微波基本参数的测量实验报告
微波测量实验报告

微波测量实验报告一、实验背景微波测量是指利用微波技术对被测物体进行测量的一种方法。
微波是一种电磁波,其频率范围在300MHZ至300GHz之间。
微波测量广泛应用于通信、测距、雷达、卫星等领域。
本实验旨在通过对微波信号的发射、传播和接收进行实验,了解微波测量的基本原理和方法。
二、实验原理微波测量实验主要依赖于微波发射器和接收器的配合。
首先,发射器通过产生一个特定频率和幅度的微波信号,将信号输入到一个导波器(如开放式传输线)中。
信号在导波器中通过传播,并且可以根据特定的设计进行传播路径的调整。
接收器用来接收由被测物体反射或传播过来的微波信号,通过对信号进行处理,可以得到关于被测物体的信息。
在微波测量中,由于微波的特殊性质,测距、测速和测向等参数可以通过对微波信号的相位、频率和幅度进行分析来实现。
例如,利用多普勒频移原理,可以通过测量微波信号的频率变化来计算目标物体的速度;利用相位差原理,可以通过测量微波信号的相位差来计算目标物体的位置。
三、实验设备和材料1.微波发射器:用来产生微波信号的设备;2.导波器:用来传输微波信号的导向装置;3.微波接收器:用来接收被测物体反射或传播过来的微波信号并进行参数分析的设备;4.被测物体:用来反射或传播微波信号的物体。
四、实验步骤1.连接微波发射器和接收器,并对其进行相位校准;2.将被测物体放置在适当位置,调整微波接收器的位置和角度,以便接收到反射或传播过的微波信号;3.运行微波发射器和接收器,记录并分析接收到的微波信号的相位、频率和幅度等参数;4.根据参数分析的结果,计算并得出被测物体的测量结果。
五、实验结果与分析在实验中,我们成功地利用微波发射器和接收器对一块金属板进行了微波测量。
通过对接收到的微波信号的相位、频率和幅度进行实验结果的分析,我们得出了金属板的尺寸和位置等测量结果。
六、实验总结通过本实验,我们了解了微波测量的基本原理和方法。
微波测量广泛应用于通信、测距、雷达、卫星等领域,具有重要的实际应用价值。
微波基本参量测量实验报告

浙江师范大学实验报告实验名称微波基本参量测量班级物理092 姓名阮柳晖学号09180229同组人任亚萍实验日期11/10/24 室温/ 气温/微波基本参量测量摘要:微波系统中最基本的参数有频率、驻波比、功率等。
本实验通过了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,运用微波测量的基本技术,对微波的频率、驻波比、功率进行测量。
关键词:频率功率驻波比阻抗引言:微波成为一门技术科学,开始于20世纪30年代。
微波技术的形成以波导管的实际应用为其标志。
微波是指频率为300MHz-300GHz的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
微波的最重要应用是雷达和通信。
微波与其他学科互相渗透而形成若干重要的边缘学科,其中如微波天文学、微波气象学、微波波谱学、量子电动力学、微波半导体电子学、微波超导电子学等。
其应用及涉及领域仍在不断扩大。
正是由于微波的重要科技地位,学习其基础知识及工作原理等变得至关重要。
正文:一、实验原理微波介绍:微波及似声似光性微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热,微波炉就是利用这一特点制成的,而对金属类东西,则会反射微波。
微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多。
使得微波的特点与几何光学相似,即所谓的似光性。
因此使用微波工作,能使电路元件尺寸减小,使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。
微波测量技术实验报告

一、实验目的1. 理解微波测量技术的基本原理和实验方法;2. 掌握微波测量仪器的操作技能;3. 学会使用微波测量技术对微波元件的参数进行测试;4. 分析实验数据,得出实验结论。
二、实验原理微波测量技术是研究微波频率范围内的电磁场特性及其与微波元件相互作用的技术。
实验中,我们主要使用矢量网络分析仪(VNA)进行微波参数的测量。
矢量网络分析仪是一种高性能的微波测量仪器,能够测量微波元件的散射参数(S参数)、阻抗、导纳等参数。
其基本原理是:通过测量微波信号在两个端口之间的相互作用,得到微波元件的散射参数,进而分析出微波元件的特性。
三、实验仪器与设备1. 矢量网络分析仪(VNA)2. 微波元件(如微带传输线、微波谐振器等)3. 测试平台(如测试夹具、测试架等)4. 连接电缆四、实验步骤1. 连接测试平台,将微波元件放置在测试平台上;2. 连接VNA与测试平台,进行系统校准;3. 设置VNA的测量参数,如频率范围、扫描步进等;4. 启动VNA,进行微波参数测量;5. 记录实验数据;6. 分析实验数据,得出实验结论。
五、实验数据与分析1. 实验数据(1)微波谐振器的Q值测量:通过扫频功率传输法,测量微波谐振器的Q值,得到谐振频率、品质因数等参数;(2)微波定向耦合器的特性参数测量:通过测量输入至主线的功率与副线中正方向传输的功率之比,得到耦合度;通过测量副线中正方向传输的功率与反方向传输的功率之比,得到方向性;(3)微波功率分配器的传输特性测量:通过测量输入至主线的功率与输出至副线的功率之比,得到传输损耗。
2. 实验数据分析(1)根据微波谐振器的Q值测量结果,分析谐振器的频率选择性和能量损耗程度;(2)根据微波定向耦合器的特性参数测量结果,分析耦合器的性能指标,如耦合度、方向性等;(3)根据微波功率分配器的传输特性测量结果,分析功率分配器的传输损耗。
六、实验结论1. 通过实验,掌握了微波测量技术的基本原理和实验方法;2. 熟练掌握了矢量网络分析仪的操作技能;3. 通过实验数据,分析了微波元件的特性,为微波电路设计和优化提供了依据。
微波基本参数测量实验报告

微波基本参数测量实验报告摘要:微波系统中最基本的参数有频率,驻波比,功率等。
本实验通过了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,运用微波测量的基本技术,对微波的频率,驻波比,功率进行测量。
关键词:频率驻波比功率实验仪器引言:微波是一种用途极为广泛,也是我们日常生活必不可少的技术。
微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热。
而对金属类东西,则会反射微波。
微波能通常由直流电或50Hz交流电通过一特殊的器件来获得。
可以产生微波的器件有许多种,但主要分为两大类:半导体器件和电真空器件。
电真空器件是利用电子在真空中运动来完成能量变换的器件,或称之为电子管。
在电真空器件中能产生大功率微波能量的有磁控器、多腔速调器、微波三、四极管、行波器等。
在目前微波加热领域特别是工业应用中使用的主要是磁控管及速调管。
微波技术是一门独特的现代科学技术,其重要地位不言而喻,因此掌握它的基本知识和实验方法变得尤为重要。
1.实验目的1.了解各种微波器件;2.了解微波工作状态机传输特性;3.熟悉驻波、衰减、波长(频率)和功率的测量;2实验原理1.1微波频率的测量频率是微波设备的重要参数,微波仪器通过测量其工作频率来检测其是否正常运行。
由于受到器件最高运行速度的限制(目前,高速计数器件PECL计数器的最高输入频率为2.2GHz),直接利用计数器测量频率,其测量范围有限。
不过在本实验中,我们将采用直接测量法。
使用外差式频率计或是数字频率计就能直接读出频率的数值。
微波的基本参数测量 实验报告

微波的基本参数测量【摘要】微波系统中最基本的参数有频率、驻波比、功率等。
在通过对微波测试系统的基本组成和工作原理的观察和研究后,我们需要对频率、功率以及驻波比等基本量进行测量。
了解了微波在波导中的传播特点,习用微波作为观测手段来研究物理现象,从而进一步认识微波。
【关键词】微波频率驻波比功率【引言】微波的用途极为广泛,已经成为我们日常生活中不可缺少的一项技术。
微波通常是指波长从1米(300MHZ)到1毫米(300GHZ)范围内的电磁波,其低频段与超短波波段相衔接,高频端与远红外相邻,由于它比一般无线电波的波长要短的多,故把这一波段的无线电波称为微波,可划分为分米波、厘米波和毫米波。
微波的基本特性明显,如波长极短、频率极高、具有穿透性、似光性等。
基本特性明显使得微波被广泛应用于各类领域。
微波技术不仅在国防、通讯、工农业生产的各个方面有着广泛的应用,而且在当代尖端科学研究中也是一种重要手段,如高能粒子加速器、受控热核反应、射电天文与气象观测、分子生物学研究、等离子体参量测量、遥感技术等方面。
近年来,微波技术与各类学科交叉衍生出各类微波边缘学科,如微波超导、微波化学、微波生物学、微波医学等,在各自领域都得到了长足的发展。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热。
而对金属类东西,则会反射微波。
从电子学和物理学观点来看,微波这段电磁频谱具有不同于其他波段的如下重要特点:穿透性:微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好的穿透性。
微波透入介质时,由于介质损耗引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时,物料内外加热均匀一致。
似光性和似声性:微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多,或在同一量级上。
微波技术基础实验报告

微波技术基础实验报告一、实验目的1.掌握微波信号的基本特性和参数的测量方法;2.了解微波器件的性能指标和测试方法;3.加深对微波传输线和网络理论的理解和实践。
二、实验设备和原理实验设备:微波信号源、功率计、波导固有模发生器、波间仪、反射器等。
实验原理:微波技术是指在高频范围内进行电磁波的传输、控制和处理的一套技术体系,其频率范围通常为0.3GHz至300GHz。
微波技术具有频率高、信息容量大和传输距离远等优点,广泛应用于通信、雷达、航空航天等领域。
三、实验步骤和内容1.根据实验要求,搭建实验电路;2.测量微波信号源输出功率,通过功率计测量微波信号源输出功率;3.测量波导波导的传输特性,通过波间仪测量微波信号通过波导时的传输特性;4.测量波导器件的特性,通过波间仪测量波导器件的特性;5.测量波导管中的固有模,通过固有模发生器和反射器测量波导管中的固有模。
四、实验结果和数据分析1.根据实验条件,测量到微波信号源输出功率为10dBm;2.根据测量结果,绘制出波导波导的传输特性曲线,分析其传输性能;3.根据实验条件,测量到波导器件的插入损耗为3dB;4.根据实验条件和测量数据,计算出波导管中的固有模的频率范围和衰减值,并进行数据分析。
五、实验结论1.微波信号源输出功率为10dBm;2.波导波导的传输特性曲线显示了其良好的传输性能;3.波导器件的插入损耗为3dB,插入损耗越小,器件性能越好;4.波导管中的固有模的频率范围为0.3GHz至3GHz,衰减值为-10dB。
六、实验总结通过本次实验,我深入理解了微波技术的基本特性和参数的测量方法,掌握了微波器件的性能指标和测试方法,并加深了对微波传输线和网络理论的理解和实践。
通过实验数据的测量和分析,我对微波技术的应用和性能有了更深入的认识,实验收获颇丰。
微波基本测量实验报告

微波基本测量实验报告微波基本测量实验报告引言:微波技术是现代通信、雷达、天文学等领域的重要组成部分。
为了更好地了解微波的特性和应用,本实验旨在通过基本的测量实验,探索微波的传输、反射和干涉等现象,并对实验结果进行分析和讨论。
一、实验装置和原理本实验使用的实验装置包括微波发生器、微波导波管、微波检波器、微波衰减器等。
微波发生器产生微波信号,经由微波导波管传输到被测物体,再通过微波检波器接收并测量微波信号的强度。
微波衰减器用于调节微波信号的强度,以便进行不同强度的测量。
二、实验过程和结果1. 传输实验将微波发生器与微波检波器分别连接到微波导波管的两端,调节发生器的频率和功率,记录检波器的读数。
随着发生器功率的增加,检波器读数也相应增加,说明微波信号能够稳定传输。
2. 反射实验将微波发生器与微波检波器连接到微波导波管的同一端,将导波管的另一端暴露在空气中,调节发生器的功率,记录检波器的读数。
随着功率的增加,检波器读数也增加,表明微波信号在导波管与空气之间发生了反射。
3. 干涉实验将两根微波导波管分别连接到微波发生器和微波检波器上,将两根导波管的另一端合并在一起,调节发生器的功率,记录检波器的读数。
随着功率的增加,检波器读数呈现周期性的变化,表明微波信号在导波管之间发生了干涉。
三、实验结果分析1. 传输实验结果表明,微波信号能够稳定传输,说明微波导波管具有良好的传输特性。
传输实验中,微波信号的强度与发生器功率呈正相关关系,这与微波信号的传输损耗有关。
2. 反射实验结果表明,微波信号在导波管与空气之间发生了反射。
反射实验中,微波信号的强度与发生器功率呈正相关关系,说明反射信号的强度与输入信号的强度相关。
3. 干涉实验结果表明,微波信号在导波管之间发生了干涉。
干涉实验中,微波信号的强度呈现周期性的变化,这与导波管的长度和微波信号的频率有关。
当导波管的长度等于微波信号的波长的整数倍时,干涉现象最为明显。
四、实验总结通过本次微波基本测量实验,我们对微波的传输、反射和干涉等现象有了更深入的了解。
完整微波基本参数测量实验报告

(完整)微波基本参数测量实验报告微波基本参数测量实验报告【引言】微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,微波的基本性质通常呈现为穿透、反射、吸收三个特性。
微波成为一门技术科学,开始于20世纪30年代。
微波技术的形成以波导管的实际应用为其标志,若干形式的微波电子管(速调管、磁控管、行波管等)的发明,是另一标志。
在第二次世界大战中,微波技术得到飞跃发展。
因战争需要,微波研究的焦点集中在雷达方面,由此而带动了微波元件和器件、高功率微波管、微波电路和微波测量等技术的研究和发展。
至今,微波技术已成为一门无论在理论和技术上都相当成熟的学科,又是不断向纵深发展的学科。
【实验设计】一、实验原理1、微波微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热,微波炉就是利用这一特点制成的,而对金属类东西,则会反射微波。
2、微波的似声似光性微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多。
使得微波的特点与几何光学相似,即所谓的似光性。
因此使用微波工作,能使电路元件尺寸减小,使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。
由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。
3、波导管波导管是一种空心的、内壁十分光洁的金属导管或内敷金属的管子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波基本参数的测量【目的要求】1.学习微波的基本知识,了解波导测量系统,熟悉基本微波元件的作用;2.了解微波在波导中传播的特点,掌握微波基本测量技术;3.掌握驻波测量线的正确使用方法;4.掌握电压驻波系数的测量原理和方法。
【仪器用具】微波参数测试系统,包括:三厘米固态信号源,三厘米驻波测量线,选频放大器,精密衰减器,隔离器,谐振式频率计(波长表),匹配负载,晶体检波器,单螺调配器等。
【原理】微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。
从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。
与无线电波相比,微波有下述几个主要特占八、、A /it |钏1 I「F X-io®LU 1 1 1 1 1i I J KT* IN JQ-U1 1 』」1p\\r in 1 1 1 n i 1 1 II P1 卿]□'"阿見充¥卅电恢图1电磁波的分类1 •波长短(1m1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。
2 •频率高:微波的电磁振荡周期(10-9—10-12s)很短,已经和电子管中电子在电极间-9器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。
另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻、电容、电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。
3.微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量。
4.量子特性:在微波波段,电磁波每个量子的能量范围大约是10-6〜10-3eV, 而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内。
人们利用这一特点来研究分子和原子的结构,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和准确的分子钟,原子钟。
5.能穿透电离层:微波可以畅通无阻地穿越地球上空的电离层,为卫星通讯,宇宙通讯和射电天文学的研究和发展提供了广阔的前途。
综上所述微波具有自己的特点,不论在处理问题时运用的概念和方法上,还是在实际应用的微波系统的原理和结构上,都与普通无线电不同。
微波实验是近代物理实验的重要组成部分。
在微波波段,随着工作频率的升高,导线的趋肤效应和辐射效应增大,使得普通的导线不能完全传输微波能量,而必须改用微波传输线。
常用的微波传输线有平行双线、同轴线、带状线、微带线、金属波导管及介质波导等多种形式的传输线,本实验用的是矩形波导管,波导是指能够引导电磁波沿一定方向传输能量的传输线。
根据电磁场的普遍规律——Maxwell 方程组以及具体波导的边界条件,可以严格求解出只有两大类波能够在矩形波导中传播:①横电波(又称为磁波),简写为TE 波(或H 波),磁场可以有纵向和横向的分量,但电场只有横向分量。
② 横磁波(又称为电波),简写为TM 波(或E 波),电场可以有纵向和横向的分 量,但磁场只有横向分量。
在实际应用中,一般让波导中存在一种波型,而且只传输一种波型,本实验采用TE io 波,是矩形波导中常用的一种波型。
TE o 型波:场分量为a :波导截面宽边的长度;:微波沿传输方向的相位常数g :波导波长(在波导管里面,某些特定波长的电磁波与波导谐振,其中最长的一个波长被称为波导的特征波长,也称波导波长):微波在自由空间波长。
以上表明,TE o 波具有如下特点:① 存在一个临界波长c 2a ,(矩形波导中传播的TE 波和TM 波,都有一定的临界波长”,能在矩形波导中传播的波长最长的电磁波的波长称为波导管的临界波长)。
只有波长 c 的电磁波才能在波导管中传播② g ,即波导波长入g 大于自由空间波长入,(TE 波和TM 波在波导中的波长用g 表示)。
波导内由入射波与反射波叠加而成的合成波,其相平面传播的速 度称为相速V ,群速V c 是表示能量沿波导纵向传播的速度, 其关系为V V c C 2 因为,波导中电磁波是成 之”字形并以光速传播的,所以,波导波长g 将大于自由空间的波长在一个均匀、无限长和无耗的矩形波导中, 沿z 方向传播的TE o 型波的各个H x E x ■ a X j( t z)j sin( )e , H ya o a . / x j ( sin( )e a j-^cosH X )e j( t z)a其中: 为电磁波的角频率, t Z),E zf , f 是微波频率;g图1电磁波在波导中的传播③电场只存在横向分量,电力线从一个导体壁出发,终止在另一个导体壁上,并且始终平行于波导的窄边(坐标xyz的x轴沿波导横截面的宽边,y轴沿波导横截面的窄边,z轴沿波导的纵方向)。
④磁场既有横向分量,也有纵向分量,磁力线环绕电力线。
⑤电磁场在波导的纵方向(z)上形成行波。
在z方向上,E y和H x的分布规律相同,也就是说E y最大处H x也最大,E y为零处H x也为零,场的这种结构是行波的特点。
图2 TE o波的电磁场结构(a), (b),(c)及波导壁电流分布(d)波导管的工作状态:(1)如果波导终端负载是匹配的(波导终端接入负载后,由于负载性质的不同,电磁波就将在终端产生不同程度的反射。
如果用Z C表示传输线的特性阻抗,用Z L 表示负载阻抗,若波导终端负载是匹配的,则Z C = Z L),则入射波全部被负载吸收而无反射,传播到终端的电磁波的所有能量全部被吸收,这时波导中呈现的是行波,即此时波导管中的微波的将沿波导管无损耗的向前传播,传播时波的幅值不衰减,能量不衰减,就像在真空中传播一样,见图3(a)。
(2)当终端短路(微波技术中的短路是指系统终端接入全反射负载,即:Z 0)时,入射波被负载全部反射。
这时波导管中同时有两列频率相同、振幅相同、传播方向相反的微波,一列是入射波,一列是反射波,这两列波将在波导管中形成驻波,并且是纯驻波”波的波腹和波节点电场E的大小E max 0,而E min = 0,见图3 (C)。
(3)当波导终端不匹配时(任意负载下),就有一部分波被反射(波导中的任何不均匀性也会产生反射),形成所谓混合波。
混合波是一种行驻波”波的波腹和波节点电场E的大小E max0,并且E min0,见图3 (b)。
为描述电磁波,引入反射系数与驻波比的概念,反射系数定义为E r/E i I |e j。
驻波比定义为:也,用驻波比来描述传输线阻抗匹配的情况。
E min其中:E max和E min分别为波腹(驻波电场最大值处)和波节(驻波电场最小值处)点电场E的大小。
不难看出:对于行波,=1;对于驻波,=*;而当1< v x,是混合波。
图3为行波、混合波和驻波的振幅分布波示意图。
图3 (a)行波,(b)混合波,(c)驻波微波系统中最基本的参数有频率、驻波比、功率等。
而阻抗、波长、驻波比和功率等微波参数的测量方法有其独特之处。
微波阻抗的测量是通过检测电场强度的相对值(即:驻波比)来实现。
波长的测量可用谐振腔来进行(即通常所称的吸收式波长计”。
功率的测量是利用微波的热效应,通过热电换能器进行间接的量测本实验是使用厘米波中的X波段,其标称波长为 3.2cm,中心频率为9375MHz。
其它主要设备有:测量线:三厘米驻波测量线由开槽波导、不调谐探头和滑架组成。
其内腔尺寸为a= 22.86mm, b= 10.16mm。
其主模频率范围为〜,对于TE o波而言,截止波长c 2a = 45.72mm,截止频率为c c c 。
开槽直波导位于波导宽边的正中央,平行于波导轴线,不切割高频电流,因此对波导内的电磁场分布影响很小,开槽波导中的场由不调谐探针取样,探针感应出的电动势经过晶体检波器变成电信号输出,可以显示沿波导轴线的电磁场变化信息。
实验中就是通过探测测量线中电磁场的分布达到测量微波的各种参数目的。
图4 DH364A00型3cm测量线外形直波导管:型号为BJ-100,其内腔尺寸为a= 22.86mm,b= 10.16mm。
其主模频率范围为〜,对于TE10波而言,截止波长c 2a = 45.72mm,截止频率为c c c ,实验中作为连接件使用。
隔离器:位于磁场中的某些铁氧体材料对于来自不同方向的电磁波有着不同的吸收,经过适当调节,可使其对微波具有单方向传播的特性。
实验中隔离器用于振荡器与负载之间,起隔离和单向传输作用。
可变衰减器:把一片能吸收微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。
衰减器起调节系统中微波功率以及去耦合的作用。
波长表:电磁波通过耦合孔从波导进入波长表的空腔中,当波长表的腔体失谐时,腔里的电磁场极为微弱,此时,它基本上不影响波导中波的传输。
当电磁 波的频率满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化, 相应地,通过波导中的电磁波信号强度将减弱, 输出幅度将出现明显的跌落,从 刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振波长。
匹配负载:波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。
单螺调配器:插入矩形波导中的一个深度可以调节的螺钉, 并沿着矩形波导 宽壁中心的无辐射缝作纵向移动,通过调节探针的位置使负载与传输线达到匹配 状态。
调匹配过程的实质,就是使调配器产生一个反射波,其幅度和失配元件产 生的反射波幅度相等而相位相反,从而抵消失配元件在系统中引起的反射而达到 匹配。
【实验步骤】1. 驻波比的测量:小驻波比(1. 05< <的测量产生驻波的原因是由于负载阻抗与波导特性阻抗不匹配。
因此,通过对驻波 比的测量,就能检查系统的匹配情况,进而明确负载的性质。
驻波测量是微波测 量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和Q 值等其他参量。
本实验是在小信号状态下进行测试的,这时驻波测量线中的检波晶体二极管工作在平方律检波区域,检波电流I E 2,可设:I kE 2,因此:通过测量测量线开槽波导中微波驻波波腹处和波节处的最大电压值及最小电压值,就可以计算出波导中微波驻波的驻波比步骤:(1) 按图5所示的框图连接成微波实验系统E max E min \ Imin k 1 maxF k ; 1 max. j U max R L, j U max 石 \U mij R L Y U Zmaxmax min(2) 开启微波信号源(DH1121。