第八届全国高中青年数学教师优质课大赛:空间向量正交分解及其坐标表示教学设计(陈巴尔)

第八届全国高中青年数学教师优质课大赛:空间向量正交分解及其坐标表示教学设计(陈巴尔)
第八届全国高中青年数学教师优质课大赛:空间向量正交分解及其坐标表示教学设计(陈巴尔)

《空间向量的正交分解及其坐标表示》

p

浙江省温州中学陈巴尔

各位专家评委、老师们:

大家好!我是来自浙江省温州中学的数学教师陈巴尔.有机会参加本次全国青年教师课堂教学评比活动,并向全国的专家和老师们学习,我深感荣幸.

我的课题是《空间向量的正交分解及其坐标表示》,下面我就根据课程标准,结合我对教材的理解和所教学生的实际情况,从教学背景、教学目标、教学策略、教学过程、教学特点及反思五个方面对本节课作一个说明.希望各位专家评委、老师们对我的这节课例,多提宝贵意见.

一、教学背景分析

(一)教学内容解析

本节课是《普通高中课程标准实验教科书数学》人教A版选修2-1第三章《空间向量与立体几何》的3.1.4节《空间向量的正交分解及其坐标表示》属于新授课.

本章知识结构

《空间向量的正交分解及其坐标表示》属于空间向量及其运算部分中的第四节内容,位置处于在空间向量加减运算、数乘运算、数量积运算之后,坐标运算之前,意义十分明显,就是借助空间向量基本定理的建立,从而得出空间向量坐

标的定义,从而完成从向量到坐标的转化

.........,进而为后面的立体几何问题的解决服务.

但同时,学生已经在之前的必修4中学习过平面向量的相关知识.

因此,按照教学参考的教学建议,“宜多引导学生与平面向量及其运算作类比..,引导学生体会与平面向量及其运算有什么联系与区别,让学生经历向量由平面向空间推广的过程,使学生体会其中的数学思想方法:类比与归纳.....,体验数学在结.构.上的和谐性...与在推广过程中的问题,同时教学过程中,还应注意维度..增加..所带

来的影响.”

“又因为教材在本章专门安排了

一个‘阅读与思考 向量概念的推广

与应用’,把二维向量,三维向量,

推广..

为高维向量,并说明了其应用. 有条件的地区,可以引导学生学习这

个阅读材料,将空间向量的有关性质

向多维推广....

.” 而事实上,之前学生所学习的向

量共线定理,本质也是一样的,因此,

仔细研究教材的编写意图....

,我们会发现这节课在整个高中向量课程教学中起到了一个重要的承上启下....

的作用,即:完成了从必修4到选修2-1中的向量共线定理,平面向量基本定理,空间向量基本定理对比与统一.....,同时通过教材的阅读与思考.....

学案37 空间向量及其运算(理科 )

空间向量及其运算(理科 ) 一、 学习目标: 1、知识与技能:了解空间向量的概念、空间向量的基本定理及其意义. 掌握空间向量的正交分解及其坐标表示。 掌握空间向量的线性运算、数量积及其坐标表示,用向量的数量积判断向量的共线与垂直 2、过程与方法:通过合作、探究、展示、点评培养学生的自主学习能力。 3、情感、态度、价值观:增强数学学习信心,体会数学的科学价值,获得学习的快乐。 二、知识梳理::已知向量111222(,,),(,,)x y z x y z ==a b 1、±=a b 2、λa = 3、?a b = 4、共线向量定理:(1)//a b ()≠?0b ? (2)//a b 222(0)x y z ≠? (3)与)0(≠a a 共线的单位向量是 5、共面向量定理: 6、空间向量分解定理: 7、空间向量b a ,的数量积(1)夹角 ; (2)两个向量b a ,数量积的定义: ; (3)两个向量b a ,数量积的性质 , , , 。 (4)数量积满足的运算律: , , 。 8、两个向量的夹角及长度的计算:设),,(),,,(321321b b b b a a a a ==, 则=a ________,cos= ____________ 三、基础训练: (1)在空间四边形OABC 中,,,,OA OB OC === a b c 点M 在OA 上,且 OM=2MA ,N 是BC 的中点,则MN = . (2)已知,R λ∈a 为非零向量,则下列结论正确的是( ) (A )λa 与a 同向 (B )|λa |=λ|a | (C )(λa )//a (D) |λa |=|λ|a (3)设非零向量a ,b ,c ,,|||||| =++a b c p a b c 那么||p 的取值范围是( ) (A )[0,1] (B )[1,2] (C )[0,3] (D) [1,3] (4)在平行六体ABCD A B C D ''''-中,AB=4,AD=3,5,AA '=90BAD ∠= ,

高二数学向量知识点总结

高二数学向量知识点总结 导读:我根据大家的需要整理了一份关于《高二数学向量知识点总结》的内容,具体内容:数学数学是高考的三大必考主科之一,数学成绩的好坏也将直接关系到你是否能够考入理想的大学,高二数学也是整个高中数学学习承上启下的一年,所以一定要下功夫学好数学。以下是我为您整理的关于的相... 数学数学是高考的三大必考主科之一,数学成绩的好坏也将直接关系到你是否能够考入理想的大学,高二数学也是整个高中数学学习承上启下的一年,所以一定要下功夫学好数学。以下是我为您整理的关于的相关资料,供您阅读。 (一) 考点一:向量的概念、向量的基本定理 【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。 注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。 考点二:向量的运算 【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐

标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。 【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。 考点三:定比分点 【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。 【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。 考点四:向量与三角函数的综合问题 【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。 【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。 考点五:平面向量与函数问题的交汇 【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。 【命题规律】命题多以解答题为主,属中档题。 考点六:平面向量在平面几何中的应用 【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐

高中数学-空间向量及向量的应用

高中数学 - 空间向量及向量的应用 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设 , , 空间向量的直角坐标运算: 空间两点间距离: ; 1:利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 1 )异面直线所成角 设 分别为异面直线 的方向向量,则 则: 空间线段 的中点 M (x ,y ,z )的坐标:

2 )线面角 设 是直线 l 的方向向量, n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 分别为平面 的法向量,则 与 互补或相等, 操作方法: 1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos ( S 为原斜面面积 , S 为射影面积 , 为斜面与射影所成二面 角的平面角 )这个公式对于斜面为三角 形 , 任意多边形都成立 . 是求二面角的好方法 .当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式 ,求出二面角的大小。 2.空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3.空间向量的应用 (1)用法向量求异面直线间的距离 2)直线与平面所成的角的范围是 [0, ] 。射影转化法 2 方法 3)二面角的范围一般是指 (0, ],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 1)异面直线所成的角的范围 是 b F

利用空间向量求空间角教案设计

利用空间向量求空间角 一、高考考纲要求: 能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用. 二、命题趋势: 在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多. 三、教学目标 知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用; 过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力; 情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标系,方向向量,法向量的魅力. 四、教学重难点 重点:用向量法求空间角——线线角、线面角、二面角; 难点:将立体几何问题转化为向量问题. 五、教学过程 (一)空间角公式 1、异面直线所成角公式:如图,设异面直线l ,m 的方向向量分别为a r ,b r ,异面直线l ,m

2、线面角公式:设直线l 为平面α的斜线,a r 为l 的方向向量,n r 为平面α的法向量,θ为 l 与α所成的角,则sin cos ,a n θ==r r a n a n ?r r r r . 3、面面角公式:设1n r ,2n r 分别为平面α、β的法向量,二面角为θ,则12,n n θ=r r 或 12,n n θπ=-r r (需要根据具体情况判断相等或互补) ,其中121212 cos ,n n n n n n ?=r r r r r r . α θ O n r a

(二)典例分析 如图,已知:在直角梯形OABC 中,//OA BC ,90AOC ∠=o ,SO ⊥面OABC ,且 1,2OS OC BC OA ====.求: (1)异面直线SA 和OB 所成的角的余弦值; (2)OS 与面SAB 所成角α的正弦值; (3)二面角B AS O --的余弦值. 解:如图建立空间直角坐标系,则(0,0,0)O , (2,0,0)A ,(1,1,0)B ,(0,1,0)C ,(0,0,1)S , 于是我们有(2,0,1)SA =-u u r ,(1,1,0)AB =-u u u r ,(1,1,0)OB =u u u r ,(0,0,1)OS =u u u r , (1)cos ,5SA OB SA OB SA OB ?== =u u r u u u r u u r u u u r u u r u u u r , 所以异面直线SA 和OB 所成的角的余弦值为5 . (2)设平面SAB 的法向量(,,)n x y z =r , 则0,0, n AB n SA ??=???=??r u u u r r u u r ,即0,20.x y x z -+=??-=? 取1x =,则1y =,2z =,所以(1,1,2)n =r , sin cos ,3OS n OS n OS n α?∴=== =u u u r r u u u r r u u u r r . (3)由(2)知平面SAB 的法向量1(1,1,2)n =u r , 又OC ⊥Q 平面AOS ,OC ∴u u u r 是平面AOS 的法向量, 令2(0,1,0)n OC ==u u r u u u r ,则有121212 cos ,n n n n n n ?== =u r u u r u r u u r u r u u r . ∴二面角B AS O --O A B C S

空间向量及其运算详细教案

空间向量及其运算 3.1.1 空间向量及其加减运算 教学目标: (1)通过本章的学习,使学生理解空间向量的有关概念。 (2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。 能力目标: (1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。 (2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。(3)培养学生空间向量的应用意识 教学重点: (1)空间向量的有关概念 (2)空间向量的加减运算及其运算律、几何意义。 (3)空间向量的加减运算在空间几何体中的应用 教学难点: (1)空间想象能力的培养,思想方法的理解和应用。 (2)空间向量的加减运算及其几何的应用和理解。 考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想。 易错点:空间向量的加减运算及其几何意义在空间几何体中的应用 教学用具:多媒体 教学方法:研讨、探究、启发引导。 教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。 教学过程: (老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定? (学生):矢量,由大小和方向确定 (学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板? (老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么? (学生)向量 (老师):这三个向量和以前我们学过的向量有什么不同? (学生)这是三个向量不共面 (老师):不共面的向量问题能直接用平面向量来解决么? (学生):不能,得用空间向量 (老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算 (老师):实际上空间向量我们随处可见,同学们能不能举出一些例子? (学生)举例 (老师):然后再演示(课件)几种常见的空间向量身影。(常见的高压电线及支架所在向量,长方体中的三个不共线的边上的向量,平行六面体中的不共线向量) (老师):接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量

(完整word)高中数学平面向量基础练习及答案

基础练习 1、若(3,5)AB =u u u r ,(1,7)AC =u u u r , 则BC =u u u r ( ) A .(-2,-2) B .(-2,2) C .(4, 2) D .(-4,-12) 2、已知平面向量→a =(1,1),→b =(1,-1),则向量12→a -32→b = ( ) A 、(-2,-1) B 、(-2,1) C 、(-1,0) D 、(-1,2) 3、已知平面向量a r =(1,-3),b r =(4,-2),a b λ+r r 与a r 垂直,则λ是( ) A. -1 B. 1 C. -2 D. 2 4、若平面向量b r 与向量a r =(1,-2)的夹角是180°,且|b r |=,则b r =( ) A .(-1,2) B .(-3,6) C .(3,-6) D .(-3,6)或(3,-6) 5、在ABC AB BC AB ABC ?=+??则中,若,02是( ) A .锐角三角形 B . 直角三角形 C .钝角三角形 D .等腰直角三角形 6、直角坐标平面内三点()()()1,23,29,7A B C -、、,若E F 、为线段BC 的三等分点,则·=( ) (A )20 (B )21 (C )22 (D )23 7.在四边形ABCD 中,AB =a +2b ,=-4a -b ,=-5a -3b ,其中a 、b 不共线,则四 边形ABCD 为( ) A.平行四边形 B.矩形 C.梯形 D.菱形 8.已知()() 3,4,223,a b a b a b ==++=r r r r r r g 那么a r 与b r 夹角为( ) A 、60? B 、90? C 、120? D 、150? 9.已知D 、E 、F 分别是△ABC 的边BC 、CA 、AB 的中点,且BC =a r ,=b r ,=c r , 则下列各式: ①=21c r -21b r ②=a r +2 1b r ③CF =-21a r +2 1b r ④++CF =0r 其中正确的等式的个数为( ) A.1 B.2 C.3 D.4 10.已知向量a =(3,-4),b =(2,x ), c =(2,y )且a ∥b ,a ⊥c .求|b -c |的值.

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

人教版数学高二数学人教A版选修2-1学案空间向量及其加减运算

空间向量及其运算 3.1.1 空间向量及其加减运算 预习课本P84~85,思考并完成以下问题 1.空间向量、零向量、单位向量、相反向量及相等向量的定义分别是什么? 2.空间向量的加法和减法是怎样定义的?满足交换律及结合律吗? [新知初探] 1.空间向量的有关概念 (1)定义:在空间,把具有大小和方向的量叫做空间向量. (2)长度:向量的大小叫做向量的长度或模. (3)表示法:????? ①几何表示法:空间向量用有向线段表示. ②字母表示法:用字母表示,若向量a 的起点是A ,终点是B ,则向量a 也 可以记作AB ,其模记为|a |或|AB |. 2.几类特殊向量 特殊向量 定义 表示法 零向量 长度为0的向量 0 单位向量 模为1的向量 |a |=1或|AB |=1 相反向量 与a 长度相等而方向相反的向量称为a 的相反向量 -a

相等向量方向相同且模相等的向量a=b或AB=CD 3.空间向量的加法和减法运算 空间向量的运算 加法OB=OA+AB=a+b 加法Z CA=OA-OC=a-b 运算律(1)交换律:a+b=b+a; (2)结合律:(a+b)+c=a+(b+c) 1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)若表示两个相等空间向量的有向线段的起点相同,则终点也相同() (2)零向量没有方向() (3)空间两个向量的加减法运算与平面内两向量的加减法运算完全一致() 答案:(1)√(2)×(3)√ 2.化简PM-PN+MN所得的结果是() A.PM B.NP C.0 D.MN 答案:C 3.在四边形ABCD中,若AC=AB+AD,则四边形ABCD的形状一定是() A.平行四边形B.菱形 C.矩形D.正方形 答案:A 4.在空间中,把所有单位向量的起点移到一点,则这些向量的终点组成的图形是________. 答案:球面 空间向量的概念辨析 [典例] A.若|a|=|b|,则a,b的长度相同,方向相同或相反 B.若向量a是向量b的相反向量,则|a|=|b| C.空间向量的减法满足结合律 D.在四边形ABCD中,一定有AB+AD=AC [解析]|a|=|b|,说明a与b模相等,但方向不确定;对于a的相反向量b=-a,故|a|

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

2019高考数学考点突破——空间向量与立体几何空间向量及其运算学案

空间向量及其运算 【考点梳理】 1.空间向量的有关概念 名称 定义 空间向量 在空间中,具有大小和方向的量 相等向量 方向相同且模相等的向量 相反向量 方向相反且模相等的向量 共线向量 (或平行向量) 表示空间向量的有向线段所在的直线互相平行或重合的向量 共面向量 平行于同一个平面的向量 (1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b . (3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中,{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是[0,π],若〈a ,b 〉=π 2 ,则称a 与b 互相垂直,记作a ⊥b . ②非零向量a ,b 的数量积a·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律: ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.空间向量的坐标表示及其应用

设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). 向量表示 坐标表示 数量积 a·b a 1 b 1+a 2b 2+a 3b 3 共线 a =λb (b ≠0,λ∈R ) a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a·b =0(a ≠0,b ≠0) a 1 b 1+a 2b 2+a 3b 3=0 模 |a | a 21+a 22+a 2 3 夹角 〈a ,b 〉(a ≠0,b ≠0) cos 〈a ,b 〉= a 1 b 1+a 2b 2+a 3b 3 a 21+a 22+a 23· b 21+b 22+b 2 3 考点一、空间向量的线性运算 【例1】如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB → =b ,AD → =c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量: (1)AP →;(2)MP →+NC 1→. [解析] (1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→ =a +c +12AB →=a +c +1 2 b . (2)因为M 是AA 1的中点,所以MP →=MA →+AP → =12 A 1A →+AP → =-12a +? ? ???a +c +12b =12a +12b +c . 又NC 1→=NC →+CC 1→=12BC →+AA 1→

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设血勺乃召),氓叫?乃w ), AB = OB-OA=(^y 2l 切—(吊丹 丑)=(乃—咛乃—丹 勺一匂) 空间向量的直角坐标运算: 设Q = 2],砌,色3 $ =1鹉毎妇则; ① 口+ b= P],曲,电 宀|俎,给禺 ?=I 角十知鬥 +為、屯 +鸟I ? ② a-b = \ a^a 2,a 21■ 诲.场岛i =(业一% 气-如 码一為 帀 ③ 加=兄I 曲卫2,? ' = I 現珂"久卷 '(/i e 7?); ④ 总■&= |气命4 片妇任 | = &占 + 逐血 +&並: ⑤ 口0Fe 鱼二 空三生=左或。『舌寻口[三碣‘ - 冊节 处二赵; 对? $ ⑥ 7丄匸q 口血十口曲十m 禺=0 ; 空间两点间距离:丄“ 「 1 :利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 (1)异面直线所成角Z ? gw 设Q”分别为异面直线讥的方向向量,则 则: 空间线段 的中点M (x ,y ,z )的坐标: 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应

(2) 线面角凰打殳《是直线l 的方向向量,n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 加“分别为平面G 8的法向量,则 与,剤7 互补或相等, - ? ? . m * n |( csfl i = | A>| = I 忘I * I 云I 操作方法: 1 ?空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos (S 为原斜面面积,S 为射影面积,为斜面与射影所成二面 角的平面角)这个公式对于斜面为三角形 ,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式,求岀二面角的大小。 2 ?空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3 ?空间向量的应用 (1 )用法向量求异面直线间的距离 CQS P rris-:欧 * b (1)异面直线所成的角的范围是 (2 )直线与平面所成的角的范围是 [0,—]。射影转 化法 2 方法 (3 )二面角的范围一般是指 (0,],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 b F

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法——利用空间向量求二面角的平面角 大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点

求平面的法向量; 求解二面角的平面角的向量法. 教学难点 求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 向量夹角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) Ⅱ、典例分析与练习 例1、如图,ABCD 是一直角梯形,?=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,

高考数学一轮复习(北师大版理科):第7章立体几何第6节空间向量及其运算学案

第六节空间向量及其运算 [考纲传真]1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直. (对应学生用书第120页) [基础知识填充] 1.空间向量的有关概念 2. (1)共线向量定理:空间两个向量a,b(b≠0),共线的充要条件是存在实数λ,使 得a=λb. (2)空间向量基本定理:如果向量e1,e2,e3是空间三个不共面的向量.a是空间任 一向量,那么存在唯一一组实数λ1,λ2,λ3,使得a=λ1e1+λ2e2+λ3e3,其中e1,e2,e3叫作这个空间的一个基底. 3.两个向量的数量积及运算律 (1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉. (2)空间向量数量积的运算律: ①交换律:a·b=b·a; ②分配律:a·(b+c)=a·b+a·c; ③(λa)·b=λ(a·b). 4.空间向量的坐标表示及其应用 设a=(a1,a2,a3),b=(b1,b2,b3).

1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)空间中任意两非零向量a ,b 共面.( ) (2)对任意两个空间向量a ,b ,若a ·b =0,则a ⊥b .( ) (3)若a ·b <0,则〈a ,b 〉是钝角.( ) (4)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA → =0.( ) [答案] (1)√ (2)× (3)× (4)√ 2.(教材改编)如图7-6-1所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB → =a ,AD →=b ,AA 1→=c ,则下列向量中与BM → 相等的向量是( ) 图7-6-1 A .-12a +1 2b +c B .12a +1 2b +c C .-12a -1 2 b +c D .12a -1 2 b + c A [BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB → )=c +12(b -a )=-12a +12 b + c .] 3.若向量c 垂直于不共线的向量a 和b ,d =λa +μb (λ、μ∈R ,且λμ≠0),则( ) A .c ∥d B .c ⊥d C .c 不平行于d ,c 也不垂直于d D .以上三种情况均有可能 B [由题意得,c 垂直于由a ,b 确定的平面. ∵d =λa +μb ,∴d 与a ,b 共面.∴c ⊥d .] 4.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________. 2 6 [∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0, ∴x =2,∴|b |=(-4)2 +22 +22 =2 6.]

(完整版)高中数学平面向量讲义

专题六 平面向量 一. 基本知识 【1】 向量的基本概念与基本运算 (1)向量的基本概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行 ③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 (2)向量的加法:设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r ①a a a 00;②向量加法满足交换律与结合律; AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”. (3)向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差, ③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点) (4)实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ; (Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λ a 的方向与a 的方向相反;当0 时,0 a ,方向是任意的 (5)两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a (6)平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 【2】平面向量的坐标表示

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

空间向量及其运算学案

8.6空间向量及其运算 考情分析 1.考查空间向量的线性运算及其数量积. 2.利用向量的数量积判断向量的关系与垂直. 3.考查空间向量基本定理及其意义. 基础知识 1.空间向量的有关概念 (1)空间向量:在空间中,具有大小和方向的量叫做空间向量. (2)相等向量:方向相同且模相等的向量. (3)共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量. (4)共面向量:平行于同一个平面的向量. 2.空间向量的线性运算及运算律 (1)定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算,如下:OB →=OA →+AB →=a +b ;BA →=OA →-OB →=a -b ;OP →=λa (λ∈R ). (2)运算律:(1)加法交换律:a +b =b +a . (3)加法结合律:(a +b )+c =a +(b +c ). (4)数乘分配律:λ(a +b )=λa +λb . 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做 向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π 2,则称a 与b 互相垂直,记作a ⊥b. ②两向量的数量积 已知空间两个非零向量a ,b 则|a||b|cos 〈a ,b 〉叫做向量a ,b 的数量积,即a·b =|a||b|cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b );

②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.基本定理 (1)共线向量定理:空间任意两个向量a 、b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . (2)共面向量定理:如果两个向量a ,b 不共线,p 与向量a ,b 共面的充要条件是存在实数x ,y 使p =x a +y b . (3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c . 注意事项 1.用空间向量解决几何问题的一般方法步骤是: (1)适当的选取基底{a ,b ,c }; (2)用a ,b , c 表示相关向量; (3)通过运算完成证明或计算问题. 2.(1)共线向量定理还可以有以下几种形式: ①a =λb ?a ∥b ; ②空间任意两个向量,共线的充要条件是存在λ,μ∈R 使λa =μb . ③若OA →,OB →不共线,则P ,A ,B 三点共线的充要条件是OP →=λOA →+μOB →且λ+μ=1. (2)对于共面向量定理和空间向量基本定理可对比共线向量定理进行学习理解.空间向量基本定理是适当选取基底的依据,共线向量定理和共面向量定理是证明三点共线、线线平行、四点共面、线面平行的工具,三个定理保证了由向量作为桥梁由实数运算方法完成几何证明问题的完美“嫁接”. 3.空间向量的四种运算与平面向量的四种运算加法、减法、数乘、数量积从形式到内容完全 一致可类比学习.学生要特别注意共面向量的概念.而对于四种运算的运算律,要类比实数加、减、乘的运算律进行学习. 题型一 空间向量的线性运算 【例1】已知正方体ABCD -A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若AE →=AA 1 →+xAB →+yAD →,则x 、y 的值分别为( )

高中数学向量总结归纳

平面向量的数量积及平面向量的应用 1.定义及运算律. 两个向量的内积(即数量积),其结果是一个实数,而不是向量.其定义源于物理学中“力所做的功”. 设a 及b 是具有共同始点的两个非零向量,其夹角θ满足:0°≤θ≤180°,我们把|a |·|b |·cos θ叫做a 与b 的数量积,记作a ·b 若a =(x 1,y 1),b =(x 2,y 2),则a ·b =2121y y x x +. 其运算满足“交换律”“结合律”以及“分配律”,即:a ·b =b ·a ,(λ·a )·b =λ(a ·b ),(a ±b )·c =a ·c ±b ·c . 2.平面向量数量积的重要性质. ①|a |=a a ?=2||cos ||||a a a =θ?;cos θ=| |||) (b a b a ??;|a ·b |≤|a |·|b |,当且仅当a ,b 共线时取等号. ②设a =(x 1,y 1),b =(x 2,y 2),则:|a |= 21 21y x +;cos θ= 22 22 21 21 2121) (y x y x y y x x + ? + +;|x 1x 2+y 1y 2|≤ 2 2 222121y x y x +?+ 3.两向量垂直的充要条件 若a ,b 均为非零向量,则:a ⊥b ?a ·b =0. 若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ?x 1x 2+y 1y 2=0. 4.向量的模及三角不等式 |a |2=a ·a 或|a |=a a ?;|a ·b |≤|a |·|b |;|a |2-|b |2=(a +b )·(a -b );|a ±b |=θ??±+cos ||||222b a b a (θ为a ,b 夹角);||a |-|b ||≤|a ±b |≤|a |+|b |. 5.三角不等式的推广形式 |a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |.

向量法求空间角(高二数学,立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 2 1==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为 2 6. (1)求侧面PAD 与底面ABCD 所成的二面角的大小; (2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值; (3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由. B

3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面角的大小. P-中,PD⊥底面ABCD,且底面4.(本小题满分12分)如图,在四棱锥ABCD ABCD为正方形,G PD =分别为CB PC, ,的中点. = PD F ,2 E AD, , AP平面EFG; (1)求证:// (2)求平面GEF和平面DEF的夹角.

H P G F E D C B 5.如图,在直三棱柱111AB C A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线AC 与平面1A BC 所成的角为6 π,求锐二面角1A A C B --的大小. 6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ,2AD PD EA ==,F ,G , H 分别为PB ,EB ,PC 的中点. (1)求证:FG 平面PED ; (2)求平面FGH 与平面PBC 所成锐二面角的大小.

相关文档
最新文档