《画轴对称图形》同步练习及答案1
画轴对称图形练习题

画轴对称图形练习题轴对称图形是指在平面上存在一个轴,当图形沿该轴作对称变换时,图形与自身重合。
画轴对称图形是培养儿童对称思维和审美能力的重要训练内容。
今天,我们来练习一些画轴对称图形的练习题。
1. 画出以下几个字母的轴对称图形:A、B、C、D、E、F、G。
2. 画出以下几个数字的轴对称图形:0、1、2、3、4、5、6、7、8、9。
3. 画出以下几个几何形状的轴对称图形:正方形、长方形、圆形、三角形、椭圆、五边形。
4. 根据给定的轴对称图形,完成图形的绘制:a) 给定一个正方形,画出它的轴对称图形。
b) 给定一个三角形,画出它的轴对称图形。
c) 给定一个长方形,画出它的轴对称图形。
d) 给定一个圆形,画出它的轴对称图形。
5. 设计一个轴对称的图案,使用你喜欢的颜色和形状进行绘制。
可以尝试使用不同的几何形状和线条来创造出独特的图案。
通过以上的练习题,我们可以巩固轴对称图形的绘制技巧和观察力。
画轴对称图形不仅能够培养我们的审美能力,还有助于提升我们的创造力和想象力。
在绘制过程中,我们需要注意以下几点:首先,要明确轴对称图形的基本特征,即从一个点为中心,沿轴线进行对称变换后图像不变。
其次,要注意绘制对称轴,可以使用直尺或绘图工具来帮助我们找到中心轴线。
然后,要对称地绘制图形的各个部分,确保每个部分都与其对称位置保持一致。
最后,要仔细观察和检查绘制结果,确保图形的各部分符合对称关系,并且整体上看起来完美对称。
在进行绘制时,可以使用纸和铅笔进行草图,并使用彩色铅笔或绘图软件进行上色。
可以尝试不同的颜色和图案来增加绘图的趣味性和创造力。
通过不断的练习和探索,我们可以提高自己的轴对称图形绘制能力,在欣赏美丽图形的同时,也培养了自己的审美能力和想象力。
所以,在日常生活中,多多练习画轴对称图形,让我们的大脑得到锻炼,同时也提高我们的艺术水平和绘画技巧。
希望以上的练习题能够帮助大家提升对轴对称图形的理解和绘制能力。
不要忘记享受绘画的过程,并在每次创作中发挥自己的想象力!。
2018-2019学年数学人教版(五四学制)八年级上册20.2 画轴对称图形 同步练习(1)

2019-2019学年数学人教版〔五四学制〕八年级上册20.2 画轴对称图形同步练习〔1〕一、选择题1.以下所示的四个银行的行标图案中,不是利用轴对称设计的图案是〔〕A. B. C. D.2.李老师布置了一道题:在田字格中涂上几个阴影,要求整个图形必须是轴对称图形,图中各种作法中,符合要求的是( )A. B. C. D.3.从平面镜中看到时钟示数为15:01,那么实际时间应为〔〕A. 10:51B. 10:21C. 10:15D. 15:014.以下图形中,线段AB和A’B’ 〔AB=A’B’〕不关于直线l对称的是〔〕A. B. C. D.5.如下图是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影局部是一个轴对称图形,这样的涂法有〔〕A. 4种B. 3种C. 2种D. 1种6.如图,小明把一正方形纸片分成16个全等的小正方形,并将其中四个小正方形涂成灰色。
假设再将一小正方形涂成灰色,使灰色区域成为轴对称图形,那么此小正方形的位置在( )A. 第一行第四列B. 第二行第一列C. 第三行第三列D. 第四行第一列7.如图,在3×3的网格中,与ABC成轴对称,顶点在格点上,且位置不同的三角形有〔〕A. 5个B. 6个C. 7个D. 8个二、填空题8.如图,大正三角形中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有________种;9.求作与图形成轴对称的图形,先观察图形,并确定能代表图形的关键点,分别作出这些关键点关于对称轴的________ ,根据图形连接这些对应点,即可得到与图形成轴对称的图形.10.如图,现要利用尺规作图作△ABC关于BC的轴对称图形△A′BC .假设AB=5cm , AC=6cm , BC=7cm ,那么分别以点B、C为圆心,依次以________cm、________cm为半径画弧,使得两弧相交于点A′, 再连结A′C、A′B ,即可得△A′BC .11.当写有数字的纸条垂直于镜面摆放时(如下图〕:下面是从镜子中看到的一串数,它其实是________.12.如图,在正方形方格中,阴影局部是张小正方形纸片所形成的图案,只移动其中一张纸片,使得到的新图案成为一个轴对称图形的移法有________种.三、解答题13.图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:〔 1 〕所画的两个四边形均是轴对称图形.〔 2 〕所画的两个四边形不全等.14.如图1所示,在的正方形网格中,选取个格点,以其中三个格点为顶点画出了△ABC ,请你在图2和图3中,以选取的14个格点为顶点再画出一个三角形,且分别满足以下条件:〔1〕在图2中画一个三角形,使它与△ABC组成的图形是轴对称图形;〔2〕在图3中画一个三角形,使它与△ABC的面积相等,但不全等.15.以下为边长为1的小正方形组成的网格图.〔1〕请画出△ABC关于直线对称的图形△A1B1C1〔不要求写作法〕;〔2〕△ABC的面积为________〔直接写出即可〕;〔3〕如图,P为直线上一点,假设点P到AC的距离为4,那么点P到AC1的距离是________.16.作图题〔不写做法,保存作图痕迹〕如图,作出△ABC关于直线l的对称图形.17.〔1〕分析图①,②,④中阴影局部的分布规律,按此规律,在图③中画出其中的阴影局部;〔2〕在4×4的正方形网格中,请你用两种不同方法,分别在图①、图②中再将两个空白的小正方形涂黑,使每个图形中的涂黑局部连同整个正方形网格成为轴对称图形.答案解析局部一、选择题1.【答案】A【考点】轴对称图形【解析】【解答】解:图案中,只有第一个图形沿某条直线折叠后直线两旁的局部不能够完全重合,故答案为:A【分析】把一个图形沿着某条直线折叠,假设直线两旁的局部能完全重合,那么这个图形就是轴对称图形,根据定义即可一一判断。
初二数学上册:画轴对称图形经典例题(含答案)

初二数学上册:画轴对称图形经典例题(含答案)一、单选题1.下列剪纸图案中,能通过轴对称变换得到的有(C)2.下列说法错误的是(B)A.关于某直线对称的两个图形一定能完全重合B.全等的两个三角形一定关于某直线对称C.轴对称图形的对称轴至少有一条D.线段是轴对称图形3.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是(B)A.1号袋B.2号袋C.3号袋D.4号袋4.如图所示,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有(C)A.3种B.4种C.5种D.6种解析:试题分析:如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,3处,7处,6处,5处,选择的位置共有5处故选C.考点:利用轴对称设计图案点评:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.在如上图由5个小正方形组成的图形中,再补上一个小正方形,使它成为轴对称图形,你有几种不同的方法(C)A.2种B.3种C.4种D.5种6.小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是(B)7.如图,直线l1与直线l2相交,∠α=60°,点P在∠α内(不在l1,l2上)。
小明用下面的方法作P的对称点:先以l1为对称轴作点P 关于l1的对称点P1,再以l2为对称轴作P1关于l2的对称点P2,然后再以l1为对称轴作P2关于l1的对称点P3,以l2为对称轴作P3关于l2的对称点P4,……,如此继续,得到一系列点P1,P2,P3,…,。
若与P重合,则n的最小值是(B)A.5B.6C.7D.8二、填空题8.轴对称变换不改图形的形状和大小解析:试题分析:根据轴对称图形的性质即可得到结果。
人教版八年级数学上册《13.2画轴对称图形》同步练习题(附答案)

人教版八年级数学上册《13.2画轴对称图形》同步练习题(附答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.点P(3,-1)关于x轴对称的点的坐标是()A.(-3,1) B.(-3,-1) C.(1,-3) D.(3,1)2.用刻度尺分别画下列图形的对称轴,可以不用刻度尺上的刻度画的是()A.①②③④B.②③C.③④D.①②3.若点和点关于轴对称,则等于()A.-2 B.-1 C.1 D.34.某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A,B两处桂花的位置关于小路对称,在分别以两条小路为x,y轴的平面直角坐标系内,若点A的坐标为,则点B的坐标为()A.B.C.D.5.已知点与点关于轴对称,则在()A.第一象限B.第二象限C.第三象限D.第四象限6.已知点A(4,3)和点B是坐标平面内的两个点,且它们关于过点(﹣3,0)与y轴平行的直线对称,则点B的坐标是()A.(1,3)B.(﹣10,3)C.(4,3)D.(4,1)7.如图,x轴是△AOB的对称轴,y轴是△BOC的对称轴,点A的坐标为(1,2),则点C的坐标为()A.( -1,-2) B.( 1,-2) C.( -1,2) D.( -2,-1)8.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有A.4种B.5种C.6种D.7种二、填空题:(本题共5小题,每小题3分,共15分.)9.在平面直角坐标系中,点,点关于x轴对称,则的值为.10.若点A(,)关于轴对称的点在第四象限,则的取值范围是. 11.如图,在的正方形格纸中,有一个以格点为顶点的,在格纸中能画出与成轴对称且也以格点为顶点的三角形(不包括本身),这样的三角形共有个.12.如图,已知直线l经过点(0,﹣1)并且垂直于y轴,若点P(﹣3,2)与点Q(a,b)关于直线l对称,则a+b=.13.如图,在平面直角坐标系xOy中,点A(2,0),B(4,2),若点P在x轴下方,且以O,A,P 为顶点的三角形与△OAB全等,则满足条件的P点的坐标是.三、解答题:(本题共5题,共45分)14.如图,已知△ABC和直线L,作出△ABC关于直线L对称的图形△A′B′C′.15.作图题:(不要求写作法)如图,△ABC在平面直角坐标系中,其中,点A,B,C的坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)作△ABC关于y轴对称的△A1B1C1,其中,点A、B、C的对应点分别为A1、B1、C1;(2)写出点A1、B1、C1的坐标.16.某市拟建造农民文化公园,将12个场馆排成6行,每行4个场馆,市政府将如图所示的设计图公布后,引起了一群初中生的浓厚兴趣,他们纷纷设计出许多精美的轴对称图形来,请你也设计一幅符合条件的图形.17.李明同学准备制作一个正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),折叠后发现少一个面,请你在图中的拼接图形上再接一个正方形,使新拼成的图形经过折叠后能称为一个封闭的正方体盒子.(添加的正方形用阴影表示,在图①,图②中各画一个符合要求的图形即可)18.如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)①请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;②请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.参考答案:1.D 2.A 3.D 4.A 5.A 6.B 7.A 8.B9.310..11.12.-713.或14.解:如图所示.15.(1)解:如图所示,△A1B1C1即为所求;(2)解:点A1、B1、C1的坐标分别为(2,1),(4,5),(5,2)16.解:如图所示:17.解:如图所示:18.解:作图如下,。
《画轴对称图形》练习题和参考答案

画轴对称图形一.填空1.在等边三角形、五角星、正六边形中,( )的对称轴最多,有( )条对称轴。
2.在数字3、2、8、9、0、6中,( )是轴对称数字。
3.轴对称图形中,对称点到对称轴的距离(),对称点的连线和对称轴()。
二.选择1.下列三组英文字母中,( )是两个轴对称图形。
A.TMB.NXC.ZW2.只有一条对称轴的图形是()A.平行四边形B.等腰梯形C.圆形3.轴对称图形的对称轴是一条()A 射线 B.线段 C.直线三、判断(1). 有的轴对称图形不只一条对称轴。
()(2).平行四边形有四条对称轴。
()(3).轴对称图形的对称点到对称轴的距离一定相等。
()四.根据图形填空。
(1)如果点A 到对称轴的距离是5米,那么点A'到对称轴的距离是( )米。
(2)如果DD'之间的距离是2米, 那么点D 到对称轴的距离是( )米。
五.(1)先画出下列各图形的对称轴,再找一找各图形中点A 的 对称点。
以a 作为对称轴,点( )是点A 的对称点。
以b 作为对称轴,点( )是点A 的对称点。
(2)你能画出轴对称图形的另一半吗?A BCD(3).在已知图形的基础上补充画图,使之成为轴对称图形,并且满足:(1)题只有一条对称轴;(2)题只有两条对称轴。
练习题答案一、(1.)正六边形、6、(2)3、8、0(3)相等、互相垂直二、ABC三、√×√四、5、1五、(1)DB/BD(答案不唯)一。
2021学年初中数学《画轴对称图形》同步练习(一)含答案及解析

2021学年初中数学《画轴对称图形》同步练习(一)含答案及解析姓名:__________ 班级:__________考号:__________一、填空题(共8题)1、点P(-2,3)关于x轴的对称点的坐标是________.2、已知点关于轴的对称点是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则点的坐标是.3、点和关于轴对称,则的值为.4、由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图)。
请你在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形。
5、仔细观察下列图案,并按规律在横线上画出合适的图形.6、将平面直角坐标系内某个图形各个点的横坐标不变,纵坐标都乘以一1,所得图形与原图形关于________ 对称。
7、写一个有两条对称轴的轴对称图形.8、如图,在直角坐标平面内,线段AB垂直于y轴,垂足为B,且AB=2,如果将线段AB沿y轴翻折,点A落在点C处,那么点C的横坐标是.二、选择题(共9题)1、下列四张扑克牌的牌面,不是中心对称图形的是()2、在平面直角坐标系中,点关于轴对称点的坐标是()A. B. C. D.3、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直 B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分 D.对应点连线互相平行4、下列各图中,为轴对称图形的是()5、下列说法正确的是()A.的平方根是 B.将点向右平移5个单位长度到点C.是无理数 D.点关于轴的对称点是6、将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形。
将纸片展开,得到的图形是()A B C D7、下列几何图形中,一定是轴对称图形的有()A.2个 B.3个 C.4个 D.5个8、以图(一)的右边缘所在的直线为轴将该图形向右翻转后,再按顺时针方向旋转,所得到的图形是()9、已知点P(3,-2)与点Q关于x轴对称,则Q点的坐标为()A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2)三、作图题(共6题)1、如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)2、如图,在中,作的平分线,交于,作线段的垂直平分线,分别交于,于,垂足为,连结.在所作图中,寻找一对全等三角形,并加以证明.(不写作法,保留作图痕迹)3、如图,在平面直角坐标系中,,,.(1)求出的面积.(2)在图中作出关于轴的对称图形。
八年级数学《轴对称》练习及答案

八年级数学《轴对称》同步练习题基础达标】1.选择题:(1)下列说法错误的是()A.关于某条直线对称的两个三角形一定全等B.轴对称图形至少有一条对称轴C.全等三角形一定能关于某条直线对称D.角是关于它的平分线对称的图形⑵下列图形中,是轴对称图形的为()AECD⑶下图所示的图案中,是轴对称图形且有两条对称轴的是()⑴⑵2.填空题:1观察右上图中的两个图案,是轴对称图形的为,它有条对称轴.⑵如右下图,AABC与厶AED关于直线l对称,若AB=2cm,ZC=95°,则AE=ZD=度.⑶坐标平面内,点A和B关于x轴对称,若点A到x轴的距离是4.如图,AABC与厶ADE关于直线MN对称.BC与DE的交点F在直线MN1指出两个三角形中的对称点⑵指出图中相等的线段和角;⑶图中还有对称的三角形吗?5•如图,把一张纸片对折后,用笔尖在纸上扎出图⑶所示的图案,将纸打开后铺平,观察你所得的图案.位于折痕两侧的部分有什么关系?与同伴交流你的想法.匕旦 【能力巩固】6.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形。
一I◊同步训练20【基础达标】1. 选择题:⑴在锐角△ABC 内一点P 满足PA=PB=PC,则点P 是厶ABC()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点⑵厶ABC 中,AOBC ,边AB 的垂直平分线与AC 交于点D,已知AC=5,BC=4,则厶BCD 的周长是()A.9B.8C.7D.6⑶平面内到不在同一条直线的三个点A 、B 、C 的距离相等的点有()A.0个B.1个C.2个D.3个2. 填空题:⑴如右图,AABC 中,AB=AC=14cm,D 是AB 的中点,DE 丄AB 于D 交AC于E ,^EBC 的周长是24cm ,则BC 二⑵互不平行的两条线段AB 、AB '关于直线l 对称,AB 和AB '所在直线交于点P,下面结论:①AB=A 'B';②点P 在直线l 上;③若点A 、A ,是对称点,则l 垂直平分线段AA ':④若点B 、B '是对称点,则PB=PB ',其中正确的有(只填序号).3. △ABC 中,边AB 、AC 的垂直平分线交于点P.求证:点P 在BC 的垂直平分线上.能力巩固】6•现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑如图⑴,⑵所示.图(1)图(2)图(3)图(4)观察图⑴,图⑵中涂黑部分构成的图案•它们具有如下特征:①都是轴对称图形②涂黑分都是三个小正三角形.请在图⑶,图⑷内分别设计一个新图案,使图案具有上述两个特征.◊同步训练30【基础达标】1.选择题:⑴如图所示的标志中,是轴对称图形A.1个B.2个C.3个⑵下列平面图形中,不是轴对称图形的是()⑶如图所示,以下四个图形中,对称轴条数最多的一个图形是()的有()D.4个2.填空题:⑴轴对称图形中任意一组对应点的连线段的是该图形的对称轴.⑵当写有数字的纸条垂直于镜面摆放时(如图所示):□EBraEPE5!|lE3H5E1Bg|下面是从镜子中看到的一串数,它其实是3•如图,已知△ABC,请用直尺与圆规作图,将三角形的面积两等分.(不写作法,但要保留作图痕迹)4.已知图中的图形都是轴对称图形,请你画出它们的对称轴.5.分别找出具有一条对称轴、两条对称轴、三条对称轴、四条对称轴的几何图形,并画出来(包括对称轴).能力巩固】6.如图,AABC和厶AB C关于直线m对称.⑴结合图形指出对称点.⑵连接A、A',直线m与线段AA'有什么关系?⑶延长线段AC与A'C,它们的交点与直线m有怎样的关系?其它对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.轴对称答案同步训练11.1)C;⑵D;⑶D.2.(1)6;⑵2cm,95;⑶3cm.3.略.4.①A与A,B与D,C与E是对称点;②AB=AD,AC=AE,BC=DE,BF=DF,EF=CF;③△人已卩与厶ACF,AAB卩与厶ADF.5.略.6.折痕两侧的部分关于折痕轴对称。
轴对称图形练习题及答案

轴对称图形练习题及答案轴对称图形练习题及答案图形是我们生活中不可或缺的一部分,而轴对称图形更是我们常常会遇到的一种特殊图形。
轴对称图形是指通过一个轴线将图形分成两个完全相同的部分,这个轴线称为对称轴。
今天,我们就来练习一些轴对称图形,并给出相应的答案。
练习题一:请你画出以下图形的对称轴,并判断图形是否有轴对称性。
1. 正方形2. 矩形3. 圆形4. 五角星5. 心形答案:1. 正方形:对称轴可以是任意一条连接正方形两个对角线中点的线段。
正方形具有轴对称性。
2. 矩形:对称轴可以是连接矩形两个对边中点的线段。
矩形具有轴对称性。
3. 圆形:对称轴可以是任意一条经过圆心的直径线。
圆形具有无限个轴对称。
4. 五角星:对称轴可以是连接五角星两个对边中点的线段。
五角星具有轴对称性。
5. 心形:对称轴可以是连接心形两个对称部分的线段。
心形具有轴对称性。
练习题二:请你找出以下图形的对称中心,并判断图形是否有轴对称性。
1. 三角形2. 椭圆3. 马蹄形4. 蝴蝶形5. 鱼形答案:1. 三角形:对称中心可以是三角形的重心,即三条中线的交点。
三角形具有轴对称性。
2. 椭圆:椭圆没有对称中心,因此没有轴对称性。
3. 马蹄形:对称中心可以是马蹄形的中心点。
马蹄形具有轴对称性。
4. 蝴蝶形:对称中心可以是蝴蝶形的中心点。
蝴蝶形具有轴对称性。
5. 鱼形:对称中心可以是鱼形的中心点。
鱼形具有轴对称性。
练习题三:请你找出以下图形的对称轴,并判断图形是否有轴对称性。
1. 梯形2. 菱形3. 五边形4. 月亮形5. 雪花形答案:1. 梯形:梯形没有对称轴,因此没有轴对称性。
2. 菱形:对称轴可以是连接菱形两个对角线中点的线段。
菱形具有轴对称性。
3. 五边形:五边形没有对称轴,因此没有轴对称性。
4. 月亮形:对称轴可以是连接月亮形两个对称部分的弧线。
月亮形具有轴对称性。
5. 雪花形:对称轴可以是连接雪花形两个对称部分的线段。
雪花形具有轴对称性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E A
B P 0M N
F
《画轴对称图形》同步练习及答案1
一、选择题
1.下列讲法正确的是( )
A .任何一个图形都有对称轴;
B .两个全等三角形一定关于某直线对称;
C .若△ABC 与△A ′B ′C ′成轴对称,则△ABC ≌△A ′B ′C ′;
D .点A ,点B 在直线1两旁,且AB 与直线1交于点O ,若AO=BO ,则点A 与点B•关于直线l 对称.
2.已知两条互不平行的线段AB 和A ′B ′关于直线1对称,AB 和A ′B ′所在的直线交于点P ,下面四个结论:①AB=A ′B ′;②点P 在直线1上;③若A 、A ′是对应点,•则直线1垂直平分线段AA ′;④若B 、B ′是对应点,则PB=PB ′,其中正确的是( )
A .①③④
B .③④
C .①②
D .①②③④ 二、填空题
3.由一个平面图形能够得到它关于某
条直线对称的图形,•那个图形与原
图形的_________、___________完全一样. 4.数的运算中会有一些有味的对称形
式,仿照等式①的形式填空,并检验
等式是否成立.
①12×231=132×21; ②12×462=___________; ③18×891=__________;
④24×231=___________. 5.如图,点P 在∠AOB 的内部,点M 、
N 分不是点P 关于直线OA 、OB•的对称点,线段MN 交OA 、OB 于点E 、F ,若△PEF 的周长是20cm ,则线段MN 的长是___________. 三、解答题
6.如图,C 、D 、E 、F 是一个长方形台球桌的4个顶点,A 、B•是桌面上的两个球,如何样击打A 球,才能使A 球撞击桌面边缘CF 后反弹能够撞击B 球?请画出A•球通过的路线,并写出作法.
D
C
A
B
7.如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A 、B 两地,咨询该站建在河边什么地点,•可使所修的渠道最短,试在图中确定该点(保留作图痕迹)
a A
B
8.如图,仿惯例子利用“两个圆、•两个三角形和两条平行线段”设计一个轴对称图案,并讲明你所要表达的含义.
例:一辆小车
四、探究题
9.如图,已知牧马营地在P 处,每天牧马人要赶着马群先到河边饮水,再带到草地吃草,然后回到营地,请你替牧马人设计出最短的放牧路线.
草地
河流
营地
P
1.C 2.D 3.形状;大小
4.264×21;198×81;132×42 5.20cm
6.作点A关于直线CF对称的点G,连接BG交CF于点P,
则点P即为A•球撞击桌面边缘CF的位置
7.作点A关于直线a对称的点C,连接BC交a于点P,则点P确实是抽水站的位置
8.略
9.分不作P点关于河边和草地边对称的点C、D,连接CD分不交河边和草地于A、B两点,则沿PA→AB→BP的线路,所走路程最短.。