7-2 电偶极辐射和磁偶极辐射
磁偶极辐射

磁偶极辐射
磁偶极辐射是指由磁偶极子产生的辐射现象。
磁偶极子是一对相等大小、反向取向的磁极,可以用一个磁矩来表示。
当磁偶极子在外部磁场的作用下翻转或震荡时,会产生辐射,向周围空间传播电磁波。
磁偶极子的辐射机制是通过其磁场的变化而产生的。
当磁偶极子磁矩发生变化时,会引起周围空间中的磁场的变化。
根据麦克斯韦方程组的推导,磁场的变化会激发电场的变化,从而产生电磁波辐射。
磁偶极辐射的频率与磁偶极子的振荡频率相同。
磁偶极辐射具有一定的辐射模式。
通常情况下,磁偶极辐射沿垂直于磁偶极矩方向的轴向辐射较强,而在磁偶极矩方向的水平方向辐射较弱。
辐射的方向性与辐射的频率有关。
磁偶极辐射在实际应用中有广泛的用途。
例如,在天文学中,天体的磁场变化可能产生磁偶极辐射,可以通过观测这种辐射来研究天体的性质。
此外,在无线通信领域,天线可以看作是磁偶极子,通过辐射电磁波来传输信号。
磁偶极辐射的理论和实验研究对于理解和应用电磁波辐射具有重要意义。
电偶极子的辐射功率

电偶极子的辐射功率电偶极子是由两个等大异号电荷组成的系统,它具有一个正电荷和一个负电荷,它们之间的距离称为电偶极矩。
电偶极子在空间中运动时会产生辐射,这个辐射功率是电偶极子的一个重要性质。
我们来了解一下电偶极子的辐射机制。
当电偶极子受到外界的激励,例如电场或者磁场,它的电荷会受到力的作用而产生加速度。
根据电磁理论,加速度的变化会产生辐射场。
因此,电偶极子也会产生辐射。
电偶极子的辐射功率可以通过辐射场的能流密度来描述。
能流密度是单位面积上通过的能量流量。
根据辐射场的理论,电偶极子的辐射功率与其加速度的平方成正比。
也就是说,电偶极子的辐射功率与电偶极矩的大小、电偶极矩的变化率和加速度的平方成正比。
在电偶极子的辐射功率中,存在一个重要的参数,即辐射阻抗。
辐射阻抗是辐射场与电偶极子之间的耦合系数,它决定了电偶极子辐射出去的功率与其自身的功率之间的关系。
辐射阻抗与电偶极子的大小、形状以及辐射波长有关。
通过调节电偶极子的大小和形状,可以改变辐射阻抗,进而影响电偶极子的辐射功率。
除了辐射阻抗,电偶极子的辐射功率还受到辐射波长的影响。
根据辐射场的理论,当辐射波长远大于电偶极矩的尺寸时,电偶极子的辐射功率会随着辐射波长的平方递减。
这是因为辐射波长较长时,辐射场与电偶极子之间的耦合效应较弱,辐射功率会减小。
电偶极子的辐射功率还与运动轨迹有关。
当电偶极子做直线运动时,其辐射功率最大。
而当电偶极子做圆周运动时,其辐射功率最小。
这是因为在直线运动时,电偶极子的加速度变化较大,辐射功率较大;而在圆周运动时,电偶极子的加速度几乎没有变化,辐射功率较小。
总结起来,电偶极子的辐射功率与电偶极矩的大小、电偶极矩的变化率、加速度的平方、辐射阻抗以及辐射波长等因素有关。
通过调节这些因素,可以控制电偶极子的辐射功率。
电偶极子的辐射功率在无线通信、雷达、天线等领域都有着广泛的应用。
在设计和优化这些系统时,需要考虑电偶极子的辐射功率,以确保系统的性能和稳定性。
偶极辐射特点

偶极辐射特点
偶极辐射是一种电磁辐射现象,指的是一个带电粒子做振动或加速运动时,会发射电磁波的过程。
以下是偶极辐射的几个特点:
1. 方向性:偶极辐射是一种定向辐射,即辐射能量主要在特定方向上集中。
这是因为偶极辐射是由带电粒子做振动或加速运动引起的,其发射的电磁波被束缚在辐射物附近。
2. 偶极辐射强度与振动速度平方成正比:偶极辐射的强度与带电粒子的振动速度平方成正比,而与其加速度大小无关。
这是因为加速度只影响电磁波的极化状态,而振动速度的平方决定了辐射能量的大小。
3. 频率与振动周期成反比:偶极辐射的频率与振动周期成反比。
当带电粒子做快速振动时,其发射的电磁波频率会增加,每个周期发射的波长就变小,而当振动周期增大时,辐射的频率会相应降低。
4. 偶极辐射的能量谱分布:偶极辐射的能量谱与其加速度变化率成正比。
正常的偶极辐射谱分布是以频率的平方为反比的规律递减。
总的来说,偶极辐射是一种定向的辐射现象,在电磁波的频率、能量分布等方面具有特定的规律。
研究偶极辐射特点可以帮助我们深入理解电磁波的产生和传播,广泛应用于通信、雷达、天文学等领域。
最新文档-电偶极子、磁偶极子的 真实结构与远场近似公式 关于 四个场分布的 -PPT精品文档

3 r
B
0I 4
(r2 a2 2racos z2)2
a(rcos a)d 3 z (r2 a2 2racos z2)2
Beff 4 0I(r32 a2 zz2r)5 2r((r32 a2 zz22 )5 2(r2az22)2 3)z
上周二选做作业二:
电偶极子、磁偶极子的 真实结构与远场近似公式 关于,E, A,B四个场分布的数值比较
孙午炯
1.电偶极子—标势
ቤተ መጻሕፍቲ ባይዱ4 q 0(
1 1) r2(zl/2)2 r2(zl/2)2
电荷间距
l 20
孙午炯
1.电偶极子—标势
4 q 0(
1 1) r2(zl/2)2 r2(zl/2)2
R r2 a2 2racos z2
A
0I 4
1 acosd
R
孙午炯
3.磁偶极子—矢势
A 4 0I r2aa 2 co 2 sra d c o sz2
Aeff
0I 4
a2z
3
(r2 z2)2
孙午炯
4.磁偶极子—磁场
azcosd
eff
q
40
lz
3
(r2 z2)2
孙午炯
2.电偶极子—电场
E
q
40
(r2 (r2
r
3
(zl / 2)2)2
zl / 2
3
(zl / 2)2)2
(r2
(r2
r
3
(zl / 2)2)2
zl / 2
电偶极子振荡产生的电磁辐射

电偶极子振荡产生的电磁辐射摘要随着电子信息时代的高速发展,信息传递要求我们更加高效,在我们生活的三维时空里速度最大值为光速,而以人为力量要想到达此速度几乎不可能,但是我们知道电磁波的传播速度为光速(真空),我们可以利用将信息加载在电磁波上传递来达到高效传输。
因此我们如今大多采用电磁波传递信息。
电偶极子辐射是电磁波辐射理论的基础,清楚地了解它的辐射规律是非常重要的,在辐射问题的实际应用中,可以计算辐射功率和辐射的方向性。
电偶极子辐射的电磁波是空间中的TM 波,TM波在现实中有多方面的应用。
电偶极辐射是天线工程中最基本的问题,电偶极子是电介质理论和原子物理学的重要模型,研究从稳恒到 X光频电磁场作用下电介质的色散和吸收,以及天线的辐射等现象,可以用振荡偶极子。
本文采用微分方程在边界条件下解出电偶极辐射的数学表达式,我们重点研究远场辐射问题。
这对电磁波辐射理论的数学直观化有一定意义,对于我们了解辐射以及辐射的原理有重要意义。
关键字:电偶极辐射微分模型边界问题1问题重述电偶极子(electric dipole)是两个相距很近的等量异号点电荷组成的系统。
电偶极子的特征用电偶极距P=Lq描述,其中 L是两点电荷之间的距离,L和P的方向规定由,q指向+q。
电偶极子在外电场中受力矩作用而旋转,使其电偶极矩转向外电场方向。
电偶极矩就是电偶极子在单位外电场下可能受到的最大力矩,故简称极矩。
如果外电场不均匀,除受力矩外,电偶极子还要受到平移作用。
电偶极子产生的电场是构成它的正、负点电荷产生的电场之和。
当其在水平面上发生振荡是会辐射出电磁波,求解在远区电磁场强度的解析解。
问题分析一对等量异号的电荷组成的带电系统,当它们之间的距离L远比场点到它们的距离r小得多(r>>L)时,我们把这种带电体系叫做电偶极子.当点电偶极子两端的电荷交替变化时,在其附近空间将产生交变电磁场,并使电磁场往远处辐射.通常,交变电偶极子上的电荷变化可视为一个电流元.最简单的辐射电流元是一个很短的直线电流元设此电流元的长度L总是远小于自由空间的电磁波电偶极子波,长.即L<<,则可以认为其上电流的幅值和相位处处相同,即电流均匀分布;且其直径d与其长度相比可忽略不计,即有d<<L,反之,根据电流连续性原理,电流元两端必有等值而异号的电荷积聚,相当于一个交变的电偶极子这样对交变电偶极子的分析也就是对电流元的分析,这种短直线电流元称为电偶极子或基本振子,也称为赫兹振子.赫兹振子的辐射也就叫做电偶极辐射.根据麦克斯韦方程组和在利用2推迟势计算辐射是解决辐射问题的一般思路。
§53电偶极辐射§5.3电偶极辐射

§5.3 电偶极辐射53Electric Dipole Radiation电磁波是以交变运动的电荷系统辐射出来的,在宏观情形电磁波由载有交变电流的天线辐射出来;在微观情形,变速运动的带电粒子导致电磁波的辐射。
本节研究宏观电荷系统在其线度远小于波长情形下的辐射问题。
1、计算辐射场的一般公式当电流分布给定时,计算辐射场的基),(t x j ′′r r r 础是的推迟势:A τμ′′′=d t x j t x A ),(),(0r r r r π∫rV 4若电流是一定频率ω的交变电流,有),(t x j ′′r r t i e x j t x j ′−′=′′ω)(),(r r rr因此0())i t j x e ωμ′−′′r r r r (,4V A x t d r τπ=∫()0()r c i t j x e d ωμτ−−′′=r r ()4V i kr t r x e ωπ−′∫r r 0()4V j d rμτπ′=∫式中为波数c k ω=如果令−t i ω)r r r r ′=ikr e x e x A t x A (),(r r r r 且有∫′=V d r j x A τπμ)(4)(0式中因子e ikr 是推迟作用因子,它表示电磁波传到场点时有相位滞后kr 。
根据Lorentz 条件,可求出标势:ϕA c r ⋅∇−=∂2ϕ由此可见,由矢势的公式完全确定了电磁场。
t ∂A r另外根据电荷守恒定律∂r 另外,根据电荷守恒定律且有0=∂+⋅∇t j ρ=⋅r r ,只要给定电流,则电荷分布ρ也自然确定了。
从而标势也就随之而确定了,因ωρi j ∇j ϕ而在这种情况下,有′e x j r r μ0)(⎪⎪=∫d r x A V τπ4)(⎪⎪⎨⋅∇−=∂∂A c t r r r ϕ2⎪⎪⎪∇×∇=A B r r ⎪⎩∂∂−−∇=t A E ϕ在电荷分布区域外面所以r 在电荷分布区域外面,,所以0=j i E r r r ωε=∂E ct B 200μ−∂=×∇故得ic E B =∇×r r 2、矢势的展开式kA r 对于矢势r ∫′′=V ikr d r e x j x A τπμ)(4)(0r r r)a)近区近区((似稳区似稳区))且有kr <<1,推迟因子e ikr ~1,因而场保持稳恒场的主要特点即电场具有静电场的纵向形式l r r >><< , 但仍满足λ恒场的主要特点,即电场具有静电场的纵向形式,磁场也和稳恒场相似。
2020年清华大学电子工程系957 电子信息科学专业基础(含信号与系统和电磁场理论)考试大纲——盛世清北

2020年清华大学电子工程系957 电子信息科学专业基础(含信号与系统和电磁场理论)考试大纲——盛世清北本文由盛世清北查阅整理,专注清华大学考研信息,为备考清华大学考研学子服务。
以下为2020年清华大学电子工程系957 电子信息科学专业基础(含信号与系统和电磁场理论)考研考试大纲:电磁场理论部分:一、矢量分析与场论1. 矢量概念&运算矢量、位矢、点乘、差乘、导数、梯度、通量、散度、旋度、代数运算公式2. 矢量微分算子及恒等式微分算子、二重微分算子、包含微分算子的恒等式3. 矢量积分定理高斯散度定理、斯托克斯定理4. 正交曲线坐标系直角坐标、柱坐标、球坐标,及梯度、散度、旋度5.场的唯一性定理二、电磁场的基本规律1. 电荷和电场库仑定律、电荷激发的电场、高斯定理(微/积分形式)、静电场旋度2. 电流和磁场电荷守恒定律、毕奥-萨伐尔定律、磁场的散度和旋度(以及积分形式)3. 时变电磁场和麦克斯韦方程组电磁感应定律、位移电流(麦克斯韦-安培定律)、麦克斯韦方程组4. 介质的电磁性质电偶极子、电偶极矩、电极化强度矢量、束缚电荷密度、束缚电荷面密度、介质中的高斯定理、电位移矢量5. 磁偶极矩、磁化强度矢量、磁化电流(密度)、极化电流密度、磁场强度、磁导率、介质中的麦克斯韦-安培定律、介质中的麦克斯韦方程组6. 电磁场的边值关系电场、磁场法向和切向边值关系三、静电场1. 电势电势的定义、点电荷激发的电势、连续电荷激发的电势、均匀电场的电势、电荷、电场、电势的“三角关系”2. 电势的微分方程、电势的边值关系3. 标量位多极展开适用的情形、展开式各项的意义和形式4. 静电场的能量与力5. 唯一性定理6. 分离变量法直角坐标系、球坐标系分离变量法7. 镜像法导体存在情况下镜像法、无限大介质平面的镜像法8. 格林函数法求解相应情况下的格林函数、利用格林公式求解复杂边界情况下的电势分布9. 有限差分方法四、静磁场1. 磁矢势及微分方程磁矢势的定义、磁矢势微分方程、磁矢势边值关系、电流-磁场-矢势的三角关系2. 磁标势及微分方程磁标势的定义、应用条件、磁标势泊松方程、磁标势边值关系、磁荷的定义和意义3. 静磁场的唯一性定理4. 磁多极矩和磁场的能量磁标势的多极展开、磁偶极矩、磁场的储能五、电磁波的传播1. 时谐电磁波和Maxwell方程组时谐电磁波的复数形式、时谐场的Maxwell方程组、时谐场波动方程2. 坡印廷定理坡印廷定理(时域)、坡印廷矢量(瞬时形式和复数形式)、物理含义3. 平面波平面波表达式、平面波的特征、波长、波矢、相速度、群速度、偏振(极化)、波阻抗、能量、能流4.电磁波在介质界面的反射和折射反射/折射定理、振幅关系和相位关系、N波和P波、TE波和TM波、布儒斯特角、半波损失、全反射、快波和慢波、消逝场(全反射时的透射波)5. 有导体存在时的电磁波传播良导体、理想导体、导体内部电磁波、衰减常数、非均匀平面波、穿透深度、趋肤效应、导体表面电磁波反射求解6. 金属波导和谐振腔波导/谐振腔、本征模式及其求解、TE/TM/TEM模式、截止频率/波长7. 介质和导体的色散色散的概念、介电常数实部/虚部的意义六、电磁波的辐射1. 电磁场的矢势、标势和推迟势电磁场矢势和标势、库伦规范、洛伦兹规范、达朗贝尔方程、推迟势2. 电磁辐射电偶极辐射、短天线、半波天线、天线阵、辐射电阻信号与系统部分一、基本概念信号的定义和分类,典型信号的表示方法,系统的定义和分类,线性时不变系统的性质和判别方法,因果性的定义和判别方法。
电磁兼容原理及应用试题及答案

电磁兼容原理及应用试题及答案一、填空题(每空0.5分,共20分)1. 构成电磁干扰的三要素是【干扰源】、【传输通道】和【接收器】;如果按照传输途径划分,电磁干扰可分为【传导干扰】和【辐射干扰】。
2. 电磁兼容裕量是指【抗扰度限值】和【发射限值】之间的差值。
3. 抑制电磁干扰的三大技术措施是【滤波】、【屏蔽】和【接地】。
4. 常见的机电类产品的电磁兼容标志有中国的【CCC标志、欧洲的【CE标志和美国的【FCC 标志。
5. IEC/TC77主要负责指定频率低于【9kHz】和【开关操作】等引起的高频瞬间发射的抗扰性标准。
6. 电容性干扰的干扰量是【变化的电场】;电感性干扰在干扰源和接受体之间存在【交连的磁通】;电路性干扰是经【公共阻抗】耦合产生的。
7. 辐射干扰源可归纳为【电偶极子】辐射和【磁偶极子】辐射。
如果根据场区远近划分,【近区场】主要是干扰源的感应场,而【远区场】呈现出辐射场特性。
& 随着频率的【增加】,孔隙的泄漏越来越严重。
因此,金属网对【微波或超高频】频段不具备屏蔽效能。
9. 电磁干扰耦合通道非线性作用模式有互调制、【交叉调制】和【直接混频】10. 静电屏蔽必须具备完整的【屏蔽导体】和良好的【接地】。
11. 电磁屏蔽的材料特性主要由它的【电导率】和【磁导率】所决定。
12. 滤波器按工作原理分为【反射式滤波器】和【吸收式滤波器】,其中一种是由有耗元件如【铁氧体】材料所组成的。
13. 设U1和U2分别是接入滤波器前后信号源在同一负载阻抗上建立的电压,则插入损耗可定义为【20lg(U2/U1)】分贝。
14. 多级电路的接地点应选择在【低电平级】电路的输入端。
15. 电子设备的信号接地方式有【单点接地】、【多点接地】、【混合接地】和【悬浮接地】。
其中,若设备工作频率高于10MHz应采用【多点接地】方式。
二、简答题(每题5分,共20分)1 .电磁兼容的基本概念?答:电磁兼容一般指电气及电子设备在共同的电磁环境中能够执行各自功能的共存状态,即要求在同一电磁环境中的上述各种设备都能正常工作,且不对该环境中任何其它设备构成不能承担的电磁骚扰的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章电磁场势
8.1 电磁场的势
8.1
8.2 均匀非导电媒质中电磁场势满足的微分方程达朗伯方程8.3达朗伯方程的解推迟势
8.4 推迟势的偶极展开
8.5 电偶极辐射和磁偶极辐射
8.6均匀导电媒质中电磁场满足的微分方程
86
8.7均匀导电媒质中的赫兹矢量
8.8
8.8 谐变电磁场势的赫姆霍兹方程
85
8.5 电偶极辐射和磁偶极辐射
1. 电偶极辐射
22. 磁偶极辐射
电偶距的方向沿z 轴,有
()()()
θθθe e p p r G G G sin cos 00−=则
()()()()θωθθπμωe e r
e p i A r kr t i ed G
G G sin cos 40−=
−上式表明A ed 仅与r 和θ有关,与φ无关。
G G
=利用
,可以求出磁感应强度为:
A
B ×∇
E
i t D H G G ωε=∂∂=×∇即:
B
i E G G ×∇=
ωμε
1
将B 代入可以求得E ,即:
k ⎧i i p ⎪⎫⎪⎤⎡−⎤⎡G G G 11223
⎡()ϕωθπ
ωμe e kr r
k i p k B kr t i G G −⎥⎦⎤⎢⎣−=
sin 142202
(3)中间区场
近区和远区之间称为中间区,在这个区域中,由于r和λ相近,故不能略去电磁场中的任何一项。
实际上,每一项大致相等,即在这个区域中感应场
和辐射场大致相当。
和辐射场大致相当
应该注意,不论近区场或远区场都同时存在感应场和辐射场,两者相比,在近区场,感应场强,辐射场可以忽略;在远区内,辐射场强,感应场几乎
减小到零。
因而近区主要显示感应场的性质,而远区主要显示辐射场的性质。
同时,也应该着重指出,尽管在近区内的辐射场较感应场小,可是仍然比远
区的辐射场大得多,否则会得到辐射场愈到远处愈强的错误结论。
实际上,
辐射场是由近及远随距离成反比而逐渐衰减的。
Aϕ
它表明与无关,仅与r、θ有关。
md
⎤⎥⎦。