中考数学证明角相等

合集下载

中考数学证明角相等

中考数学证明角相等
选,A型题]下列哪种片剂可避免肝脏的首过作用()A、泡腾片B、分散片C、舌下片D、普通片E、溶液片 [单选]以下关于斑点状掌跖角化病临床表现的描述,错误的是()A.常染色体显性遗传病B.可发生于任何年龄C.典型皮损为掌跖部直径2~1Omm角化性丘疹D.多伴手足多汗表现 [单选]常规子宫颈癌全盆腔照射射野大小一般为()A.5cm×5cmB.10cm×15cmC.15cm×15cmD.15cm×20cmE.20cm×25cm [单选]订单分批是将(),从而提高拣货作业效率。A.订单按批量分批B.订单按同类货品分类C.多张订单合成一批D.同期订单合成一批 [单选]招标采购合同区别于其他合同的主要特点是()。A.通过招标采购程序订立合同B.通过货物采购程序订立合同C.通过服务采购程序订立合同D.通过工程采购程序订立合同 [单选,A2型题,A1/A2型题]早期结核性脑膜炎的主要临床表现特点是().A.性情改变B.头痛、呕吐C.结核中毒症状D.嗜睡、双眼凝视E.感觉过敏 [单选]《灵枢.百病始生》所言的“虚邪”是指()。A.正气虚弱B.致病性不强的邪气C.四时不正之气D.泛指一切致病因素E.情志失调 [单选]检查隐患,除观察表面迹象外,对于隐患的具体情况应采用()方法查明。A.探测B.巡查C.目测D.目估 [单选,A2型题,A1/A2型题]《素问·上古天真论》中女子五七发始堕的原因是()A.肾气虚B.肾精亏C.血不足D.阳气衰于上E.阳明脉衰 [单选]()是宴会服务的最后一项工作。A.结帐B.拉椅送客C.递送衣帽D.清理现场 [单选]TINN对接入网进行配置和管理是通过()接口.A.Q1B.Q2C.Q3 [单选]下列选项中,按配送区域划分配送中心的是()。A.城市配送中心B.流通加工配送中心C.家电商品配送中心D.第三方配送中心 [单选]高血压伴有低血钾最可能的病因是().A.原发性高血压服用利尿剂治疗B.原发性醛固酮增多症C.嗜铬细胞瘤D.肾动脉狭窄E.库欣综合征 [填空题]氨合成催化剂的毒物主要有()、()、()。 [单选]根据《中华人民共和国消防法》的规定,地方各级人民政府应当落实消防工作责任制,对本级人民政府有关部门履行职责的情况进行。()A、消防工作职责,监督检查B、消防工作职责,监督管理C、消防安全职责,监督检查D、消防安全职责,监督管理 [单选]根据《建设工程质量管理条例》的规定,设计单位应当参与建设工程()分析,并提出相应的技术处理方案。A.工期延误B.投资失控C.质量事故D.施工组织 [判断题]工艺美观,不用每天施工完毕后清理垃圾余料。()A.正确B.错误 [单选,A1型题]婚前医学检验的主要内容是指()A.进行性卫生知识、生育知识的教育B.进行遗传病知识的教育C.对有关婚配问题提供医学意见D.对有关生育保健问题提供医学意见E.对严重遗传疾病,指定传染病等的检查 [单选]最适宜用来鉴别急性单核细胞白血病和急性粒细胞白血病的细胞化学染色是()A.过氧化物酶B.糖原C.碱性磷酸酶D.α–丁酸萘酚酯酶和氟化钠抑制试验E.酸性磷酸酶 [单选]《出口食用动物饲料生产企业登记备案证》的有效期为()年。A.1B.2C.3D.5 [单选]乳疽的局部症状有()A.乳肿软绵B.乳坚硬木痛C.乳红肿热痛D.乳坚硬如石E.乳头溢液 [单选]下列不属于物权的基本原则的是()。A.一物一权原则B.全面履行原则C.物权公示原则D.物权法定原则 [单选,B型题]羟苯乙酯可用作()A.促渗透剂B.防腐剂C.保湿剂D.软膏剂油脂性基质E.软膏剂水溶性基质 [单选]某企业正在考虑卖掉现有设备,该设备于5年前购置,买价为50000元,税法规定的折旧年限为10年,按照直线法计提折旧,预计净残值为5000元;目前该设备可以20000元的价格出售,该企业适用的所得税税率为25%,则出售该设备产生的现金净流量为()元。A.20000B.17750C.21875D.50 [单选]一般情况下问卷应在多长时间内完成,否则会影响应答的效率()A.20分钟B.30分钟C.40分钟D.50分钟E.1小时 [填空题]化验室大量使用玻璃仪器,是因为玻璃具有很高的()、()有很好的()一定的()和良好绝缘性能. [单选,A2型题,A1/A2型题]()是指人具有最高价值,医学界应该尊重、同情、关心、救助服务对象的思想。A.生命神圣论B.医学人道主义C.广义的人道主义D.狭义的人道主义 [单选]行政主体承担行政责任的方式主要有()点。A.7B.8C.9D.10 [单选,A2型题,A1/A2型题]器官移植后发生慢性移植排斥反应的患者体内明显升高的是()A.IL-1B.IL-2C.IL-6D.GM-CSFE.IFN-γ [单选]鞣质具有的理化性质不包括()A、水溶性B、氧化性C、与蛋白质生成沉淀D、与醋酸铅生成沉淀E、与生物碱生成沉淀 [单选]一般车辆制造时,取车辆全长和定距之比为()。A.1.4:1B.1:1C.1.2:1 [单选]我国多发的肿瘤是()A.鼻咽纤维血管瘤B.鼻咽癌C.喉咽癌D.扁桃体癌E.霍奇金病 [填空题]苯乙烯为无色具有()气味的液体。 [单选,B1型题]心源性水肿常先出现的部位是()A.身体低垂部位B.颜面、眼睑C.全身D.胸腔E.腹腔 [单选]接触胶结是指胶结物含量(),分布于颗粒相互接触的地方,颗粒呈点状或线状接触的胶结。A、很少B、很多C、较少D、较多 [单选]对无排卵性功血病因的叙述,下列哪项是错误的?()A.青春期功血是由于下丘脑-垂体-卵巢轴调节功能尚未健全而引起B.围绝经期妇女功血是由于垂体功能异常而引起C.育龄期妇女功血可因内、外环境某种刺激(如劳累、应激、手术、流产等)引起D.无排卵性功血时,异常子宫出血还可 [单选]有关焦痂切开减压术,下列错误的是()A.常规切至深筋膜B.深筋膜下张力过高可将肌膜切开C.肢体屈侧作纵切口,不越过踝关节或腕关节D.两侧胸壁腋前线下作纵切口E.颈部作纵切口 [问答题,案例分析题]背景材料: [问答题,案例分析题]患者女性,25岁,急性阑尾炎术后,请你戴无菌手套、清洁伤口换药。 [单选]下列说法中不正确的是()。A.社会发展初期,商流与物流是统一的,随着社会生产力水平的发展,商流与物流逐渐分离B.在当今高度发达的市场经济环境中,物流发生的同时,物品所有权也随之转让了C.在一定条件下,商流与物流分离可以降低物流成本,加快货物的交货速度D.采取赊销

中考数学证明角相等

中考数学证明角相等
ቤተ መጻሕፍቲ ባይዱ
九城官网
[单选,A2型题,A1/A2型题]阴离子隙不会升高的是().A.尿毒症B.低氧所致乳酸堆积C.呼吸性酸中毒D.酮症酸中毒E.肾功能不全所致氮质血症 [单选]按《中国药典》2010版(一部)药材取样法规定,对待检的一般药材1600件,应抽检的包件数是A.160B.16C.56D.80E.32 [单选,A1型题]属于健康状况指标的是()。A.15岁以上成人识字率B.卫生资源分配C.安全水普及率D.儿童营养状况及发育E.人口增长指标 [单选]新型DZL水管锅炉,采用高效传热的()来代替原DZ系列采用的光管,使锅炉烟管的传热效率大大提高。A、烟道B、对流管束C、喉管D、螺纹烟管 [单选]船舶撤离时机应能确保自航施工船舶在()级大风范围半径到达工地5h前抵达防台锚地。A.6B.7C.8D.9 [单选,A2型题,A1/A2型题]问带下,量不多,色黄,质稠,有臭气,阴部干涩,五心烦热,失眠多梦,多为()A.湿热下注B.湿毒蕴结C.阴虚挟湿D.脾阳虚E.肾阳虚 [问答题,案例分析题]病例摘要:李某,女,50岁,已婚,公务员,于2013年2月18日初诊。患者于5年前开始出现心悸,气短,乏力,纳差,失眠健忘,面色无华。常服朱砂安神丸,艾司唑伦(舒乐安定)等药(具体用量不详)。平时精神欠佳,倦怠乏力。近1周来患者工作劳累上述症状加重伴头 [单选]()是人类认识客观事物的最原始、最基本的方法,也是涉烟情报分析的最基本方法。A、比较法B、分析与综合法C、推理法D、数据整合方法 [单选,A2型题,A1/A2型题]甲状腺功能亢进(甲亢)的早期诊断,下列检查最为敏感的是().A.血清总三碘甲状腺原氨酸(TT3)和血清甲状腺素(TT4)B.血清游离三碘甲状腺原氨酸(FT3)和血清游离甲状腺素(FT4)C.高敏促甲状腺激素(sTSH)临床实验室D.基础代谢率E.甲状腺摄131I率测定 [单选]有关企业经营成果的信息,主要通过()来反映。A.现金流量表B.成本报表C.利润表D.资产负债表 [单选,A2型题,A1/A2型题]桂枝茯苓丸的功效是()。A.养血安胎B.消瘀化癥C.温经散寒D.固崩止漏E.清热利湿 [单选]金属腐蚀的()是金属由元素状态返回自然状态(矿石)。A.原因B.本质C.特点D.特性 [填空题]WindowsServer2003的安装可分为()和()两种方式。 [单选]糖尿病酮症酸中毒的主要治疗是()A.纠正酸中毒,补充体液和电解质B.中枢兴奋剂,纠正酸中毒C.纠正酸中毒,应用胰岛素D.补充体液和电解质,应用胰岛素E.应用中枢兴奋剂及胰岛素 [单选]20世纪中叶毛泽东宣告“中国人民从此站起来了”。与这一结论相符的是()。A.抗战胜利洗雪百年国耻B.半殖民地半封建社会结束C.社会主义改造基本完成 [单选,A1型题]不属于良好饮食习惯的内容是()A.不挑食、不偏食B.定时定量进餐C.多吃蔬菜和水果D.吃饭细嚼慢咽E.不吃过多糖,适量摄入盐 [单选]关于类风湿关节炎患者行关节镜手术治疗,叙述正确的是()。A.关节镜滑膜切除术适合在类风湿关节炎疾病晚期,伴有明显滑膜炎、关节狭窄的患者B.经积极药物治疗6个月后患者仍有关节积液和滑膜炎C.关节镜下滑膜切除术是治疗类风湿关节炎的根治手术D.通过关节镜手术可修补损伤 [单选,A2型题,A1/A2型题]医学伦理学最突出的特征是()A.实践性、继承性B.时代性、人道性C.人道性、全人类性D.全人类性、继承性E.人道性、实践性 [单选]眶内异物定位方法很多,常用的定位方法为()A.几何定位法B.超声定位法C.手术中定位法D.普通头颅侧位片定位法E.头颅正位片定位法 [单选]下列属于颈椎病X线表现的有()A.可伴有小关节面硬化B.椎体边缘骨质增生、硬化C.椎间孔狭窄D.椎间隙变窄E.以上都是 [单选,A2型题,A1/A2型题]小儿腹股沟斜疝发病的相关因素为()A.生后腹膜鞘状突未闭B.腹股沟区解剖结构薄弱C.剧烈哭闹等腹压增高因素D.小儿多仰卧,双髋屈曲,使腹肌松弛E.以上都是 [单选]润滑油的温度升高,粘度()。A.增加B.不变C.减小D.不确定 [单选]依据糖尿病诊断标准,确诊糖尿病选用()A.全血血糖B.血浆血糖C.糖化血红蛋白D.尿糖定性E.24小时尿糖定量 [单选,A1型题]医疗机构在从事医疗卫生技术工作中()A.以使用非卫生技术人员B.尽量不用非卫生技术人员C.不得使用非卫生技术人员D.在次要的科室可以使用非卫生技术人员E.一些特殊科室可以使用非卫生技术人员 [单选]一项病例对照研究,500名病例中有暴露史者400例,而500名对照中有暴露史者100例,其OR值为()A.1.25B.1.6C.16D.160E.无法计算 [单选]全球所面临的城市问题有()。A.住房拥挤、交通堵塞、水源短缺B.空气污浊、土地紧张C.住房拥挤、交通堵塞、水源短缺、空气污浊、土地紧张D.住房拥挤、交通堵塞、水源短缺、空气污浊E.以上都不是 [单选,A2型题,A1/A2型题]面神经断伤后第几周,轴索可沿中空的鞘膜管由近及远再生()。A.2周B.3周C.4周D.5周E.6周 [判断题]带检视窗的储液干燥器能发现制冷系统制冷剂量和系统工作是否正常。()A.正确B.错误 [单选]检测仪表按被测量分类可分为温度检测仪表、压力检测仪表、流量检测仪表、物位检测仪表、机械量检测仪表以及()仪表等。A、过程分析B、时间检测C、长度检测D、体积检测 [问答题,简答题]国际上开展清洁生产的现状如何? [单选]铁路平面无线调车A型号调车长台,调车长连续按压三次黄键,信令显示黄灯长亮,其显示意义是()。A.减速B.提醒作业人员注意C.十车D.召集作业人员出场 [单选,A1型题]共同参与型的医患关系模式最适合于()。A.急性病人B.绝症病人C.慢性病人D.重症病人E.精神病人 [单选]Q-开关激光治疗后发性白内障,主要是利用了激光的()A.光化学效应B.光热效应C.弱刺激效应D.光致聚合效应E.光致压强电离作用 [单选]为了预防驾驶疲劳,驾驶员每天应保持()的睡眠时间。A、3~4小时B、4~5小时C、7~8小时 [名词解释](司空图的)“四外”说 [单选]丙烯塔回流泵全坏,操作调整中最应该注意()。A、塔顶压力B、塔底液面C、回流罐液面D、塔底温度 [单选]旷葡萄糖苷酶抑制剂常见不良反应是()A.低血糖症B.腹胀和腹泻C.下肢浮肿D.乳酸性酸中毒E.充血性心力衰竭 [单选]高压容器的压力()MPa。A.01.~1.6B.1.6~10C.10~100D.≥100 [单选]用摇表摇测绝缘子的绝缘电阻时,应选用()。A、2300V的摇表B、2000V的摇表C、1000V的摇表D、5000V的摇表 [单选]对饭店市场进行细分的主要目的是()。A.确定自己的目标市场B.开发新产品提供资料C.了解市场价格D.确定自己在市场中的地位

中考数学专题测试-四边形的证明与计算(答案解析)

中考数学专题测试-四边形的证明与计算(答案解析)

【考点分析】一、证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

二、证明两角相等1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等三、证明两直线平行1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

四、证明两直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

人教版八年级数学上册专题复习证明三角形全等的常见题型

人教版八年级数学上册专题复习证明三角形全等的常见题型

证明三角形全等的常见题型全等三角形是初中几何的重要内容之一,全等三角形的学习是几何入门最关键的一步,这部分内容学习的好坏直接影响着今后的学习。

而一些初学的同学,虽然学习了几种判定三角形全等的公理和推论,但往往仍不知如何根据已知条件证明两个三角形全等。

在辅导时可以抓住以下几种证明三角形全等的常见题型,进行分析。

一、已知一边与其一邻角对应相等1.证已知角的另一边对应相等,再用SAS证全等。

例1已知:如图1,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE。

证明∵BE=CF(已知),∴BE+ EF=CF+EF,即 BF=CE。

在△ABF和△DCE中,∴△ABF≌△DCE(SAS)。

∴ AF=DE(全等三角形对应边相等)。

2.证已知边的另一邻角对应相等,再用ASA证全等。

例2已知:如图2,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB。

求证:AE=CE。

证明∵ FC∥AB(已知),∴∠ADE=∠CFE(两直线平行,内错角相等)。

在△ADE和△CFE中,∴△ADE≌△CFE(ASA).∴ AE=CE(全等三角形对应边相等)3.证已知边的对角对应相等,再用AAS证全等。

例3(同例2).证明∵ FC∥AB(已知),∴∠A=∠ECF(两直线平行,内错角相等).在△ADE和△CFE中,∴△ADE≌△CFE(AAS).∴ AE=CE(全等三角形对应边相等)。

二、已知两边对应相等1.证两已知边的夹角对应相等,再用SAS证等。

例4已知:如图3,AD=AE,点D、E在BCBD=CE,∠1=∠2。

求证:△ABD≌△ACE.证明∵∠1=∠2(已知),∠ADB=180°-∠1,∠AEC=180°-∠2(邻补角定义),∴∠ADB = ∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).2.证第三边对应相等,再用SSS证全等。

例5已知:如图4,点A、C、B、D在同一直线AC=BD,AM=CN,BM=DN。

2020年中考数学专题24相似三角形判定与性质

2020年中考数学专题24相似三角形判定与性质

【答案】见解析。 【解析】根据平行四边形的性质得到 AD∥CD,AD=BC,得到△EBF∽△EAD,根据相似三角形的性质证明即 可;根据相似三角形的性质列式计算即可. (1)证明:∵四边形 ABCD 是平行四边形, ∴AD∥CD,AD=BC, ∴△EBF∽△EAD, ∴ = =,
∴BF= AD= BC, ∴BF=CF; (2)∵四边形 ABCD 是平行四边形, ∴AD∥CD,
C.4
D.
【答案】B 【解析】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形 的判定与性质等知识点. 由 S△ABC=16.S△A′EF=9 且 AD 为 BC 边的中线知 S△A′DE= S△A′EF= ,S△ABD= S△ABC=8,根据△
DA′E∽△DAB 知(
专题 24 相似三角形判定与性质
专题知识回顾
1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似多边形对应边的比叫做 相似比。 2.三角形相似的判定方法: (1)定义法:对应角相等,对应边成比例的两个三角形相似。 (2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相 似。 (3)判定定理 1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似, 可简述为两角对应相等,两三角形相似。 (4)判定定理 2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两 个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。 (5)判定定理 3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似, 可简述为三边对应成比例,两三角形相似。 3.直角三角形相似判定定理: ①以上各种判定方法均适用 ②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 ③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。 4. 相似三角形的性质: (1)相似三角形的对应角相等,对应边成比例 (2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比 (3)相似三角形周长的比等于相似比 (4)相似三角形面积的比等于相似比的平方。

【中考专项】2023年中考数学转向练习之选择题09 相似三角形的判定与性质

【中考专项】2023年中考数学转向练习之选择题09 相似三角形的判定与性质

【填空题】必考重点09 相似三角形的判定与性质相似三角形的判定与性质一直是江苏省各地市考查的重点,难度中等或较难,常作为压轴题考查。

在解相似三角形的判定与性质的有关题目时,首先要求考生掌握证明三角形相似的条件和方法,相似三角形的对应边成比例、对应角相等,对应角平分线、中线、高的比等于相似比,相似三角形的周长之比等于相似比,面积之比等于相似比的平方。

其次要能够运用相似三角形的性质,列出方程,求出相应线段的长度或者探索各线段之间的数量关系。

【2022·江苏苏州·中考母题】如图,在平行四边形ABCD 中,AB AC ⊥,3AB =,4AC =,分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线,与BC 交于点E ,与AD 交于点F ,连接AE ,CF ,则四边形AEC F 的周长为______.【考点分析】本题考查了垂直平分线的性质,菱形的性质与判定,勾股定理,平行线分线段成比例,平行四边形的性质与判定,综合运用以上知识是解题的关键.【思路分析】根据作图可得MN AC ⊥,且平分AC ,设AC 与MN 的交点为O ,证明四边形AECF 为菱形,根据平行线分线段成比例可得AE 为ABC 的中线,然后勾股定理求得BC ,根据直角三角形中斜边上的中线等于斜边的一半可得AE 的长,进而根据菱形的性质即可求解.【2022·江苏常州·中考母题】如图,在Rt ABC △中,90C ∠=︒,9AC =,12BC =.在Rt DEF 中,90F ∠=︒,3DF =,4EF =.用一条始终绷直的弹性染色线连接CF ,Rt DEF 从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt ABC △的外部..被染色的区域面积是______.【考点分析】本题考查了直角三角形,相似三角形的判定及性质、勾股定理、平行四边形的判定及性质,解题的关键是把问题转化为求梯形的面积.【思路分析】过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如图,需要知道的是Rt ABC 的被染色的区域面积是MNF F S '梯形,所以需要利用勾股定理,相似三角形、平行四边形的判定及性质,求出相应边长,即可求解.【2022·江苏宿迁·中考母题】如图,在矩形ABCD 中,AB =6,BC =8,点M 、N 分别是边AD 、BC 的中点,某一时刻,动点E 从点M 出发,沿MA 方向以每秒2个单位长度的速度向点A 匀速运动;同时,动点F 从点N 出发,沿NC 方向以每秒1个单位长度的速度向点C 匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF ,过点B 作EF 的垂线,垂足为H .在这一运动过程中,点H 所经过的路径长是_____.【考点分析】本题主要考查了相似三角形的判定与性质,勾股定理,圆周角定理,以及弧长等知识,判断出点H 运动的路径长为PN 长是解答本题的关键.【思路分析】根据题意知EF 在运动中始终与MN 交于点Q ,且AQM FQN ∆∆, :1:2,NQ MQ =点H 在以BQ 为直径的PN 上运动,运动路径长为PN 的长,求出BQ 及PN 的圆角,运用弧长公式进行计算即可得到结果.【2021·江苏镇江·中考母题】如图,点D ,E 分别在△ABC 的边AC ,AB 上,△ADE ∽△ABC ,M ,N 分别是DE ,BC 的中点,若AM AN =12,则ADE ABC S S =__.【考点分析】本题考查了相似三角形的性质,掌握相似三角形面积的比等于相似比的平方、相似三角形对应中线的比等于相似比是解题的关键.【思路分析】根据相似三角形对应中线的比等于相似比求出DE BC,根据相似三角形面积的比等于相似比的平方解答即可.1.(2022·江苏淮安·一模)如图,在正方形ABCD 中,8AB =,点H 在AD 上,且2AH =,点E 绕着点B 旋转,且3BE =,在AE 的上方作正方形AEFG ,则线段FH 的最小值是______.2.(2022·江苏苏州·二模)如图,在ABC 中,2AC =,AB AD CD ==,36BAD ∠=︒,则AD =________.3.(2022·江苏泰州·二模)定义:如果三角形中有两个角的差为90°,则称这个三角形为互融三角形,在Rt △ABC 中,∠BAC = 90°,AB = 4 ,BC = 5 ,点D 是 BC 延长线上一点.若 △ABD 是“互融三角形”,则 CD 的长为________.4.(2022·江苏泰州·二模)如图1,在Rt ABC 中,90B ,BA BC =,D 为AB 的中点,P 为线段AC上一动点,设PC x =,PB PD y +=,图2是y 关于x 的函数图像,且最低点E 的横坐标是AB =______.5.(2022·江苏淮安·一模)如图,在边长为1的小正方形组成的网格中,四边形ABCD 和四边形CGFE 的顶点均在格点上,则两个四边形重叠部分(阴影部分)的面积为__________.6.(2022·江苏泰州·一模)如图,直线l 与圆O 相交于A 、B 两点,AC 是圆O 的弦,OC ∥AB ,半径OC 的长为10,弦AB 的长为12,动点P 从点A 出发以每秒1个单位的速度沿射线AB 方向运动.当△APC 是直角三角形时,动点P 运动的时间t 为 _____秒.7.(2022·江苏南京·一模)如图,在ABC 中,30B ∠=︒,点D 是AC 上一点,过点D 作∥DE BC 交AB 于点E ,DF AB ∥交BC 于点F .若5AE =,4CF =,则四边形BFDE 的面积为______.8.(2022·江苏苏州·一模)如图,矩形ABCD中,点E在边CD上,AC与BE交于点F,过点F作FG BC⊥于点G,若23DEEC=,则FGAB的值为______.9.(2022·江苏南京·模拟预测)图,在▱ABCD中,对角线AC,BD交于点O,AF平分∠BAC,交BD于点E,交BC于点F,若BE=BF=2,则AD=_____.10.(2022·江苏扬州·一模)如图,在正方形ABCD中,BE CF=,连接AE、BF交于点H,连接DH并延长交BC于点G,若2AB BH==BG=__________.11.(2022·江苏无锡·一模)如图,在ΔABC中放置5个大小相等的正方形,若BC=12,则每个小正方形的边长为____.12.(2022·江苏苏州·二模)如图,在矩形ABCD 中,1AB =,3AD =.①以点A 为圆心,以不大于AB 长为半径作弧,分别交边AD ,AB 于点E ,F ,再分别以点E ,F 为圆心,以大于12EF 长为半径作弧,两弧交于点P ,作射线AP 分别交BD ,BC 于点O ,Q ;②分别以点C ,Q 为圆心,以大于12CQ 长为半径作弧,两弧交于点M ,N ,作直线MN 交AP 于点G ,则OG 长为______.13.(2022·江苏泰州·二模)如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点E 是△ABC 内部一点(不包括三条边),点F 、G 分别在AC 、AB 边上,且EF ⊥AC ,EG ⊥AB ,垂足分别为F 、G .点D 是AB 边的中点,连接ED ,若EF <EG ,则ED 长的取值范围是_________.14.(2022·江苏常州·二模)如图,正六边形ABCDEF 中,G 是边AF 上的点,113==GF AB ,连接GC ,将GC 绕点C 顺时针旋转60︒得,''G C G C 交DE 于点H ,则线段HG '的长为__________.15.(2022·江苏扬州·二模)如图,在锐角三角形ABC 中,8BC =,4sin 5A =,BN AC ⊥于点N ,CM AB ⊥于点M ,连接MN ,则△AMN 面积的最大值是______.16.(2022·江苏南通·二模)如图,正方形ABCD 的边长为5,E 为AD 的中点,P 为CE 上一动点,则AP BP +的最小值为______.17.(2022·江苏扬州·二模)定义:等腰三角形底边与腰的比叫做顶角α的正对(sad α).例如,在ABC 中,AB AC =,顶角A 的正对BC sadA AB ==底边腰.当36A ∠=︒时,36sad ︒=______________.(结果保留根号)18.(2022·江苏盐城·一模)如图,DE 是△ABC 的中位线,F 为DE 中点,连接AF 并延长交BC 于点G ,若2EFG S =△,则ABC S =___________.19.(2022·江苏无锡·一模)如图,点P 为线段AB 上一点,3AB =,2AP =,过点B 作任意一直线l ,点P关于直线l 的对称点为Q ,将点P 绕点Q 顺时针旋转90︒到点R ,连接PQ 、RQ 、AR 、BR ,则线段AR 长度的最大值为________.20.(2022·江苏盐城·一模)如图,在Rt ABC 中,CD 为斜边AB 的中线,过点D 作DE AC ⊥于点E ,延长DE 至点F ,使EF DE =,连接,AF CF ,点G 在线段CF 上,连接EG ,且180,2,3CDE EGC FG GC ∠+∠=︒==.下列结论:①12DE BC =;②四边形DBCF 是平行四边形;③EF EG =;④BC =______.(填序号)21.(2022·江苏连云港·一模)如图,以AB 为直径的半圆O 内有一条弦AC ,P 是弦AC 上一个动点,连接BP ,并延长交半圆O 于点D .若5AB =,4AC =,则DP BP 的最大值是________.22.(2022·江苏·扬州市邗江区梅苑双语学校一模)如图,在平行四边形ABCD 中,E ,F 分别是边AB ,AD 的中点,BF ,CE 交于点M ,若三角形BEM 的面积为1,则四边形AEMF 的面积为________.23.(2022·江苏南京·模拟预测)如图,在矩形ABCD 中,AB =6,E 是BC 的中点,AE 与BD 交于点F ,连接CF.若AE⊥BD,则CF的长为_____.24.(2022·江苏苏州·模拟预测)如图,矩形ABCD中,2BC=,E在边BC上运动,M、N在AB=,4+的最小值为______.对角线BD上运动,且25.(2022·江苏·连云港市新海初级中学一模)如图,矩形ABCD中,AB=4,AD=6,点E在边BC上,且BE∶EC=2∶1,动点P从点C出发,沿CD运动到点D停止,过点E作EF⊥PE交矩形ABCD的边于F,若线段EF的中点为M,则点P从C运动到D的过程中,点M运动的路线长为_______.【填空题】必考重点09 相似三角形的判定与性质相似三角形的判定与性质一直是江苏省各地市考查的重点,难度中等或较难,常作为压轴题考查。

2021届中考数学专题复习训练——二次函数 专题13.1二次函数综合之角度相等、45°角、二倍角

2021届中考数学专题复习训练——二次函数 专题13.1二次函数综合之角度相等、45°角、二倍角

二次函数角度问题 (角相等,45°角,二倍角)【经典例题1——角度相等】通过平行线,等腰等角,相似求解抛物线y =ax 2+c 与x 轴交于A 、B 两点,顶点为C ,点P 为抛物线上,且位于x 轴下方.(1)如图1,若P (1,-3)、B (4,0), ① 求该抛物线的解析式;② 若D 是抛物线上一点,满足∠DPO =∠POB ,求点D 的坐标;【解析】(1)①将P(1,−3),B(4,0)代入y=ax 2+c ,得⎩⎨⎧-=+=+3016c a c a ,解得⎪⎪⎩⎪⎪⎨⎧-==51651c a ,∴抛物线的解析式为y=51x 2−516;②如图1,当点D 在OP 左侧时,由∠DPO=∠POB ,得DP ∥OB , ∴D 与P 关于y 轴对称,且P(1,−3), ∴D(−1,−3);当点D 在OP 右侧时,延长PD 交x 轴于点G. 作PH ⊥OB 于点H ,则OH=1,PH=3. ∵∠DPO=∠POB , ∴PG=OG.设OG=x ,则PG=x ,HG=x −1.在Rt △PGH 中,由x 2=(x −1)2+32,得x =5. ∴点G(5,0).∴直线PG 的解析式为y=43x −415,∴MF=1,BF=2, ∴M (2,1)…(5分) ∵MN 是BC 的垂直平分线, ∴CN=BN ,设ON=x ,则CN=BN=4-x , 在Rt △OCN 中,CN 2=OC 2+ON 2, ∴(4-x )2=22+x 2,解得:x =23,∴N (23,0).设直线DE 的解析式为y=kx +b ,依题意,得:⎪⎩⎪⎨⎧=+=+02312b k b k ,解得:⎩⎨⎧-==32b k .∴直线DE 的解析式为y=2x -3. 解法二:如图2,设BC 的垂直平分线DE 交BC 于M ,交x 轴于N ,连接CN ,过点C 作CF ∥x 轴交DE 于F . ∵MN 是BC 的垂直平分线, ∴CN=BN ,CM=BM . 设ON=x ,则CN=BN=4-x , 在Rt △OCN 中,CN 2=OC 2+ON 2, ∴(4-x )2=22+x 2,解得:x =23,∴N (23,0). ∴BN=4-23=25.∵CF ∥x 轴,∴∠CFM=∠BNM . ∵∠CMF=∠BMN ,∴△CMF ≌△BMN .∴CF=BN .∴F (25,2).设直线DE 的解析式为y=kx +b ,得:⎪⎩⎪⎨⎧=+=+02312b k b k ,解得:⎩⎨⎧-==32b k∴直线DE 的解析式为y=2x -3.(3)由(1)得抛物线解析式为y=21x 2-25x +2,【解析】(1)∵y=−x2+(a+1)x−a解得x 1=a ,x 2=1由图象知:a <0 ∴A(a ,0),B(1,0) ∵S △ABC =6 ∴21(1−a )(−a )=6 解得:a =−3,(a =4舍去); (2)如图①,∵A(−3,0),C(0,3), ∴OA=OC ,∴线段AC 的垂直平分线过原点, ∴线段AC 的垂直平分线解析式为:y=−x , ∵由A(−3,0),B(1,0), ∴线段AB 的垂直平分线为x =−1 将x=−1代入y=−x , 解得:y=1∴△ABC 外接圆圆心的坐标(−1,1)(3)如图②,作PM ⊥x 轴交x 轴于M ,则S △BAP =21AB ⋅PM=21×4d ∵S △PQB =S △PAB∴A 、Q 到PB 的距离相等, ∴AQ ∥PB设直线PB 解析式为:y=x +b ∵直线经过点B(1,0)所以:直线PB 的解析式为y=x −1 联立y=−x 2−2x +3;y=x −1. 解得:x =−4;y=−5. ∴点P 坐标为(−4,−5) 又∵∠PAQ=∠AQB ,∴∠BPA=∠PBQ ,∴AP=QB , 在△PBQ 与△BPA 中,AP=QB ,∠BPA=∠PBQ ,PB=BP , ∴△PBQ ≌△ABP(SAS), ∴PQ=AB=4设Q(m ,m+3)由PQ=4得:(m+4)2+(m+3+5)2=42解得:m=−4,m=−8(当m=−8时,∠PAQ ≠∠AQB ,故应舍去) ∴Q 坐标为(−4,−1).练习1-1如下图,已知抛物线y=ax2+bx+5经过A(-5,0),B(-4,-3)两点,与x 轴的另一个交点为C,顶点为D,连接CD.(1)求该抛物线的表达式.(2)点P为该抛物线上一动点(与点B,C不重合),设点P的横坐标为t.该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由练习1-2.如图,抛物线y=ax2+bx+6与x轴交于点A(﹣2,0)、点B(6,0),与y轴交于点C.(1)求该抛物线的函数解析式;(2)点D(4,m)在抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;练习1-3.(2019泰安)若二次函数y=ax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,-2),且过点C(2,-2).(1)求二次函数解析式;(2)若点P为抛物线上第一象限内的点,且S△PBA=4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使∠ABO=∠ABM?若存在,求出点M 到y轴的距离;若不存在,请说明理由.练习1-4.抛物线322++-=x x y 与x 轴交于点A ,B (A 在B 的左侧),与y 轴交于点C .(1)求直线BC 的解析式;(2)抛物线的对称轴上存在点P ,使∠APB=∠ABC ,利用图1求点P 的坐标; (3)点Q 在y 轴右侧的抛物线上,利用图2比较∠OCQ 与∠OCA 的大小,并说明理由.练习1-5如图(1),直线y=−34x +n 交x 轴于点A ,交y 轴于点C(0,4),抛物线y=32x 2+bx +c 经过点A ,交y 轴于点B(0,−2).点P 为抛物线上一个动点,过点P 作x 轴的垂线PD ,过点B 作BD ⊥PD 于点D ,连接PB ,设点P 的横坐标为m. (1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图(2),将△BDP 绕点B 逆时针旋转,得到△BD′P′,当旋转角∠PBP′=∠OAC ,且点P 的对应点P′落在坐标轴上时,请直接写出点P 的坐标。

中考数学 考点系统复习 第四章 三角形 方法技巧突破(四) 全等三角形之六大模型

中考数学 考点系统复习 第四章 三角形 方法技巧突破(四) 全等三角形之六大模型
证明三角形全等的关键: 解题 (1)找公共角、垂直、对顶角、等腰等条件得对应角相等; 思路 (2)找公共边、中点、等底角、相等边、线段的和差等条件
得对应边相等
2.(2021·泸州)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求
证:BD=CE. 证明:在△ABE与△ACD中,
∠A=∠A,
AB=AM,
在△ABN 和△AMC 中,∠BAN=∠MAC, AN=AC,
∴△ABN≌△AMC(SAS),∴BN=MC.
6.如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,AE 与 BD 交于点 F.
(1)求证:AE=BD; 证明:∵AC⊥BC, DC⊥EC, ∴∠ACB=∠DCE=90°, ∴∠ACB+∠BCE=∠DCE+∠BCE, 即∠ACE=∠BCD.在△ACE 和△BCD 中, AC=BC,
证明:∵ BF=EC,
∴EF= BC,
在△BCA与△EFD中,
AB=DE,
∠B=∠E, BC=EF, ∴△BCA≌△FED(SAS), ∴∠A=∠D,
模型二:轴对称型 【模型归纳】
有公 模型 共边 展示 有公共
顶点Leabharlann 模型 所给图形沿公共边所在直线或者经过公共顶点的某条直线 特点 折叠,两个三角形能完全重合
5.如图,在△ABC 中,分别以 AB,AC 为边向外作等边三角形 ABM 与等边 三角形 ACN,连接 MC,BN.求证:BN=MC.
证明:∵△ABM 和△ACN 是等边三角形, ∴AB=AM,AN=AC,∠BAM=∠NAC=60°, 又∵∠BAN=∠BAC+∠NAC, ∠CAM=∠BAC+∠BAM, ∴∠BAN=∠MAC,
= 43BD2
解题 常过顶点作角两边的垂线,构造全等三角形,或旋转一定的角
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档