空间向量的应用教学设计
空间向量在立体几何中的应用教学设计

空间向量在立体几何中的应用教学设计一、教学目标1.知识目标:了解空间向量的概念和性质,掌握空间向量的基本运算法则。
2.能力目标:能够应用空间向量的知识解决立体几何中的问题,如线段长度、向量共线、线段垂直等。
3.情感目标:培养学生的观察力和分析问题的能力,增强解决问题的自信心。
二、教学重点与难点1.教学重点:空间向量的概念和运算法则。
2.教学难点:将空间向量的知识应用到立体几何问题中。
三、教学准备白板、黑板笔、投影仪、屏幕、计算器等。
四、教学过程Step 1 引入1.教师出示两个立方体模型并提问:你们能用线段表示两个立方体顶点之间的距离吗?2.引出空间向量的概念,并与平面向量进行比较,说明二者的区别。
Step 2 理论讲解1.教师通过投影仪将空间向量的定义、表示和性质呈现给学生,学生做好笔记。
2.教师讲解空间向量的基本运算法则,例如加法、数乘和点乘,并通过具体的例题演示计算过程。
Step 3 实例分析1. 教师出示一道题目:“已知直线l: $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$,过直线l上一点A(2,3,4),作与直线垂直的平面,并找出平面与原点O(0,0,0)的距离。
”2.请学生先思考如何解决这个问题,然后汇报自己的解题思路。
3.教师引导学生运用空间向量的知识来解答问题,并逐步给予提示。
4.学生进行计算,分组讨论和交流思路。
Step 4 拓展应用1.教师设计一道拓展题:“已知线段AB与线段CD的中点E重合,向量BD的坐标为(1,2,3),向量CE的坐标为(4,5,6),求向量AD的坐标。
”2.学生尝试解答,提出自己的解题思路。
3.教师引导学生应用向量共线的性质来解答问题,并逐步给予提示。
4.学生进行计算,分组讨论和交流思路。
Step 5 总结与归纳1.教师引导学生回顾本节课的学习内容,总结空间向量的基本性质和运算法则。
2.学生通过小组合作的方式归纳学习过程中的思考和解题方法。
1.4 空间向量的应用(教案)-2022-2023学年高二数学教材配套教案(人教A版2019选择性必

1.4 空间向量的应用(教案)-2022-2023学年高二数学教材配套教案(人教A版2019选择性必修第一册)【教学目标】1.理解空间向量的加、减、数乘及点积的定义和运算法则;2.掌握使用坐标法求解空间向量的相关问题;3.能够应用空间向量解决立体几何中的实际问题。
【教学内容分析和设计】一、概念和性质1.向量的基本概念及向量的相等和共线2.向量的加、减、数乘及点积的定义和运算法则;3.向量的模长、单位向量、方向余弦、共面、垂直、夹角等相关概念。
二、坐标法1.空间直角坐标系及三维空间中向量的坐标表示;2.向量的加、减、数乘及点积的坐标表示;3.坐标法求解向量的模长、方向余弦、共面、垂直、夹角等相关问题。
三、应用实例1.以向量为工具,解决平面或空间几何中的相关问题;2.以向量为工具,解决机器人运动的问题;3.以向量为工具,理解矢量力在立体图形中的应用。
【课时安排】本次教学安排5课时。
【教学步骤设计】一、由图至式,引入空间向量的定义及基本概念。
1.结合实际,引导学生发现向量的概念,并介绍向量的基本性质;2.引导学生掌握向量的相等、共线的判定方法。
二、向量的表示及运算法则3.引导学生理解向量的加、减、数乘及点积,并讲解相应的运算法则;4.以包括网格点的三维空间相互平移, 介绍向量的模长、单位向量、方向余弦及夹角等相关概念;5.练习向量的加、减、数乘及点积的计算。
三、空间向量的坐标表示6.介绍空间直角坐标系,并讲解向量的坐标表示及相应的运算法则;7.练习空间向量的坐标表示及计算。
四、应用实例8.引导学生理解向量的应用,解决平面或空间几何中的相关问题;9.引导学生掌握向量在机器人运动中的应用;10.以矢量力为例,引导学生理解其在立体图形中的应用。
五、课后作业11.引导学生进一步练习空间向量相关知识的应用,并完成相关课后作业题目。
【教学重点和难点】教学重点:掌握向量加、减、数乘、点积的定义和运算法则,掌握向量的坐标表示及应用。
03教学设计_1.4.2 用空间向量研究距离、夹角问题(1)

1.4.2 用空间向量研究距离、夹角问题 第1课时 用空间向量研究距离问题本节课选自《2019人教A 版高中数学选择性必修第一册》第一章《空间向量与立体几何》,本节课主要学习运用空间向量解决计算空间距离问题。
在向量坐标化的基础上,将空间中点到线、点到面、两条平行线及二平行平面角的距离问题,首先转化为向量语言,进而运用向量的坐标表示,从而实现运用空间向量解决空间距离问题,为学生学习立体几何提供了新的方法和新的观点,为培养学生思维提供了更广阔的空间。
1.教学重点:理解运用向量方法求空间距离的原理2.教学难点:掌握运用空间向量求空间距离的方法多媒体一、情境导学如图,在蔬菜大棚基地有一条笔直的公路,某人要在点A 处,修建一个蔬菜存储库。
如何在公路上选择一个点,修一条公路到达A 点,要想使这个路线长度理论上最短,应该如何设计?问题:空间中包括哪些距离?求解空间距离常用的方法有哪些? 答案:点到直线、点到平面、两条平行线及两个平行平面的距离; 传统方法和向量法. 二、探究新知一、点到直线的距离、两条平行直线之间的距离 1.点到直线的距离已知直线l 的单位方向向量为μ,A 是直线l 上的定点,P 是直线l 外一点.设AP⃗⃗⃗⃗⃗ =a ,则向量AP ⃗⃗⃗⃗⃗ 在直线l 上的投影向量AQ ⃗⃗⃗⃗⃗ =(a ·μ)μ.点P 到直线l 的距离为PQ=√a 2−(a ·μ)2. 2.两条平行直线之间的距离求两条平行直线l ,m 之间的距离,可在其中一条直线l 上任取一点P ,则两条平行直线间的距离就等于点P 到直线m 的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E ,F 分别是C 1C ,D 1A 1的中点,则点A 到直线EF 的距离为 .答案:√1746解析:如图,以点D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z轴建立空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),EF ⃗⃗⃗⃗⃗ =(1,-2,1), FA ⃗⃗⃗⃗⃗ =(1,0,-2),∴|EF⃗⃗⃗⃗⃗ |=√12+(−2)2+12=√6, ∴直线EF 的单位方向向量μ=√66(1,-2,1),∴点A 到直线EF 的距离d=√|FA⃗⃗⃗⃗⃗ |2−(−√66)2=√296=√1746.二、点到平面的距离、两个平行平面之间的距离 点到平面的距离已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点.过点P 作平面α的垂线l ,交平面α于点Q ,则点P 到平面α的距离为PQ=|AP ⃗⃗⃗⃗⃗ ·n||n|.点睛:1.实质上,n 是直线l 的方向向量,点P 到平面α的距离就是AP⃗⃗⃗⃗⃗ 在直线l 上的投影向量QP⃗⃗⃗⃗⃗ 的长度. 2.如果一条直线l 与一个平面α平行,可在直线l 上任取一点P ,将线面距离转化为点P 到平面α的距离求解. 3.两个平行平面之间的距离如果两个平面α,β互相平行,在其中一个平面α内任取一点P ,可将两个平行平面的距离转化为点P 到平面β的距离求解.2.在正四棱柱ABCD-A 1B 1C 1D 1中,底面边长为2,侧棱长为4,则点B1到平面AD 1C 的距离为 .答案: 83 解析:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y轴,z 轴,建立空间直角坐标系,则A (2,0,0),C (0,2,0),D 1(0,0,4),B 1(2,2,4),则AC ⃗⃗⃗⃗⃗ =(-2,2,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(-2,0,4),B 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,-2,0), 设平面AD 1C 的法向量为n =(x ,y ,z ), 则{n ·AC ⃗⃗⃗⃗⃗ =0,n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,得{−2x +2y =0,−2x +4z =0.取z=1,则x=y=2,所以n =(2,2,1). 所以点B 1到平面AD 1C 的距离d=|n·B 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||n|=83.三、典例解析例1.已知直三棱柱ABC-A 1B 1C 1中,AA 1=1,AB=4,BC=3,∠ABC=90°,求点B 到直线A 1C 1的距离.解:以B 为坐标原点,建立如图所示的空间直角坐标系,则A 1(4,0,1),C 1(0,3,1),所以直线A 1C 1的方向向量A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-4,3,0),BC 1⃗⃗⃗⃗⃗⃗⃗ =(0,3,1),所以点B 到直线A 1C 1的距离d=√|BC 1⃗⃗⃗⃗⃗⃗⃗ |2−|BC 1⃗⃗⃗⃗⃗⃗⃗ ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||2=√10−(95)2=135.用向量法求点到直线的距离时需注意以下几点: (1)不必找点在直线上的垂足以及垂线段;(2)在直线上可以任意选点,但一般选较易求得坐标的特殊点; (3)直线的方向向量可以任取,但必须保证计算正确.延伸探究1 例1中的条件不变,若M ,N 分别是A 1B 1,AC 的中点,试求点C 1到直线MN 的距离.解:如例1解中建立空间直角坐标系(图略). 则M (2,0,1),N (2,32,0),C 1(0,3,1),所以直线MN 的方向向量为MN ⃗⃗⃗⃗⃗⃗⃗ =(0,32,−1),MC 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,3,0), 所以点C 1到MN 的距离d=√|MC 1⃗⃗⃗⃗⃗⃗⃗⃗ |2−|MC 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MN ⃗⃗⃗⃗⃗⃗⃗ |MN ⃗⃗⃗⃗⃗⃗⃗ ||2=2√28613. 延伸探究2 将条件中直三棱柱改为所有棱长均为2的直三棱柱,求点B 到A 1C 1的距离.解:以B 为坐标原点,分别以BA ,过B 垂直于BA 的直线,BB 1为x 轴,y轴,z 轴建立如图所示的空间直角坐标系, 则B (0,0,0),A 1(2,0,2),C 1(1,√3,2),所以A 1C 1的方向向量A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,√3,0),BC 1⃗⃗⃗⃗⃗⃗⃗ =(1,√3,2), 所以点B 到直线A 1C 1的距离d=√|BC 1⃗⃗⃗⃗⃗⃗⃗ |2−|BC 1⃗⃗⃗⃗⃗⃗⃗ ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||2=√8−(−1+3+02)2=√8−1=√7.例2 在三棱锥S-ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA=SC=2√3M ,N 分别为AB ,SB 的中点,如图所示.求点B 到平面CMN 的距离.思路分析 借助平面SAC ⊥平面ABC 的性质,建立空间直角坐标系,先求平面CMN 的法向量,再求距离. 解:取AC 的中点O ,连接OS ,OB.∵SA=SC ,AB=BC ,∴AC ⊥SO ,AC ⊥BO.∵平面SAC ⊥平面ABC ,平面SAC ∩平面ABC=AC , ∴SO ⊥平面ABC.又BO ⊂平面ABC ,∴SO ⊥BO.如图所示,分别以OA ,OB ,OS 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz ,则B (0,2√3,0),C (-2,0,0),S (0,0,2√2),M (1,√3,0),N (0,√3,√2). ∴CM ⃗⃗⃗⃗⃗⃗ =(3,√3,0),MN ⃗⃗⃗⃗⃗⃗⃗ =(-1,0,√2),MB ⃗⃗⃗⃗⃗⃗ =(-1,√3,0). 设n =(x ,y ,z )为平面CMN 的一个法向量, 则{CM ⃗⃗⃗⃗⃗⃗ ·n =3x +√3y =0,MN ⃗⃗⃗⃗⃗⃗⃗ ·n =−x +√2z =0,取z=1, 则x=√2,y=-√6,∴n =(√2,-√6,1).∴点B 到平面CMN 的距离d=|n·MB ⃗⃗⃗⃗⃗⃗⃗ ||n|=4√23.求点到平面的距离的主要方法 (1)作点到平面的垂线,点到垂足的距离即为点到平面的距离. (2)在三棱锥中用等体积法求解. (3)向量法:d=|n·MA ⃗⃗⃗⃗⃗⃗ ||n|(n 为平面的法向量,A 为平面上一点,MA 为过点A的斜线段)跟踪训练1 在直三棱柱中,AA 1=AB=BC=3,AC=2,D 是AC 的中点.(1)求证:B 1C ∥平面A 1BD ;(2)求直线B 1C 到平面A 1BD 的距离.(1)证明:连接AB 1交A 1B 于点E ,连接DE. DE ∥B 1C,DE ⊂平面A 1BD}⇒B 1C ∥平面A 1BD.(2)解:因为B 1C ∥平面A 1BD ,所以B 1C 到平面A 1BD 的距离就等于点B 1到平面A 1BD 的距离.如图建立坐标系,则B 1(0,2√2,3),B (0,2√2,0),A 1(-1,0,3), DB 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2√2,3), DB ⃗⃗⃗⃗⃗⃗ =(0,2√2,0), DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,3).设平面A 1BD 的法向量为n =(x ,y ,z ),所以{2√2y =0,−x +3z =0,所以n =(3,0,1). 所求距离为d=|n·DB 1⃗⃗⃗⃗⃗⃗⃗⃗ ||n|=3√1010.金题典例 如图,在直三棱柱ABC-A 1B 1C 1中,∠ABC=90°,BC=2,CC 1=4,点E 在棱BB 1上,EB 1=1,D ,F ,G 分别为CC 1,B 1C 1,A 1C 1的中点,EF 与B 1D 相交于点H.(1)求证:B 1D ⊥平面ABD ;(2)求证:平面EGF ∥平面ABD ; (3)求平面EGF 与平面ABD 的距离.思路分析: 根据两个平行平面间距离的定义,可将平面与平面间的距离转化为一个平面内一点到另一个平面的距离,即点面距. (1)证明:如图所示建立空间直角坐标系, 设AB=a ,则A 1(a ,0,0),B 1(0,0,0),C 1(0,2,0),F (0,1,0),E (0,0,1),A (a ,0,4),B (0,0,4),D (0,2,2), G (a2,1,0).所以B 1D ⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),AB ⃗⃗⃗⃗⃗ =(-a ,0,0),BD ⃗⃗⃗⃗⃗⃗ =(0,2,-2). 所以B 1D ⃗⃗⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0+0+0=0,B 1D ⃗⃗⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =0+4-4=0. 所以B 1D ⃗⃗⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,B 1D ⃗⃗⃗⃗⃗⃗⃗ ⊥BD ⃗⃗⃗⃗⃗⃗ , 所以B 1D ⊥AB ,B 1D ⊥BD.又AB ∩BD=B ,所以B 1D ⊥平面ABD.(2)证明:由(1)可得AB ⃗⃗⃗⃗⃗ ==(-a ,0,0),BD ⃗⃗⃗⃗⃗⃗ ==(0,2,-2),GF⃗⃗⃗⃗⃗ =(−a2,0,0),EF ⃗⃗⃗⃗⃗ ==(0,1,-1),所以AB ⃗⃗⃗⃗⃗ ==2GF ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ ==2EF ⃗⃗⃗⃗⃗ ,所以GF ⃗⃗⃗⃗⃗ ∥AB ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ ∥BD⃗⃗⃗⃗⃗⃗ . 所以GF ∥AB ,EF ∥BD.A.12B.√24C.√22D.√32答案:B解析:建立坐标系如图,则A (1,0,0),B (1,1,0),D 1(0,0,1),O (12,12,1).∴AB ⃗⃗⃗⃗⃗ =(0,1,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1).设n =(1,y ,z )是平面ABC 1D 1的一个法向量, 则{AB ⃗⃗⃗⃗⃗ ·n =y =0,AD 1⃗⃗⃗⃗⃗⃗⃗ ·n =−1+z =0,解得y=0,z=1,∴n =(1,0,1).又OA ⃗⃗⃗⃗⃗ =(12,−12,−1),∴点O 到平面ABC 1D 1的距离为|OA ⃗⃗⃗⃗⃗⃗ ·n||n|=12√2=√24.4.Rt △ABC 的两条直角边BC=3,AC=4,PC ⊥平面ABC ,PC=95,则点P 到斜边AB 的距离是 . 答案:3解析:以点C 为坐标原点,CA ,CB ,CP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P (0,0,95),所以AB ⃗⃗⃗⃗⃗ =(-4,3,0), AP ⃗⃗⃗⃗⃗ =(−4,0,95), 所以点P 到AB 的距离d=√|AP ⃗⃗⃗⃗⃗ |2−(|AP ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗||AB ⃗⃗⃗⃗⃗ |)2=√16+8125−25625=3.5.棱长为1的正方体ABCD-A 1B 1C 1D 1中,M ,N 分别是线段BB 1,B 1C 1的中点,则直线MN 到平面ACD 1的距离为 . 答案:√32解析:如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.则D (0,0,0),C (0,1,0),D 1(0,0,1),M (1,1,12),A (1,0,0),∴AM ⃗⃗⃗⃗⃗⃗ =(0,1,12),AC ⃗⃗⃗⃗⃗ =(-1,1,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1). 设平面ACD 1的法向量为n =(x ,y ,z ),则{n ·AC ⃗⃗⃗⃗⃗ =0,n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,即{−x +y =0,−x +z =0.令x=1,则y=z=1,∴n =(1,1,1).∴点M 到平面ACD 1的距离d=|AM⃗⃗⃗⃗⃗⃗ ·n||n|=√32.故直线MN 到平面ACD 1的距离为√32.四、小结教学中主要突出了几个方面:一是进一步突出运用向量法解决立体几何问题的基本程序,发展学生的数学建模思想和逻辑推理能力。
高三数学下册《空间向量及其应用》教案、教学设计

作业布置原则:
1.遵循适量、适度、分层原则,确保作业既能巩固知识点,又不过度增加学生负担。
2.关注学生个体差异,提供不同难度的题目,使每个学生都能得到充分锻炼。
3.强调作业的实践性和应用性,引导学生将所学知识运用到实际问题中。
4.通过空间向量的学习,提高学生的空间想象力和逻辑思维能力,为后续学习线性代数等内容打下基础。
(二)过程与方法
1.通过引入实际问题,引导学生从几何角度认识空间向量,培养学生从实际问题中提炼数学问题的能力。
2.运用讲授、讨论、练习等多种教学方法,使学生掌握空间向量的基本概念和运算方法,提高学生的数学表达能力和逻辑思维能力。
3.设计丰富的例题和练习题,让学生在实践中掌握空间向量的应用,培养学生在解决空间几何问题时能够灵活运用空间向量的能力。
4.引导学生通过小组合作、探究学习等方式,发现空间向量在解决实际问题中的规律和方法,提高学生的自主学习能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生学习空间向量的积极性,使其在学习过程中体验数学的魅力。
2.学生在运用空间向量解决空间几何问题时,可能对运算规则和方法掌握不够熟练,需要通过大量练习和讲解来巩固和提升。
3.学生的空间想象力有限,对空间向量的应用可能存在一定的恐惧感,需要教师耐心引导和鼓励,帮助学生克服心理障碍。
4.部分学生对数学学科兴趣不足,对空间向量的学习积极性可能不高,教师应注重激发学生的学习兴趣,调动学生的学习积极性。
高三数学下册《空间向量及其应用》教案、教学设计
一、教学目标
(一)知识与技能
1.理解空间向量的概念,掌握空间向量的坐标表示及其运算规律,能够运用空间向量求解空间几何问题。
高三数学下册《空间向量》教案、教学设计

接着,展示一个地球仪,提出另一个问题:“地球上的物体受到的重力可以看作是一个向量,那么如何用空间向量表示这个重力呢?”让学生在思考中感受到空间向量的重要性。在此基础上,正式引入本节课的主题——空间向量。
三、教学重难点和教学设想
(一)教学重点
1.空间向量的基本概念及其坐标表示。
2.空间向量的线性运算、点积和叉积运算。
3.空间向量在解决空间几何问题中的应用。
4.培养学生的空间想象能力和逻辑思维能力。
(二)教学难点
1.空间向量与平面向量的区别和联系,帮助学生建立起空间向量的概念。
2.空间向量的坐标表示方法,特别是向量的线性运算在坐标形式下的表达。
3.学生对空间向量运算规律的掌握,尤其是点积和叉积的应用。
4.将空间向量应用于实际问题,提高学生学以致用的能力。
(三)教学设想
1.采用情境导入法,通过实际生活中的例子引入空间向量的概念,激发学生的兴趣和好奇心。
2.利用多媒体教学资源,如几何画板、实物模型等,帮助学生直观地理解空间向量的性质和运算。
3.设计具有梯度的问题和练习题,由浅入深地引导学生掌握空间向量的知识和方法,突破教学难点。
1.空间向量与平面向量的联系和区别是什么?
2.如何利用坐标表示空间向量,并进行线性运算?
3.点积和叉积在空间几何中有哪些应用?
讨论过程中,教师巡回指导,解答学生的疑问,引导学生深入思考。讨论结束后,每组选取一名代表汇报讨论成果,分享小组的智慧。
高中数学备课教案向量的空间几何应用

高中数学备课教案向量的空间几何应用一、授课目标本课程的目标是要使学生掌握向量的空间几何应用,包括向量的数量积、向量的叉积及其在空间几何上的应用。
学生通过本节课程的学习,能够在解决空间几何问题时灵活运用向量的方法。
二、教材分析本节课程主要参考教材是高中数学课程标准实验教科书。
通过教材分析,可以看出使用向量的方法来解决空间几何问题,是高中数学课程中比较重要的一环。
本课程将着重于引导学生掌握向量的空间几何应用,认真贯彻数学课程标准,有利于学生的数学素养的提高。
三、教学过程本节课程的全过程分为导入、讲解、练习、总结等几个环节。
1.导入向学生介绍向量的概念及相关术语,例如向量的起点、终点、方向、大小等,以及向量的基本运算法则。
同时,引导学生思考一下向量的应用场景,如何运用向量解决空间几何问题。
2.讲解本节课程的重点是向量的空间几何应用。
首先讲解向量的数量积及其几何意义,例如向量的数量积可以用来计算向量夹角、判断两个向量的方向关系等问题。
接着讲解向量的叉积及其几何意义,例如向量的叉积可以用来计算向量所在平面的法向量、计算向量的面积等问题。
通过以上内容的讲解,学生应掌握向量的数量积和叉积的相关概念、运算法则及其几何意义。
3.练习在讲解完毕后,教师应引导学生进行一些练习,以便巩固所学知识。
这些练习可以是选择题、填空题、计算题等,还可以加入实际应用题,让学生更好地理解向量的空间几何应用。
4.总结在讲解和练习之后,教师应对所有学生的练习结果进行点评,帮助学生找出自己的不足和需要改进的地方。
同时,教师还应对本节课程进行总结,概括本节课程所涉及的知识点和思考题,加深学生对向量的空间几何应用的理解。
四、教学反思本节课程通过向学生介绍向量的概念及相关术语,如何运用向量解决空间几何问题,讲解向量的数量积及其几何意义,向量的叉积及其几何意义等几个环节,使学生更好地掌握向量的空间几何应用。
在后续的教学中,可以进一步引导学生深入理解向量的空间几何应用,在实际应用场景中熟练运用向量的方法,提升学生的数学水平和综合素质。
空间向量的运算与应用教学设计和教学方法

空间向量的运算与应用教学设计和教学方法在数学与物理学领域中,空间向量的运算与应用是一项重要的课程内容。
本文将介绍一种针对空间向量的教学设计和教学方法,旨在帮助学生更好地理解和应用空间向量的运算。
1. 引言这个部分可以简要介绍空间向量的概念和重要性,为读者提供背景信息。
2. 教学目标在这一节中,可以列举几个学习目标,比如:(1) 理解空间向量的定义和性质;(2) 能够进行空间向量的加法、减法和数乘运算;(3) 掌握空间向量的模、方向和夹角的计算方法;(4) 了解空间向量在物理学等实际问题中的应用。
3. 教学内容本节可以详细介绍空间向量的基本概念和定义,包括向量的表示方法、加法、减法和数乘运算的规则等。
同时,可以举例说明空间向量的性质和具体计算步骤。
4. 教学方法(1) 理论讲解:通过讲解空间向量相关的概念和性质,帮助学生建立起对空间向量的认知框架。
(2) 示范演示:通过示范和解题实例,引导学生掌握具体的运算方法和计算技巧。
(3) 练习巩固:设计一些练习题,使学生能够独立完成空间向量的运算练习,并提供及时的反馈和指导。
(4) 实践应用:通过实际问题、案例分析等方式,让学生将所学的空间向量知识应用到解决实际问题中,培养学生的应用能力。
5. 教学资源这一节可以列举一些教学资源的参考,如教材、课件、练习册、模拟软件等,供学生参考和使用。
6. 教学评估在学习过程中,通过小测验、课堂参与度、作业和考试等方式进行教学评估,以评判学生的理解、应用和分析能力。
7. 教学延伸针对对空间向量感兴趣的学生,可以推荐一些拓展阅读资源,如相关数学和物理学的教材、文献资料等,以帮助他们进一步探索空间向量的运用领域。
结语空间向量的运算与应用是一门理论与实践相结合的学科,通过合适的教学设计和教学方法,可以帮助学生更好地理解和应用空间向量。
同时,教师的角色也十分重要,需要起到引导和激发学生兴趣的作用。
希望本文提供的教学设计和教学方法能够为相关教育工作者提供一些参考,提高空间向量课程的教学质量。
高中数学空间向量应用教案

高中数学空间向量应用教案
教学目标:
1. 了解空间向量的定义和性质。
2. 能够应用空间向量进行问题的解答。
3. 培养学生的空间思维能力和数学解决问题的能力。
教学重点:
1. 理解空间向量的概念和性质。
2. 掌握空间向量的加法、减法和数乘运算。
3. 能够应用空间向量解决相关问题。
教学步骤:
一、导入(5分钟)
1. 引入空间向量的概念,让学生了解空间向量在数学中的重要性和应用。
2. 导入空间向量的概念并展示一些实际问题,引起学生的兴趣和好奇心。
二、讲解(20分钟)
1. 空间向量的定义和性质。
2. 空间向量的加法、减法和数乘运算。
3. 解决一些简单的空间向量问题,让学生加深对空间向量的理解。
三、练习(15分钟)
1. 给学生一些空间向量的练习题,让他们独立完成并互相交流讨论。
2. 老师在一边指导学生解题思路和方法。
四、应用(10分钟)
1. 设计一些实际问题让学生应用空间向量进行解答,培养学生的空间思维。
2. 学生展示解题过程和答案,进行讨论和总结。
五、作业布置(5分钟)
1. 布置相应的空间向量练习题作业,巩固学生的学习成果。
2. 鼓励学生积极思考和总结今天的学习内容。
教学反思:
通过本节课的教学,学生能够对空间向量有了更深入的理解,能够熟练应用空间向量解决相关问题。
同时,通过实际问题的应用,培养学生的空间思维和解决问题的能力。
在以后的学习和生活中,学生能够更好地运用空间向量解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量的应用教学设计
钟山中学徐玉学
一、教材内容分析:
在空间直角坐标系中引入空间向量,是解决立体几何中图形的大小及位置关系等问题的一种理想的代数工具,使我们能用代数的观点和方法解决几何问题,用精确计算代替逻辑推理和空间想象,用数的规范性代替形的直观性,具体、可操作性强,从而大大降低了立体几何的求解难度,提高学生的学习效率。
二、学生学情分析:
学生已经学习了空间向量的相关概念和性质,对空间向量知识有了一定的了解,所以课堂上可以多组织学生参与教学,通过自主探究主动发现应用空间向量解决距离问题的途径。
但是由于学生对向量数量积的几何意义的理解并不透彻,所以在实际教学中需要多加启发和引导。
三、教学目标:
(一)知识与技能
1.掌握空间向量法求点到平面的距离和两平行平面的距离公式;
2.理解运用空间向量法求点到平面的距离和两平行平面的距离的方法。
(二)过程与方法
1.体验运用空间向量推导点到平面的距离和两平行平面的距离公式的过程;
2.体验运用空间向量法求点到平面的距离和两平行平面的距离的过程。
(三)情感态度与价值观
1.通过运用空间向量法求点到平面的距离和两平行平面的距离的学习过程,让学生体会立体几何问题代数化的转化思想,认识到运用空间向量解决立体几何问题的优越性。
2.培养学生理解和运用知识的能力以及代数运算能力。
a
B O 'B
四、教学重点、难点
重点:运用空间向量法求点到平面的距离和两平行平面的距离 难点:1.理解点到平面的距离与向量投影的关系; 2.转化思想的理解与运用。
五、教学策略
在学生已有知识的基础上,通过引导和启发,组织学生进行自主探究,在探究过程中建构起空间距离与空间向量的联系,达到利用空间向量解决距离问题的目的。
六、教学过程
(一)知识回顾 θ>=<b a b a
,,.1其夹角、已知向量,则
||||cos ,cos ||||b a b a b a b a
⋅⋅=⋅=⋅θθ
b a ⋅的几何意义是||a
与b 在a 方向上的投影的乘积 b 在a 方向上的投影O B ′=θcos ||b
2. ),,(),,,(222111z y x b z y x a ==
b a
⋅=x 1x 2+y 1y 2+z 1z 2 0=⋅⇔⊥b a b a
3.如果非零向量n ⊥平面α,则称n
为平面α的一个法向量。
(二)新课教学 空间距离的向量解法 探究1:点到平面的距离
如图,AB 是平面α的一条斜线,A 为斜
足,n
是平面α的一个法向量,如何求点B 到平面α的距离d ?
学生合作探究,推导点到平面的距离的向量公式|
||
|n n AB d
⋅= 解析:设向量AB 和法向量n
的夹角为
θ,则|cos |||θ⋅=AB d
||AB d =∴,即||||n n AB d ⋅= 例1 如图,ABCD 是矩形,P D ⊥平面ABCD ,PD=CD=2,AD=22,M 、N 分别是 AD 和PB 的中点,求点A 到平面MNC 解:如图,以D 为原点建立空间直角坐标系则A(22,0,0),M(2,0,0),N(2,1,1),C(0,2,0) ∴)0,0,2(),1,1,0(),0,2,2(==-=MA MN MC
设平面MNC 的一个法向量为),,(z y x n =
则1,1,200
22-===⎩⎨⎧=+=⋅=+-=⋅z y x z y MN n y x MC n 得令 )1,1,2(
-=∴n
∴点A 到平面MNC 的距离12
2
2=⋅=
=d 如果用传统几何法,你会解吗?(引导学生用等体积法求解) 探究2:两个平行平面间的距离
如图,平面α//β,直线l 分别与平面α和β交于A 、B 两点,n
是平面α的一个法向量,如何求平面α和β间的距离? 解析:将两个平行平面间的距离转化为
点B 到平面α的距离,
所以|||
|n n AB d
⋅=
例2 已知正方体ABCD-A 1B 1C 1D 1的棱长为2a ,E 、F 、M 、N 分别是边AD 、DC 、A 1B 1、B 1C 1的中点,求平面D 1EF 与平面BMN 的距离。
解析:如图,以D 为原点建立空间直角坐标系D -xyz 则E(a,0,0), F( 0,a,0),D 1(0,0,2a) ,B(2a,2a,0)
)0,2,(),2,0,(),0,,(1a a EB a a ED a a EF =-=-=∴
设平面EFD 1的一个法向量为),,(z y x n =
由1,220201===⎩⎨⎧=+-=⋅=+-=⋅z y x az ax ED n ay ax EF n 得令 即)1,
2,2(=n
∴平面EFD 1与平面BMN 间的距离
a a a d 2342=+==
(三)巩固练习
如图,在三棱锥S-ABC 中,△ABC 是边长为4的正三角形,平面SAC 垂直平面ABC ,SA=SC=32,M 、N 分别为AB 、SB 的中点,求:点B 到平面CMN 的距离.
解析:如图,取AC 中点O ,连OB 、OS,OA 、OB 、OS 两两垂直,以O 为原点建立 空间直角坐标系O -xyz,则
)2,3,0(),0,3,1(),0,0,2(),0,32,0(N M C B - )0,32,2(),2,0,1(),0,3,3(=-==∴CB MN CM
设平面CMN 的一个法向量为),,(z y x n =
由2,3220
20
33=-==⎩⎨⎧=+-=⋅=+=⋅z y x z x MN n y x CM n 得令
,即)2,32,2(-=n ∴点B 到平面CMN 的距离32
418
124=
-==d
C
G
E
(四)小结
1、本节课我们主要学习了空间 “距离”的向量解法。
无论是点到平面的距离还是
两个平行平面间的距离,都有|||
|n n AB d
⋅=。
2、运用“空间向量”这一工具,能避免较为复杂的空间想象,为立体几何代数化带来很大的方便。
3、在立几图形中合理建立空间直角坐标系,使“空间向量”坐标化,是解题的关键。
(五)作业
如图,已知正方形ABCD 的边长为4,E,F 分别是AB,AD 中点,GC ⊥面ABCD,且GC =2,求点B 到面EFG 的距离。
七、板书设计。