:如图,以点D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),EF⃗⃗⃗⃗⃗ =(1,-2,1), FA ⃗⃗⃗⃗⃗ =(1,0,-2),∴|EF⃗⃗⃗⃗⃗ |=√12+(-2)2+12=√6, ∴直线EF 的单位方向向量μ=√66(1,-2,1), ∴点A 到直线EF 的距离d=√|FA⃗⃗⃗⃗⃗ |2-(-√66)2=√296=√1746.二、点到平面的距离、两个平行平面之间的距离 点到平面的距离已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点.过点P 作平面α的垂线l ,交平面α于点Q ,则点P 到平面α的距离为PQ=|AP ⃗⃗⃗⃗⃗ ·n ||n |.点睛:1.实质上,n 是直线l 的方向向量,点P 到平面α的距离就是AP⃗⃗⃗⃗⃗ 在直线l 上的投影向量QP⃗⃗⃗⃗⃗ 的长度. 2.如果一条直线l 与一个平面α平行,可在直线l 上任取一点P ,将线面距离转化为点P 到平面α的距离求解. 3.两个平行平面之间的距离如果两个平面α,β互相平行,在其中一个平面α内任取一点P ,可将两个平行平面的距离转化为点P 到平面β的距离求解.2.在正四棱柱ABCD-A 1B 1C 1D 1中,底面边长为2,侧棱长为4,则点B 1到平面AD 1C 的距离为 .答案: 83 详细解析:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x轴,y 轴,z 轴,建立空间直角坐标系,则A (2,0,0),C (0,2,0),D 1(0,0,4),B 1(2,2,4), 则AC ⃗⃗⃗⃗⃗ =(-2,2,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(-2,0,4),B 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,-2,0), 设平面AD 1C 的法向量为n =(x ,y ,z ), 则{n ·AC ⃗⃗⃗⃗⃗ =0,n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,得{-2x +2y =0,-2x +4z =0.取z=1,则x=y=2,所以n =(2,2,1). 所以点B 1到平面AD 1C 的距离d=|n ·B 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||n |=83.三、典例详细解析例1.已知直三棱柱ABC-A 1B 1C 1中,AA 1=1,AB=4,BC=3,∠ABC=90°,求点B 到直线A 1C 1的距离.解:以B 为坐标原点,建立如图所示的空间直角坐标系,则A 1(4,0,1),C 1(0,3,1),所以直线A 1C 1的方向向量A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-4,3,0),BC 1⃗⃗⃗⃗⃗⃗⃗ =(0,3,1),所以点B 到直线A 1C 1的距离d=√|BC 1⃗⃗⃗⃗⃗⃗⃗ |2-|BC 1⃗⃗⃗⃗⃗⃗⃗ ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||2=√10-(95)2=135.用向量法求点到直线的距离时需注意以下几点:(1)不必找点在直线上的垂足以及垂线段;(2)在直线上可以任意选点,但一般选较易求得坐标的特殊点; (3)直线的方向向量可以任取,但必须保证计算正确.延伸探究1 例1中的条件不变,若M ,N 分别是A 1B 1,AC 的中点,试求点C 1到直线MN 的距离.解:如例1解中建立空间直角坐标系(图略). 则M (2,0,1),N (2,32,0),C 1(0,3,1),所以直线MN 的方向向量为MN ⃗⃗⃗⃗⃗⃗⃗ =(0,32,-1),MC 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,3,0),所以点C 1到MN 的距离d=√|MC 1⃗⃗⃗⃗⃗⃗⃗⃗ |2-|MC 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MN ⃗⃗⃗⃗⃗⃗⃗ |MN ⃗⃗⃗⃗⃗⃗⃗ ||2=2√28613. 延伸探究2 将条件中直三棱柱改为所有棱长均为2的直三棱柱,求点B 到A 1C 1的距离.解:以B 为坐标原点,分别以BA ,过B 垂直于BA 的直线,BB 1为x 轴,y轴,z 轴建立如图所示的空间直角坐标系, 则B (0,0,0),A 1(2,0,2),C 1(1,√3,2),所以A 1C 1的方向向量A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,√3,0),BC 1⃗⃗⃗⃗⃗⃗⃗ =(1,√3,2), 所以点B 到直线A 1C 1的距离d=√|BC 1⃗⃗⃗⃗⃗⃗⃗ |2-|BC 1⃗⃗⃗⃗⃗⃗⃗ ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||2=√8-(-1+3+02)2=√8-1=√7.例2 在三棱锥S-ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA=SC=2√3M ,N 分别为AB ,SB 的中点,如图所示.求点B 到平面CMN 的距离.思路分析 借助平面SAC ⊥平面ABC 的性质,建立空间直角坐标系,先求平面CMN 的法向量,再求距离. 解:取AC 的中点O ,连接OS ,OB.∵SA=SC ,AB=BC ,∴AC ⊥SO ,AC ⊥BO.∵平面SAC ⊥平面ABC ,平面SAC ∩平面ABC=AC , ∴SO ⊥平面ABC.又BO ⊂平面ABC ,∴SO ⊥BO.如图所示,分别以OA ,OB ,OS 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz ,则B (0,2√3,0),C (-2,0,0),S (0,0,2√2),M (1,√3,0),N (0,√3,√2). ∴CM ⃗⃗⃗⃗⃗⃗ =(3,√3,0),MN ⃗⃗⃗⃗⃗⃗⃗ =(-1,0,√2),MB ⃗⃗⃗⃗⃗⃗ =(-1,√3,0). 设n =(x ,y ,z )为平面CMN 的一个法向量, 则{CM ⃗⃗⃗⃗⃗⃗ ·n =3x +√3y =0,MN⃗⃗⃗⃗⃗⃗⃗ ·n =-x +√2z =0,取z=1, 则x=√2,y=-√6,∴n =(√2,-√6,1).∴点B 到平面CMN 的距离d=|n ·MB ⃗⃗⃗⃗⃗⃗⃗ ||n |=4√23.求点到平面的距离的主要方法 (1)作点到平面的垂线,点到垂足的距离即为点到平面的距离. (2)在三棱锥中用等体积法求解. (3)向量法:d=|n ·MA ⃗⃗⃗⃗⃗⃗ ||n |(n 为平面的法向量,A 为平面上一点,MA 为过点A的斜线段)跟踪训练1 在直三棱柱中,AA 1=AB=BC=3,AC=2,D 是AC 的中点.(1)求证:B 1C ∥平面A 1BD ;(2)求直线B 1C 到平面A 1BD 的距离.(1)证明:连接AB 1交A 1B 于点E ,连接DE. DE ∥B 1C ,DE ⊂平面A 1BD}⇒B 1C ∥平面A 1BD.(2)解:因为B 1C ∥平面A 1BD ,所以B 1C 到平面A 1BD 的距离就等于点B 1到平面A 1BD 的距离.如图建立坐标系,则B 1(0,2√2,3),B (0,2√2,0),A 1(-1,0,3), DB 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2√2,3), DB ⃗⃗⃗⃗⃗⃗ =(0,2√2,0), DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,3).设平面A 1BD 的法向量为n =(x ,y ,z ),所以{2√2y =0,-x +3z =0,所以n =(3,0,1).所求距离为d=|n ·DB 1⃗⃗⃗⃗⃗⃗⃗⃗ ||n |=3√1010.金题典例 如图,在直三棱柱ABC-A 1B 1C 1中,∠ABC=90°,BC=2,CC 1=4,点E 在棱BB 1上,EB 1=1,D ,F ,G 分别为CC 1,B 1C 1,A 1C 1的中点,EF 与B 1D 相交于点H.(1)求证:B 1D ⊥平面ABD ;(2)求证:平面EGF ∥平面ABD ; (3)求平面EGF 与平面ABD 的距离.思路分析: 根据两个平行平面间距离的定义,可将平面与平面间的距离转化为一个平面内一点到另一个平面的距离,即点面距. (1)证明:如图所示建立空间直角坐标系, 设AB=a ,则A 1(a ,0,0),B 1(0,0,0),C 1(0,2,0),F (0,1,0),E (0,0,1),A (a ,0,4),B (0,0,4),D (0,2,2), G (a2,1,0).所以B 1D ⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),AB ⃗⃗⃗⃗⃗ =(-a ,0,0),BD ⃗⃗⃗⃗⃗⃗ =(0,2,-2). 所以B 1D ⃗⃗⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0+0+0=0,B 1D ⃗⃗⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =0+4-4=0. 所以B 1D ⃗⃗⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,B 1D ⃗⃗⃗⃗⃗⃗⃗ ⊥BD ⃗⃗⃗⃗⃗⃗ , 所以B 1D ⊥AB ,B 1D ⊥BD.又AB ∩BD=B ,所以B 1D ⊥平面ABD.(2)证明:由(1)可得AB ⃗⃗⃗⃗⃗ =(-a ,0,0),BD ⃗⃗⃗⃗⃗⃗ =(0,2,-2),GF⃗⃗⃗⃗⃗ =(-a2,0,0),EF ⃗⃗⃗⃗⃗ =(0,1,-1),所以AB ⃗⃗⃗⃗⃗ =2GF ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ =2EF ⃗⃗⃗⃗⃗ ,所以GF ⃗⃗⃗⃗⃗ ∥AB ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ ∥BD⃗⃗⃗⃗⃗⃗ . 所以GF ∥AB ,EF ∥BD.又GF ∩EF=F ,AB ∩BD=B ,所以平面EGF ∥平面ABD.A.12B.√24C.√22D.√32答案:B详细解析:建立坐标系如图,则A (1,0,0),B (1,1,0),D 1(0,0,1),O (12,12,1).∴AB ⃗⃗⃗⃗⃗ =(0,1,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1).设n =(1,y ,z )是平面ABC 1D 1的一个法向量, 则{AB ⃗⃗⃗⃗⃗ ·n =y =0,AD 1⃗⃗⃗⃗⃗⃗⃗ ·n =-1+z =0,解得y=0,z=1,∴n =(1,0,1).又OA ⃗⃗⃗⃗⃗ =(12,-12,-1),∴点O 到平面ABC 1D 1的距离为|OA ⃗⃗⃗⃗⃗⃗ ·n ||n |=12√2=√24.4.Rt △ABC 的两条直角边BC=3,AC=4,PC ⊥平面ABC ,PC=95,则点P 到斜边AB 的距离是 . 答案:3详细解析:以点C 为坐标原点,CA ,CB ,CP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P (0,0,95),所以AB ⃗⃗⃗⃗⃗ =(-4,3,0), AP ⃗⃗⃗⃗⃗ =(-4,0,95), 所以点P 到AB 的距离d=√|AP ⃗⃗⃗⃗⃗ |2-(|AP ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗ |)2=√16+8125-25625=3.5.棱长为1的正方体ABCD-A 1B 1C 1D 1中,M ,N 分别是线段BB 1,B 1C 1的中点,则直线MN 到平面ACD 1的距离为 . 答案:√32详细解析:如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.则D (0,0,0),C (0,1,0),D 1(0,0,1),M (1,1,12),A (1,0,0),∴AM ⃗⃗⃗⃗⃗⃗ =(0,1,12),AC ⃗⃗⃗⃗⃗ =(-1,1,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1). 设平面ACD 1的法向量为n =(x ,y ,z ),则{n ·AC ⃗⃗⃗⃗⃗ =0,n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,即{-x +y =0,-x +z =0.令x=1,则y=z=1,∴n =(1,1,1).∴点M 到平面ACD 1的距离d=|AM ⃗⃗⃗⃗⃗⃗ ·n ||n |=√32.故直线MN 到平面ACD 1的距离为√32.四、小结教学中主要突出了几个方面:一是进一步突出运用向量法解决立体几何问题的基本程序,发展学生的数学建模思想和逻辑推理能力。

高中数学教案设计——向量的应用

高中数学教案设计——向量的应用

高中数学教案设计——向量的应用一、教学目标1.了解向量的概念,掌握向量的加减法、数量积、向量积等基本性质和计算方法。

2.掌握向量的几何应用,如点、直线、平面的位置关系、三角形重心、垂心、外心、内心等特殊点。

3.学会通过向量的知识解决实际问题,如平面几何、力、速度、位移等。

二、教学难点1.高中向量的综合应用能力培养。

2.向量的数量积、向量积的几何意义及应用。

3.向量的投影、角度及夹角。

三、教学重点1.向量加减法的基本概念、几何意义及运算规律。

2.向量的数量积、向量积的计算方法和几何意义。

3.向量的投影、夹角的计算方法及几何意义。

四、教学方法1.课堂讲授与对话演练相结合。

2.运用多媒体教学辅助工具进行教学。

3.拓展学生思维,激发学生兴趣。

五、教学内容及课时安排第一课时:向量的概念和基本性质1.向量的定义、运算法则及几何意义。

2.零向量、负向量的概念及性质。

3.向量的平移、相等概念及性质。

4.向量组的线性运算概念及性质。

第二课时:向量的数量积及几何应用1.向量的数量积的定义、性质及计算方法。

2.向量的数量积的几何意义和应用,如向量的夹角、向量的垂直、平行关系的判定。

3.向量的应用,如平面几何、力等。

第三课时:向量的投影及几何应用1.向量的投影的定义、计算方法及意义。

2.向量的几何应用,如平面几何角度、速度等。

第四课时:向量积及其几何应用1.向量积的定义、性质及计算方法。

2.向量积的几何意义及应用,如判断三角形面积,判断向量垂直、平行、夹角等关系。

第五课时:向量线性方程组及其几何应用1.向量线性方程组的概念及解的方法。

2.向量线性方程组的几何意义及应用。

3.向量几何问题的求解,如三角形内心、外心、垂心、重心等。

六、教学方式措施1.知识点的讲述及演示。

2.练习题的讲解及演示。

3.复习提醒、巩固测试。

七、教学评价1.学生从零基础开始逐步学习,由浅入深,能够渐进式的理解向量的相关知识。

2.利用多元化的教学方式,激发学生的学习热情,强化学习能力,让学生掌握向量知识的实际应用。

高中数学备课教案向量的空间几何应用

高中数学备课教案向量的空间几何应用

高中数学备课教案向量的空间几何应用一、授课目标本课程的目标是要使学生掌握向量的空间几何应用,包括向量的数量积、向量的叉积及其在空间几何上的应用。

学生通过本节课程的学习,能够在解决空间几何问题时灵活运用向量的方法。

二、教材分析本节课程主要参考教材是高中数学课程标准实验教科书。

通过教材分析,可以看出使用向量的方法来解决空间几何问题,是高中数学课程中比较重要的一环。

本课程将着重于引导学生掌握向量的空间几何应用,认真贯彻数学课程标准,有利于学生的数学素养的提高。

三、教学过程本节课程的全过程分为导入、讲解、练习、总结等几个环节。

1.导入向学生介绍向量的概念及相关术语,例如向量的起点、终点、方向、大小等,以及向量的基本运算法则。

同时,引导学生思考一下向量的应用场景,如何运用向量解决空间几何问题。

2.讲解本节课程的重点是向量的空间几何应用。

首先讲解向量的数量积及其几何意义,例如向量的数量积可以用来计算向量夹角、判断两个向量的方向关系等问题。

接着讲解向量的叉积及其几何意义,例如向量的叉积可以用来计算向量所在平面的法向量、计算向量的面积等问题。

通过以上内容的讲解,学生应掌握向量的数量积和叉积的相关概念、运算法则及其几何意义。

3.练习在讲解完毕后,教师应引导学生进行一些练习,以便巩固所学知识。

这些练习可以是选择题、填空题、计算题等,还可以加入实际应用题,让学生更好地理解向量的空间几何应用。

4.总结在讲解和练习之后,教师应对所有学生的练习结果进行点评,帮助学生找出自己的不足和需要改进的地方。

同时,教师还应对本节课程进行总结,概括本节课程所涉及的知识点和思考题,加深学生对向量的空间几何应用的理解。

四、教学反思本节课程通过向学生介绍向量的概念及相关术语,如何运用向量解决空间几何问题,讲解向量的数量积及其几何意义,向量的叉积及其几何意义等几个环节,使学生更好地掌握向量的空间几何应用。

在后续的教学中,可以进一步引导学生深入理解向量的空间几何应用,在实际应用场景中熟练运用向量的方法,提升学生的数学水平和综合素质。

高中数学向量的应用教案

高中数学向量的应用教案

高中数学向量的应用教案
目标:1. 理解向量的定义和加法运算
2. 学会平面上向量的坐标表示和计算
3. 掌握向量的数量积和叉积运算
4. 能够应用向量解决实际问题
教学过程:
一、导入:
1. 学生回顾向量的定义和加法运算。

2. 引导学生思考向量在生活中的应用。

二、学习向量的坐标表示和计算:
1. 讲解向量在平面坐标系中的表示方法。

2. 演示向量的坐标计算方法。

3. 练习向量坐标计算的例题。

三、学习向量的数量积运算:
1. 讲解向量的数量积定义和性质。

2. 演示向量数量积的计算方法。

3. 练习向量数量积的例题。

四、学习向量的叉积运算:
1. 讲解向量的叉积定义和性质。

2. 演示向量叉积的计算方法。

3. 练习向量叉积的例题。

五、实际问题应用:
1. 给学生提供一些生活中的问题,让他们应用所学知识解决。

2. 学生分组讨论并展示解决方案。

六、总结复习:
1. 总结学习到的知识点和应用方法。

2. 学生进行自测和答疑。

七、作业布置:
1. 完成课堂练习题。

2. 选择一道真实生活中的问题,用向量方法解决并写出解析。

评价方式:通过作业和课堂练习的表现来评价学生对向量应用的掌握程度,并根据学生的情况进行及时调整和指导。

新版高中数学《1.1.1空间向量及其线性运算》教学设计

新版高中数学《1.1.1空间向量及其线性运算》教学设计

空间向量及其线性运算教学设计(人教A版普通高中教科书数学选修第一册第一章)一、教学目标1.复习空间向量的相关概念2.能够熟练应用空间向量的线性运算及运算律3.理解并掌握共线、共面定理的推论,会用共线、共面定理及其推论解决问题二、教学重难点重点:空间向量的线性运算及运算律难点:共线、共面定理的推论三、教学过程1.复习回顾知识点一:空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:(1)几何表示法:空间向量用有向线段表示.(2)字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作:AB,其模记为a或AB.|知识点二:空间向量的线性运算知识点三:共线定理与共面定理2.空间向量概念的应用【设计意图】通过简单的习题,加深学生对于空间向量概念的理解,纠正易错点.3.空间向量的加减运算【设计意图】选自课本中本节习题,旨在让学生体会表示未知向量时,可将未知向量放入三角形中,通过向量加减的三角形法将其表示出来.4.空间向量的数乘运算【设计意图】与例2对比,此题在加减运算的基础上加入数乘运算,是一道线性运算的综合题型,通过此题可以使学生加深对空间向量线性运算的认识,提高计算能力.5.空间向量共线、共面定理【设计意图】通过将共线、共面定理的推论以思考题的形式给出,使学生在证明的过程中加深对共线、共面定理的理解与记忆,同时引出推论.【设计意图】将推论引出后通过两个较为简单的练习题,让学生初步感受共线、共面定理推论的应用.【设计意图】用共线定理及其推论两种解法解此题目,让学生再次感受共线定理及推论在证明三点共线时的应用.,,.ABCD .AC O OA,OB,OC,ODOE OF OG OHE,F,G,H ====k,OA OB OC ODE,F,G,H 例5.如图,已知平行四边形过平面外一点作射线在四条射线上分别取点使求证:四点共面1111,,,,,,.OE OF OG OH====k OA OB OC ODOA OE OB OF OC OG OD OHOA OD OB OC OE OB OC OD ∴====∴-=-∴=-+∴k k k kABCD E F G H 四边形为平行四边形四点共面【设计意图】此题是第一课时例题,用共面定理的推论给出此题目的第二种解法,让学生再次感受共面定理及推论在证明四点共面问题时的应用,以达到开拓学生的思路的目的.6.归纳小结(1).用好已有的定理及推论:如共线向量定理、共面向量定理及推论等, 并能运用它们证明空间向量的共线和共面的问题.(2).在解决空间向量问题时,结合图形,将未知向量放入三角形中,再运用向量加减的三角形法则解决问题。

高中数学空间向量应用教案

高中数学空间向量应用教案

高中数学空间向量应用教案
教学目标:
1. 了解空间向量的定义和性质。

2. 能够应用空间向量进行问题的解答。

3. 培养学生的空间思维能力和数学解决问题的能力。

教学重点:
1. 理解空间向量的概念和性质。

2. 掌握空间向量的加法、减法和数乘运算。

3. 能够应用空间向量解决相关问题。

教学步骤:
一、导入(5分钟)
1. 引入空间向量的概念,让学生了解空间向量在数学中的重要性和应用。

2. 导入空间向量的概念并展示一些实际问题,引起学生的兴趣和好奇心。

二、讲解(20分钟)
1. 空间向量的定义和性质。

2. 空间向量的加法、减法和数乘运算。

3. 解决一些简单的空间向量问题,让学生加深对空间向量的理解。

三、练习(15分钟)
1. 给学生一些空间向量的练习题,让他们独立完成并互相交流讨论。

2. 老师在一边指导学生解题思路和方法。

四、应用(10分钟)
1. 设计一些实际问题让学生应用空间向量进行解答,培养学生的空间思维。

2. 学生展示解题过程和答案,进行讨论和总结。

五、作业布置(5分钟)
1. 布置相应的空间向量练习题作业,巩固学生的学习成果。

2. 鼓励学生积极思考和总结今天的学习内容。

教学反思:
通过本节课的教学,学生能够对空间向量有了更深入的理解,能够熟练应用空间向量解决相关问题。

同时,通过实际问题的应用,培养学生的空间思维和解决问题的能力。

在以后的学习和生活中,学生能够更好地运用空间向量解决实际问题。

1.4.1 用空间向量研究直线、平面的位置关系(1)教学设计-人教A版高中数学选择性必修第一册

1.4.1 用空间向量研究直线、平面的位置关系(1)教学设计-人教A版高中数学选择性必修第一册

1.4.1 用空间向量研究直线、平面的位置关系( 1)本节课选自《2019人教A 版高中数学选择性必修第一册》第一章《空间向量与立体几何》,本节课主要学习运用空间向量解决线线、线面、面面的位置关系,主要是平行。

在向量坐标化的基础上,将空间中线线、线面、面面的位置关系,转化为向量语言,进而运用向量的坐标表示,从而实现运用空间向量解决立体几何问题,为学生学习立体几何提供了新的方法和新的观点,为培养学生思维提供了更广阔的空间。

1.教学重点:用向量语言表述直线与直线、直线与平面、平面与平面的平行关系2.教学难点: 用向量方法证明空间中直线、平面的平行关系多媒体教学过程 教学设计意图 核心素养目标一、情境导学牌楼与牌坊类似,是中国传统建筑之一,最早见于周朝。

在园林、寺观、宫苑、陵墓和街道常有建造.旧时牌楼主要有木、石、木石、砖木、琉璃几种,多设于要道口。

牌楼中有一种有柱门形构筑物,一般较高大。

如图,牌楼的柱子与地面是垂直的,如果牌楼上部的下边线与柱子垂直,我们就能知道下边线与地面平行。

这是为什么呢? 二、探究新知一、空间中点、直线和平面的向量表示 1.点的位置向量在空间中,我们取一定点O 作为基点,那么空间中任意一点P 就可以用向量OP⃗⃗⃗⃗⃗ 来表示.我们把向量OP ⃗⃗⃗⃗⃗ 称为点P 的位置向量.如图.2.空间直线的向量表示式如图①,a 是直线l 的方向向量,在直线l 上取AB⃗⃗⃗⃗⃗ =a ,设P 是直线l 上的任意一点,则点P 在直线l 上的充要条件是存在实数t ,使得AP ⃗⃗⃗⃗⃗ =t a ,即AP⃗⃗⃗⃗⃗ =t AB ⃗⃗⃗⃗⃗ .如图②,取定空间中的任意一点O ,可以得到点P 在直线l 上的充要条件是存在实数t ,使OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +t a , ① 或OP⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +t AB ⃗⃗⃗⃗⃗ . ② ①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.创设问题情境,引导学生回顾空间中线线、线面、面面的位置关系,并提出运用空间向量解法立体几何的问题,实现将空间几何问题代数化的基本思想1.下列说法中正确的是( ) A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 详细解析:由平面法向量的定义可知,B 项正确.3.空间平面的向量表示式如图,取定空间任意一点O ,空间一点P 位于平面ABC 内的充要条件是存在实数x ,y ,使OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +x AB ⃗⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗⃗ .我们把这个式子称为空间平面ABC 的向量表示式.由此可知,空间中任意平面由空间一点及两个不共线向量唯一确定.4.平面的法向量如图,直线l ⊥α,取直线l 的方向向量a ,我们称向量a 为平面α的法向量.给定一个点A 和一个向量a ,那么过点A ,且以向量a 为法向量的平面完全确定,可以表示为集合{P|a ·AP⃗⃗⃗⃗⃗ =0}.点睛:空间中,一个向量成为直线l 的方向向量,必须具备以下两个条件:①是非零向量;②向量所在的直线与l 平行或重合.2.若直线l 过点A (-1,3,4),B (1,2,1),则直线l 的一个方向向量可以是( )A.(-1,12,-32) B.(-1,-12,32) C.(1,12,32) D.(-23,13,1) 答案:D 详细解析: AB⃗⃗⃗⃗⃗ =(2,-1,-3)=-3(-23,13,1),故选D . 3.若两个向量AB ⃗⃗⃗⃗⃗ =(1,2,3),AC ⃗⃗⃗⃗⃗ =(3,2,1),则平面ABC 的一个法向量为( )答案:平行详细解析:因为u ·n =(-1,2,-3)·(4,-1,-2)=0,所以u ⊥n .所以直线与平面平行,即l ∥β.例1.如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC=1,E 是PC 的中点,求平面EDB 的一个法向量.思路分析首先建立空间直角坐标系,然后利用待定系数法按照平面法向量的求解步骤进行求解.解:如图所示建立空间直角坐标系.依题意可得D (0,0,0),P (0,0,1), E (0,12,12),B (1,1,0),于是DE ⃗⃗⃗⃗⃗ =(0,12,12), DB ⃗⃗⃗⃗⃗⃗ =(1,1,0). 设平面EDB 的法向量为n =(x ,y ,z ),则n ⊥DE ⃗⃗⃗⃗⃗ ,n ⊥DB ⃗⃗⃗⃗⃗⃗ ,于是{n ·DE ⃗⃗⃗⃗⃗ =12y +12z =0,n ·DB ⃗⃗⃗⃗⃗⃗ =x +y =0,取x=1,则y=-1,z=1,故平面EDB 的一个法向量为n =(1,-1,1). 延伸探究:本例条件不变,你能分别求出平面PAD 与平面PCD 的一个法向量吗?它们之间的关系如何?解:如同例题建系方法,易知平面PAD 的一个法向量为n 1=(0,1,0),平面PCD 的一个法向量为n 2=(1,0,0),因为n 1·n 2=0,所以n 1⊥n 2.利用待定系数法求平面法向量的步骤 (1)设平面的法向量为n =(x ,y ,z ).(2)找出(求出)平面内的两个不共线的向量的坐标a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).(3)根据法向量的定义建立关于x ,y ,z 的方程组{n ·a =0,n ·b =0.(4)解方程组,取其中的一个解,即得法向量.1.如图所示,已知四边形ABCD 是直角梯形,AD ∥BC ,∠ABC=90°,SA ⊥平面ABCD ,SA=AB=BC=1, AD=12,试建立适当的坐标系. (1)求平面ABCD 的一个法向量; (2)求平面SAB 的一个法向量; (3)求平面SCD 的一个法向量.解:以点A 为原点,AD 、AB 、AS 所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系, 则A (0,0,0),B (0,1,0),C (1,1,0),D 12,0,0,S (0,0,1).(1)∵SA ⊥平面ABCD ,∴AS⃗⃗⃗⃗⃗ =(0,0,1)是平面ABCD 的一个法向量. (2)∵AD ⊥AB ,AD ⊥SA ,∴AD ⊥平面SAB , ∴AD⃗⃗⃗⃗⃗ =12,0,0是平面SAB 的一个法向量.(3)在平面SCD 中,DC ⃗⃗⃗⃗⃗ =12,1,0,SC⃗⃗⃗⃗ =(1,1,-1). 设平面SCD 的法向量是n =(x ,y ,z ),则n ⊥DC⃗⃗⃗⃗⃗ ,n ⊥SC ⃗⃗⃗⃗ ,∴{n ·DC ⃗⃗⃗⃗⃗=0,n ·SC ⃗⃗⃗⃗ =0, 得方程组{12x +y =0,x +y -z =0,∴{x =-2y ,z =-y ,令y=-1,得x=2,z=1,∴n=(2,-1,1).例2.在长方体ABCD-A 1B 1C 1D 1中,AB=4,AD=3,AA 1=2,点P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS.证明: (方法1)以点D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z轴,建立如图所示的空间直角坐标系Dxyz.则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1),PQ ⃗⃗⃗⃗⃗ =(-3,2,1),RS ⃗⃗⃗⃗⃗ =(-3,2,1), ∴PQ ⃗⃗⃗⃗⃗ =RS ⃗⃗⃗⃗⃗ ,∴PQ ⃗⃗⃗⃗⃗ ∥RS ⃗⃗⃗⃗⃗ , 即PQ ∥RS.(方法2)RS ⃗⃗⃗⃗⃗ =RC ⃗⃗⃗⃗⃗ +CS ⃗⃗⃗⃗=12DC ⃗⃗⃗⃗⃗ −DA ⃗⃗⃗⃗⃗ +12DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ,PQ ⃗⃗⃗⃗⃗ =PA 1⃗⃗⃗⃗⃗⃗⃗ +A 1Q ⃗⃗⃗⃗⃗⃗⃗⃗ =12DD 1⃗⃗⃗⃗⃗⃗⃗⃗ +12DC ⃗⃗⃗⃗⃗ −DA ⃗⃗⃗⃗⃗ ,通过典型例题的分析和解决,让学生感受空间向量坐标运算在解决立体几何问题的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题1:如图所示为某种礼物降落伞在匀速下落的过程的示意图. 其中有8根绳子和伞面连接,每根绳子的拉力大小相同,每根绳子和水平面的夹角均为60°.已知礼物的重力为9.8N,求每根绳子拉力的大小.(结果精确到0.01N)
追问1:“降落伞在匀速下落”告诉了我们什么信息?
学生回答:礼物所受绳子的拉力总和与其自身重力平衡.
追问2:“有8根绳子和伞面连接,每根绳子的拉力大小相同,每根绳子和水平面的夹角均为60°”,我们可以得到哪些信息?
学生回答:问题描述的立体图形结构对称,研究清楚一根绳子的情况就可以了.
追问3:“每根绳子和水平面的夹角均为60°”在空间图形的关系上如何解释?
学生回答:每根绳子所在直线与水平面成角为60°,其拉力与水平面向上的法向量成角为30°.
展示解答: 解:设水平面向上的单位法向量为n ,其中第i 根绳子拉力为F i , 则F i 在n 上的投影向量为(F i ⋅n)n . 因为F i 和水平面成角为60°,所以F i 和n 的夹角为30°. 所以(F i ⋅n )n =√32|F i |n. 因为降落伞匀速下落,所以∑F i 8i=1+G =0. 所以∑√32|F i |n 8i=1+G =0. 因为每个|F i |都相等,所以记为|F 1|. 因为G =−|G|n ,所以4√3|F 1|n −|G|n =0. 所以4√3|F 1|=|G|. 代入数值,可得|F 1|≈1.41N . 所以,每根绳子的拉力大小约为1.41N . 追问4:回顾一下,我们是如何解决这个实际问题的? 追问5: 运用空间向量求解实际问题的一般思路是什么? 例 如图,在四棱锥P −ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F. (1)求证:DE ⊥EB ; (2)求证:PB ⊥平面EFD ; (3)判断:线段PB 上是否存在一点Q ,满足AQ //DE 请说明理由. A B C D E F P。

相关文档
最新文档