一对一辅导方案_初中数学
数学一对一辅导教案

数学一对一辅导教案教案标题:数学一对一辅导教案教案目标:1. 帮助学生提高数学学习能力和成绩。
2. 培养学生的数学思维能力和解决问题的能力。
3. 针对学生个体差异,提供个性化的数学辅导。
教学内容:1. 数的认识和计算能力:包括整数、小数、分数、百分数等基本数的认识和计算方法。
2. 代数和方程:包括代数表达式的理解、方程的解法和应用等。
3. 几何和空间:包括图形的认识、几何关系的理解和计算等。
4. 数据和统计:包括数据的收集、整理、分析和统计等。
教学步骤:步骤一:诊断学生水平1. 与学生进行初步的数学能力测试,了解学生的数学基础和问题所在。
2. 针对学生的测试结果,对学生的数学水平进行初步分析,并制定个性化的辅导计划。
步骤二:制定教学计划1. 根据学生的水平和需求,确定教学目标和重点。
2. 设计教学活动和资源,包括教材、练习题、游戏等。
3. 制定教学进度和时间安排,确保教学内容的有序进行。
步骤三:教学实施1. 通过示范和解释,引导学生理解和掌握数学概念和方法。
2. 提供大量的练习和实践机会,巩固学生的数学技能。
3. 鼓励学生思考和解决问题,培养其数学思维能力和创造力。
4. 针对学生的困惑和错误,及时给予指导和纠正。
步骤四:评估和反馈1. 定期进行小测验或考试,评估学生的学习进展。
2. 根据评估结果,及时给予学生反馈和建议,帮助其改进学习方法和提高成绩。
3. 与学生和家长进行沟通,了解学生的学习情况和需求,调整教学计划和方法。
教学资源:1. 数学教材和练习册。
2. 数学学习网站和应用程序。
3. 数学游戏和实物模型。
教学评估:1. 通过日常观察和互动,评估学生的参与度和理解程度。
2. 定期进行小测验或考试,评估学生的学习进展和掌握程度。
3. 收集学生的作业和练习,对其进行批改和评价。
4. 与学生和家长进行反馈和讨论,了解学生的学习体验和问题。
教学反思:1. 定期回顾和总结教学过程,分析学生的学习情况和教学效果。
数学一对一辅导计划

数学一对一辅导计划工作目标1.提高数学解题能力:通过一对一辅导,学生能够在教师的指导下,对各种数学题型进行深入分析,理解并掌握解题方法,从而在实际做题时能够熟练运用,提高解题效率和正确率。
–分析学生的解题思路,找出其中的不足和错误,提供针对性的指导和建议。
–通过实例讲解,让学生理解并掌握各种数学解题方法和技巧。
–设计专项练习,帮助学生巩固所学,提高解题能力。
2.培养数学思维习惯:通过一对一辅导,教师可以根据学生的特点,引导学生建立数学思维习惯,让学生在遇到问题时能够用数学的眼光去分析和解决。
–通过日常生活中的例子,让学生理解数学的概念和原理。
–引导学生运用数学知识去解决实际问题,培养学生的数学应用能力。
–定期检查学生的学习进度,及时调整教学方法和策略。
3.提高数学学习兴趣:通过一对一辅导,教师可以针对学生的兴趣和需求,设计有趣的学习活动,激发学生的学习兴趣,提高学生的学习积极性。
–了解学生的兴趣和需求,设计符合学生特点的学习活动。
–通过游戏、竞赛等方式,让学生在轻松愉快的环境中学习数学。
–鼓励学生分享自己的学习心得和方法,增强学生的学习信心。
工作任务1.个性化教学设计:根据学生的学习情况,设计个性化的教学计划和教学内容,确保教学内容符合学生的学习需求。
–分析学生的学习情况,找出学生的学习弱点和问题。
–根据学生的学习需求,设计个性化的教学计划和教学内容。
–定期评估学生的学习进度,调整教学计划和教学内容。
2.精准辅导与答疑:针对学生遇到的问题,进行精准的辅导和答疑,帮助学生解决问题,提高学生的学习效果。
–针对学生遇到的问题,进行精准的辅导和答疑。
–通过举例和讲解,帮助学生理解和掌握解题方法和技巧。
–鼓励学生提出问题,及时回答学生的疑问。
3.学习习惯与学习方法指导:引导学生建立良好的学习习惯,教授学生有效的学习方法,提高学生的学习效率。
–教授学生有效的学习方法和技巧,提高学生的学习效率。
–引导学生建立良好的学习习惯,如定期复习、做好笔记等。
初中数学一对一辅导

初中数学相比小学数学难度提高了很多,很多刚升入初中的学生,由于不适应这种难度的跨越,数学成绩直线下滑,家长们对此十分苦恼,毕竟数学是一门可以将成绩差距拉开很大的学科。
针对很多学生数学成绩不能提高的情况,笔者来告诉您家有学霸一对一辅导是怎么辅导学生突破高分瓶颈的。
主要方法有以下五点:一、针对性教学思路。
比如讲:老师以朋友的身份,做学生的学习小伙伴;采用3+x教学策略,针对性帮助学生解决思维障碍等。
二、成功上好第一次课。
利用:3+x教学、思维导图等方法成功上好第一次课。
三、制定教学计划并严格执行1、分阶段制定辅导计划第一阶段,辅导计划是与学校同步巩固为主,以基础为主,提高学生的学习自信心。
第二阶段,继续巩固基础,专题训练,适当拓展提高。
2、坚持执行计划,培养学习习惯每次坚持课前诊查,课中精准导学,课末限时训练,全面展示,最后用思维导图梳理知识结构图,课后完成作业。
3、定期检测在学习中,及时对学生的学习情况进行检测。
是一个很重要的过程。
同时还能避免学生边学边忘的弊端。
四、总结分析对于如何提高一个学生的数学成绩,家有学霸一对一老师觉得离不开以下几点:1、教师的充分备课。
备课除了备知识点、备内容外,还要备学生,根据不同学生的学习特点,做到有针对性地备课。
2、双方地位的平等性。
在一对一教学模式中,师生关系的融洽非常重要。
如果让学生喜欢上你的课,那么学生的成绩自然会提升得很明显。
3、持之以恒,培养学习习惯。
在一对一的课堂中,培养学生的良好习惯很重要,但是习惯的养成是离不开老师持之以恒的监督的。
家有学霸是一款真人1对1在线学习辅导软件,它支持老师用手机给学生上课,类似于一个超级中小学在线课堂,学生可以通过手机找到家有学霸上的老师对自己进行1对1线上辅导;老师通过家有学霸给学生上课,可以极大地提高上课的效率,更好地保证学生的学习效果,为孩子辅导作业,解决各种课业难题。
一对一数学辅导方法(一)

一对一数学辅导方法(一)一对一数学辅导方法概述在学习数学的过程中,有些学生可能会遇到困难,需要额外的辅导帮助。
而一对一数学辅导正是为了满足这些学生的需求而设计的一种学习方法。
本文将介绍几种常用的一对一数学辅导方法。
方法一:个性化教学个性化教学是一对一数学辅导的核心思想之一。
对于每个学生来说,他们的学习能力、兴趣和学习风格都是不同的。
个性化教学侧重于根据学生的个体差异来调整教学内容和方法,以满足学生的学习需求。
优势•可根据学生的需求和能力进行调整,提高学习效果。
•能够更好地激发学生的兴趣,增强学习动力。
•能够更准确地发现学生的问题和困难,针对性地提供帮助。
步骤1.了解学生的学习情况,包括学习目标、学习风格和学习进度。
2.根据学生的情况量身定制教学计划,确定学习内容和辅导方法。
3.在辅导过程中,不断调整教学策略,提供针对性的指导和帮助。
4.定期评估学生的学习效果,及时调整教学计划。
方法二:逐步引导逐步引导是一对一数学辅导中常用的方法之一。
通过逐步引导,辅导者可以帮助学生从基础的数学概念开始,逐渐提高他们的理解和应用能力。
优势•可以帮助学生建立起扎实的数学基础。
•可以让学生逐渐提高解决问题的能力和思维能力。
•可以帮助学生培养自主学习的习惯和能力。
步骤1.确定学生已掌握的基础知识,建立共同的起点。
2.逐步引导学生学习新的数学概念和方法,通过示例和练习来加深理解。
3.鼓励学生独立解决问题,提供必要的帮助和指导。
4.定期复习和检查学生的学习情况,及时调整辅导内容。
方法三:问题驱动问题驱动是一种能够激发学生思考和探索的一对一数学辅导方法。
通过提出问题,辅导者可以帮助学生发现问题的本质、找到解决问题的方法,并培养他们的思维能力和创新能力。
优势•能够激发学生的学习兴趣和主动性。
•能够帮助学生培养解决问题的能力和思维能力。
•能够培养学生的创新意识和创造力。
步骤1.提出具有挑战性的问题,引导学生思考和探索。
2.鼓励学生尝试不同的解决方法,培养他们的创新思维。
一对一辅导方案初中数学

一对一辅导方案初中数学一、了解学生需求和水平在开始一对一辅导之前,辅导老师应该先了解学生的数学水平、学习习惯以及学习目标。
通过与学生的交流,可以更好地制定适合学生个性化的辅导计划。
二、系统复习基础知识首先,辅导老师应该进行基础知识的系统复习。
这包括对数学公式、概念和重要定理的讲解和演练。
通过帮助学生巩固基础知识,可以为后续学习打下坚实的基础。
三、强化数学思维能力数学思维能力是解决数学问题的关键所在。
辅导老师应该通过培养学生的逻辑思维和数学思维方式,帮助他们理解问题、分析问题和解决问题的方法。
这包括培养学生的推理能力、创造力和问题解决能力。
四、针对性解决学生困难在辅导的过程中,老师要通过与学生的交流和观察,及时发现学生在数学学习中的困惑和难点。
针对性地解决这些问题,可以帮助学生更好地理解和掌握知识点。
辅导老师可以通过示范和演练等方式,帮助学生解决困难,提升他们的学习能力。
五、注重实际应用和数学思考数学知识的应用是数学学习的重要目标之一、辅导老师应该引导学生将数学知识应用于实际问题的解决中,提高他们的应用能力。
同时,辅导老师还应该帮助学生培养数学思考的习惯,鼓励他们思考问题的方法和解决问题的思路。
六、定期组织测试和评估辅导过程中,老师应该定期组织测试和评估,对学生的学习情况进行监测和分析。
根据评估结果,老师可以调整辅导计划和教学方法,帮助学生克服困难,提高学习效果。
七、鼓励学生自主学习和探究通过以上的一对一辅导方案,我们可以帮助初中生提高数学水平,并且更好地应对数学学习中的挑战。
希望这个方案能够对您有所帮助!。
一对一辅导数学建议

一对一辅导数学建议
一对一辅导是一个很好的方式来帮助这名同学提高她的数学成绩。
以下是一些建议,可以帮助你有效地进行辅导:
1.理解基础概念:首先,确保她理解一次函数的基本概念,如变量、函
数值、斜率等。
如果她对这些基本概念的理解不够深入,那么在解决更复杂的问题时可能会遇到困难。
2.大量练习:为了提高解题能力,大量的练习是必要的。
可以从简单的
题目开始,然后逐渐增加难度。
在做题的过程中,鼓励她主动思考,不要只是跟着你提供的思路走。
3.培养数学思维能力:数学不只是记忆公式和概念,更重要的是理解和
运用这些知识的能力。
一次函数是初中数学中的一个基础内容,但它的思维方式可以应用到更广泛的数学领域中。
4.反馈和纠正错误:在练习的过程中,及时反馈是很重要的。
指出她的
错误并帮助她理解为什么错,以及如何纠正这些错误。
同时,也要肯定她的正确答案和解题思路,这有助于提高她的自信心和学习动力。
5.激发兴趣:数学本身可能对一些学生来说是枯燥的,但你可以通过一
些有趣的方式让她对数学产生兴趣。
例如,找一些与一次函数相关的实际应用问题,或者让她自己尝试去解决生活中的一些问题。
6.定期评估:定期评估她的学习进度,看看她是否在解题能力上有所提
高。
如果她在某些方面仍然有困难,可能需要调整教学方法或者给她更多的练习。
7.鼓励和激励:无论她的成绩如何,都要鼓励她,让她知道她在努力学
习并且有所进步。
有时候,学生可能因为缺乏信心或者动力而无法提高成绩,你的支持和鼓励可能会成为她最大的动力。
希望这些建议能对你有所帮助!。
初中数学1对1辅导老师初中数学辅导计划

初中数学1对1辅导老师初中数学辅导计划初中数学1对1辅导老师可以根据学生的具体情况制定个性化的辅导计划。
一般来说,下面是一个初中数学辅导的基本计划:1. 初步了解学生:首先,辅导老师会和学生谈话,了解他们对数学学科的兴趣、学习态度、知识掌握情况等。
2. 定位问题:通过学生的自我评估、试卷分析等方式,找出学生数学学习中存在的问题,如知识点掌握不牢固、题目理解偏差等。
3. 目标制定:根据学生的需求和能力水平,共同制定可行的学习目标。
这些目标应该具体明确,量化可测,例如提高代数计算能力、加强解题思维等。
4. 知识点复习:根据目标制定相应的知识点复习计划。
辅导老师会给学生提供辅导资料,帮助他们弥补知识漏洞。
5. 解题技巧训练:辅导老师会教授学生一些解题技巧和思维方法,如问题拆解、分类讨论、逻辑推理等,帮助学生更好地应对各类数学题目。
6. 错题订正和提高:辅导老师会帮助学生订正错题,并针对常见错误进行点拨和讲解,帮助学生提高对错误的识别和纠正能力。
7. 强化练习和反馈:辅导老师会提供大量的练习题,让学生熟悉各类题型,巩固已学知识,并及时给予学生反馈和评价,帮助他们发现问题、提高错误意识。
8. 考试辅导:在考试前,根据学生的实际情况,辅导老师会进行模拟考试和错题集训练,帮助学生熟悉考试形式和节奏,增强应试能力。
9. 总结和复习:辅导老师会与学生一起总结辅导过程中的收获和经验,复习重要知识点,做好学习计划的收尾工作。
辅导计划根据学生的实际情况和需求而定,可能会在上述步骤中做适当的调整和变化。
同时,辅导老师会与学生保持良好的沟通,随时根据学生的进展调整辅导策略,确保辅导效果的最大化。
一对一辅导措施初中数学

5、能有举一反三的能力去对付较难的变式题。
3、因式分解
1、因式分解;
2、提公因式法;
3、运用公式法;
4、十字交叉法。
3
1、理解因式分解的概念和性质;
2、掌握提分解因式的三种方法:公因式法、运用公式法、十字交叉法。
4、实数及其运算
1、有理数复习;
2、平方根;
3、立方根;
4、实数。
7、平面图形的密铺;
8、中心对称图形;
4
1、理解并掌握平等四边形的性质;
2、掌握平等四边形的判别;
3、理解并掌握菱形的概念及性质;
4、理解并掌握矩形、正方形的概念及性质;
5、理解梯形的概念及等腰梯形的性质;
6、理解多边形的内角和与外角和;
7、了解平面图形的密铺;
8、理解中心对称图形的概念及性质;
21、相似图形
阶 段 性 教 学 辅 导 方 案
一、学生及其教师概括
学生
性别
年级
就读学校
教师
性别
学科
教材版本
学管师
性别
咨询师
来校时间
2、学生个性特点分析<学习兴趣与自信心;学习态度与学习习惯;学习方法与应试能力;学习类型与性格特点;学科知识实际掌握情况与缺漏之处)
该生非常聪明,上课比较积极主动,学习态度比较积极。有一定的基础知识,但没有养成良好的学习习惯和学习思路,学习的主动性和积极性不高,在学习过程中对学习的认识还不够。从试卷完成度和正确率来看,该生初一知识有一定的了解,有些知识点较模糊,初二基础知识比较薄弱。
24、二次函数
1、二次函数所描述的关系;
2、结识抛物线;
3、二次函数的图象;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学一对一辅导方案一、学生情况概括由于每个学生的特点、学习能力和对课本知识掌握程度等各个方面都不尽相同,所以针对不同的学生要根据具体情况设计不同的辅导方案。
可以通过谈话交流的方式了解学生是不是能够主动学习、学习态度等方面的问题;可以通过让其做一套综合测试试卷的方式了解其对课本知识掌握情况以及各个章节的掌握情况,以便在制定具体的辅导计划中做到查缺补漏、区别对待,节约时间。
二、按课程标准达到相应的程度(包括了解、理解、掌握、学会、形成等等)课本中的知识点对学生的学习要求是不同的,我们在做辅导时要根据具体的要求使学生做到理解并掌握课本中所涉及的相关知识点,形成自己的学习方式和习惯,激发学习兴趣,提升学习自信心,形成良好的解题思路和解题技巧,变被动学习为主动学习。
三、具体辅导过程中采用的方法初中数学是一个环环相扣的整体,,每一次的课程学习不好都有可能会影响到接下来的学习。
根据“初一的基础知识点多,初二的难点多,初三的考点多”的情况以及学生具体的特点,先从基础知识开始学习,让学生感觉到学习数学不是那么的困难,从而对数学感兴趣,进而能够使其成绩得到提升。
主要分为以下三个阶段:第一阶段,复习初一知识点,在此过程中构建学生的学习框架,激发学习兴趣,提升学习的主动性和积极性,培养解题思路和解题技巧,熟悉中考难度的题型,进行强化训练等。
第二阶段,对初二知识进行详细认真的复习指导,掌握解题规律和技巧,各个击破知识点,达到举一反三的效果,从而对学习数学充满信心。
第三阶段,由于初三知识中考考点较多,对初三内容要进行重点辅导,使其能够全面把握所考知识点。
全部学习完之后对其进行大规模的中考模拟测试,中考内容难易分明,重点突出,最后的大题讲究数行结合,是难点中的难点。
通过模拟测试再一次做到查缺补漏。
教学过程中遵循循序渐进的规律,并适时灵活改变教学思路,结合以点带面的方法,进行系统性和总结性的复习指导。
四、学目标与课时分配章节内容(包括阶段检测)课时数教学目标1、有理数的运算1、数轴;2、相反数、倒数、绝对值;3、有理数的加减乘除;4、有理数的乘方;5、有理数的混合运算;6、科学计数法、有效数字。
1、理解有理数的意义;2、能用数轴上的点表示有理数;3、借助数轴理解相反数和绝对值的意义;4、掌握有理数的运算法则;5、理解有理数的运算律,并能灵活使用运算律简化运算。
2、整式的运算1、认识整式,单项式,多项式2、弄清楚整式中次数的概念3、同类项的运算规律4、整式的加减;1、了解单项式、多项式、同类项和整式的概念;2、会确定单项式的系数和次数;3、会确定多项式的项数和次数.4、能够熟练地对整式进去运算;5、能有举一反三的能力去对付较难的变式题。
3、因式分解1、因式分解;2、提公因式法;3、运用公式法;4、十字交叉法。
1、理解因式分解的概念和性质;2、掌握提分解因式的三种方法:公因式法、运用公式法、十字交叉法。
4、实数及其运算1、有理数复习;2、平方根;3、立方根;4、实数。
理解负数;掌握数的开方;掌握实数的运算法则和运算律,并灵活简化运算。
5、分式1、分式;2、分式的乘除法;3、分式的加减法;4、分式方程。
1、理解分式的概念;2、掌握并能熟练运用分式的加减乘除法则;3、能解分式方程。
6、图形的初步认识1、生活中的立体图形;2、展开与折叠;3、截一个几何体;4、线段、射线、直线;5、比较线段的长短;6、角的度量、表示、比较;7、平行、垂直;1、掌握长方体、圆锥、圆柱等立体图形的性质;2、会应用三视图解题;3、理解线段、直线和射线的区别与联系,会比较线段的大小;4、理解角的概念,会比较角的大小,会进行角的度数的计算;5、了解互余、互补的概念。
7、平行线与相交线1、台球桌面上的角;2、平行线的条件;3、平等线的特征;4、尺规作线段和角。
1、了解同位角、内错角及同旁内角的概念;2、理解并掌握平行线的条件;3、掌握平行线的性质;4、会用尺规作线段和角。
8、三角形1、三角形的定义;2、三角形的分类;3、两个三角形全等的性质及判定;4、角平分线的性质。
1、了角三角形的定义及分类;2、掌握三角形成立的条件;3、理解并掌握全等三角的性质及其判定;4、掌握并学会应用角平分线的性质;8、全等三角形1、全等三角形的性质;2、各种三角形全等的判定方法;3、全等三角形进行证明;4、尺规作图;5、重点题型及中考真题演练。
1、根据不同的条件合理选用三角形全等的判定方法,特别是对于“SSA”不能判定三角形全等的认识.2、角平分线的性质及判定的正确运用;3、理解证明的基本过程,掌握用综合法证明的格式.9、生活中的轴对称1、轴对称现象;2、简单的轴对称图形;3、轴对称的性质;4、利用轴对称设计图案;1、了解轴对称图形;2、理解轴对称图形的对称轴;3、掌握轴对称图形的性质。
10、阶段性测试11、勾股定理1、直角三角形的性质;2、勾股定理及逆定理;3、直角三角形的判定;1、理解并掌握直角三角形的性质;2、掌握直角三角形的判定;3、能将直角三角形的性质应用到实际4、勾股定理及逆定理的综合运用;5、重点题型及中考真题演练。
生活中。
12、图形的平移与旋转1、生活中的平移;2、简单的平移作图;3、生活中的旋转作图;4、简单的旋转作图;5、确定位置;6、平面直角坐标系;1、了解平移的概念;2、理解平移的作图;3、理解旋转作图。
4、了解位置的位置;5、理解并掌握平面直角坐标系;13、一元一次方程1、一元一次方程的概念;2、解方程;3、日历中的方程;4、一元一次方程应用题归类复习。
1、了解一元一次方程及其相关的概念和性质;2、掌握一元一次方程的解法和一般步骤;3、列方程解决实际问题4、提高分析问题、解决问题的能力。
14、二元一次方程(组)1、二元一次方程(组)的概念;2、二元一次方程(组)的解法;3、二元一次方程在实际生活中的应用。
1、了解二元一次方程(组)的概念;2、掌握二元一次方程(组)的总体思路和解题方法;3、学会用二元一次方程(组)解决实际问题15、一次函数1、函数;2、一次函数;3、一次函数的图象;4、确定一次函数表达式;5、一次函数图象的应用。
了解函数的定义;理解并掌握一次函数的表达式及图象;理解一次函数的性质;掌握一次函数的确定;学会一次函数在生活中的应用。
16、数据代表、收集与处理1、平均数;2、中位数与众数;3、利用计算器求平均数;4、频数与频率;5、数据的波动。
1、了解平均数的概念;2、理解中位数与众数;3、了解用计算器求平均数。
4、掌握频数与频率的概念,并应用于实践。
17、概率初步1、概率的概念和性质;2、可能性(解随机事件、必然事件、不可能事件);3、列表法、树形图法及模拟试验的方法确定事件发生的概率;4、统计与概率、频率与概率。
1、理解可能性的情况,并能准确对某一事件进行判断;2、理解概率的意义,会用列表法和树形图法求事件的概率;3、并能利用概率知识解决日常生活中的实际问题;18、一元一次不等式(组)1、不等关系;2、不等关系的基本性质和解集;3、一元一次不等式;4、一元一次不等式与一次函数;5、实际问题与一元一次不等式;6、一元一次不等式组。
1、了解一般不等式的解、解集及解不等式的概念;2、能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组解决简单的实际问题。
19、阶段性测试20、四边形性质探索1、平等四边形的性质;2、平等四边形的判别;1、理解并掌握平等四边形的性质;2、掌握平等四边形的判别;3、菱形;4、矩形、正方形;5、梯形;6、探索多边形的内角和与外角和;7、平面图形的密铺;8、中心对称图形;3、理解并掌握菱形的概念及性质;4、理解并掌握矩形、正方形的概念及性质;5、理解梯形的概念及等腰梯形的性质;6、理解多边形的内角和与外角和;7、了解平面图形的密铺;8、理解中心对称图形的概念及性质;21、相似图形1、线段的比;2、黄金分割;3、形状相同的图形;4、形似的图形;5、相似三角形及其条件;6、相似多边形的周长比和面积比;7、图形的放大与缩小。
1、相似三角形的证明;2、掌握线段的比、黄金分割;3、会计算相似多边形的周长比和面积比。
22、一元二次方程1、一元二次方程的概念及其性质;2、配方法;3、公式法;4、分解因式法。
1、理解一元二次方程的解法的数学思想;2、掌握一元二次方程的解法(配方法、公式法、因式分解法);3、掌握利用一元二次方程来解答实际应用问题、数学综合问题等。
23、反比例函数1、反比例函数的概念及其性质;2、反比例函数的图象与性质;3、反比例函数的应用。
1、掌握反比例函数的概念;2、会熟练应用反比例函数的图象和性质解题。
24、二次函数1、二次函数所描述的关系;2、结识抛物线;3、二次函数的图象;4、用三种方式表示二次函数;5、二次函数与一元二次方程。
1、确定二次函数的表达式;2、会用描点法画二次函数的图象;3、能从图象中认识二次函数的性质;4、会根据公式确定二次函数图象的顶点、开口方向和对称轴;5、能解决实际问题。
25、投影与视图1、三视图(主视图,左视图、俯视图);2、展开图;3、太阳光与影子;4、灯光与影子。
1、会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图;2、能根据三视图描述基本几何体或实物的原型.3、了解基本几何体与其三视图、展开图(球除外)之间的联系。
26、锐角三角函数1、30o,45o,60o,90o角的三角函数值;2、直角三角形的解法;3、三角函数的有关计算;4、综合运用直角三角形的边边关系、边角关系来解决实际问题。
1、熟记锐角三角函数(sin A,cos A,tan A),知道30°,45°,60°,90o角的三角函数值;2、会运用三角函数知识解决与直角三角形有关的简单的实际问题。
27、圆1、确定圆的条件2、圆的对称性3、圆周角和圆心角的关系4、直线和圆的位置关系1、掌握垂直于弦的直径的性质;2、掌握圆的切线的判定定理与性质定理的应用;3、会利用弧长、扇形面积、圆锥侧面5、圆和圆的位置关系6、弧长及扇形的面积7、圆锥的侧面积积公式进行有关的计算;4、掌握圆心角、弧、弦之间的关系及圆周角定理,并能运用它们进行有关的计算;5、掌握垂径定理,弧、弦、圆心角的关系定理,圆周角定理。
28、阶段测试29、总复习1、所有知识再复习一遍;2、做提升题进行巩固。
合计备注:根据学生的特点、学习情况以及所报辅导课程的长短等方面来确定每一节内容的课时。