2021年九年级数学上学期期中测试题
河南省商丘市第一中学2021-2022学年九年级上学期期中教学质量评估数学试卷

2021-2022学年河南省商丘一中九年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.下列方程是一元二次方程的是()A.3x2+=0B.2x﹣3y+1=0C.(x﹣3)(x﹣2)=x2D.(3x﹣1)(3x+1)=32.二次函数y=﹣(x﹣2)2﹣3的图象的顶点坐标是()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)3.关于x的一元二次方程x2﹣2x+m=0的一个根为﹣1,则m的值为()A.﹣3B.﹣1C.1D.24.如图,AB是⊙O的直径,点C,D,若∠ACE=20°,则∠BDE的度数为()A.90°B.100°C.110°D.120°5.半径为2的圆内接正六边形的边心距的长是()A.2B.1C.D.6.如果将抛物线y=(x+2)2﹣3平移,使它与抛物线y=x2+1重合,那么平移的方式可以是()A.向左平移2个单位,向上平移4个单位B.向左平移2个单位,向下平移4个单位C.向右平移2个单位,向上平移4个单位D.向右平移2个单位,向下平移4个单位7.如图,三角形OCD是由三角形OAB绕点O顺时针旋转40°后得到的图形,则∠BOD的度数是()A.33°B.35°C.40°D.45°8.如图,P A、PB、CD是⊙O的切线,切点分别是A、B、E,若∠APB=60°,则∠COD的度数()A.50°B.60°C.70°D.75°9.如图,将等边三角形OAB放在平面直角坐标系中,A点坐标(1,0),则旋转后点B的对应点B′的坐标为()A.(﹣,)B.(﹣1,)C.(﹣,)D.(﹣,)10.已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足===m,则m的值是()A.1B.C.2D.4二、填空题(每小题3分,共15分)11.将一元二次方程3x2+1=6x化为一般形式后二次项系数为3,则一次项系数为.12.在直角坐标系中,点(﹣2,1)关于原点成中心对称的点的坐标是.13.若二次函数y=2x2﹣3的图象上有两个点(﹣2,m),(1,n),则m n(填“<”或“=”或“>”).14.如图,正方形OABC的边长为2,将正方形OABC绕点O逆时针旋转角α(0°<α<180°),连接BC′,当点A′恰好落在线段BC′上时.15.如图,A、B是二次函数y=x2+bx图象上的两点,直线AB平行于x轴,点A的坐标为(﹣3,4),作点A关于直线OP的对称点C,连接BC.三、解答题(共8题,共75分)16.(10分)解方程:(1)x2﹣2x﹣1=0.(2)x2+x﹣6=0.17.(9分)如图为二次函数y=﹣x2﹣x+2的图象,试根据图象回答下列问题:(1)方程﹣x2﹣x+2=0的解为;(2)当y>0时,x的取值范围是;(3)当﹣3<x<0时,y的取值范围是.18.(9分)如图,在菱形ABCD中,∠BAD=120°,将线段CE绕点C顺时针旋转120°,得到CF (1)求证:△BCE≌△DCF.(2)若BC=2,求四边形ECFD的面积.19.(9分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣2,﹣4),B(﹣6,﹣1),C(﹣2,﹣1).(1)把△ABC向左平移2个单位,再向上平移4个单位得△A1B1C1,试画出图形,并直接写出点C1的坐标;(2)把△ABC绕原点O逆时针旋转90°得△A2B2C2,试画出图形,并直接写出点C2的坐标;(3)若(2)中的△A2B2C2可以看作由(1)中的△A1B1C1绕坐标平面内某一点P旋转得到,试在图中标出点P的位置,并直接写出旋转中心P的坐标.20.(9分)如图,A、B是⊙O上的两点,过O作OB的垂线交AB于C,交⊙O的切线AD于D.(1)求证:DA=DC;(2)当OA=5,OC=1时,求DA及DE的长.21.(9分)小茗同学准备用一段长为50米的篱笆在家修建一个一边靠墙的矩形花圃(矩形ABCD),墙长为25米.设花圃的一边AD为x米.(1)如图1,写出花圃的面积S(平方米)与x(米);(2)图1中花圃的面积能为300平方米吗?若能,请求出x的值;若不能;(3)为方便进出,小茗同学决定在BC边上留一处长为a米(0<a<4)的门(如图2),直接写出a的值.22.(10分)在平面直角坐标系中,二次函数y=x2﹣2mx+1图象与y轴的交点为A,将点A向右平移4个单位长度得到点B.(1)直接写出点A与点B的坐标;(2)若函数y=x2﹣2mx+1的图象与线段AB恰有一个公共点,求m的取值范围.23.(10分)已知,△ABC中,AB=AC,过点E作EF∥BC交AB于点F.(1)如图①,求证:AE=AF;(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′、BF′.①若BF′=6,求CE′的长;②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE′∥AB时2021-2022学年河南省商丘一中九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列方程是一元二次方程的是()A.3x2+=0B.2x﹣3y+1=0C.(x﹣3)(x﹣2)=x2D.(3x﹣1)(3x+1)=3【分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【解答】解:A、3x2+=0是分式方程;B、2x﹣4y+1=0为二元一次方程;C、(x﹣5)(x﹣2)=x2是一元一次方程,故此选项错误;D、(2x﹣1)(3x+3)=3是一元二次方程.故选:D.2.二次函数y=﹣(x﹣2)2﹣3的图象的顶点坐标是()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)【分析】根据题目中函数的解析式直接得到此二次函数的顶点坐标.【解答】解:∵y=﹣(x﹣2)2﹣6,∴二次函数y=﹣(x﹣2)2﹣4的图象的顶点坐标是(2,﹣3)故选:B.3.关于x的一元二次方程x2﹣2x+m=0的一个根为﹣1,则m的值为()A.﹣3B.﹣1C.1D.2【分析】直接利用一元二次方程的解的意义将x=﹣1代入求出答案.【解答】解:∵关于x的一元二次方程x2﹣2x+m=5的一个根是﹣1,∴(﹣1)4﹣2×(﹣1)+m=2,解得:m=﹣3.故选:A.4.如图,AB是⊙O的直径,点C,D,若∠ACE=20°,则∠BDE的度数为()A.90°B.100°C.110°D.120°【分析】连接AD,根据圆周角定理及其推论,可分别求出∠ADB=90°,∠ADE=∠ACE=20°,即可求∠BDE的度数.【解答】解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠ACE=20°,∴∠ADE=∠ACE=20°,∴∠BDE=∠ADB+∠ADE=110°,故选:C.5.半径为2的圆内接正六边形的边心距的长是()A.2B.1C.D.【分析】正多边形的内切圆的半径就是正六边形的边心距,即为每个边长为2的正三角形的高,从而构造直角三角形即可解.【解答】解:边长为2的正六边形可以分成六个边长为2的正三角形,而正多边形的边心距即为每个边长为6的正三角形的高,∴正六多边形的边心距等于2×sin60°=,故选:C.6.如果将抛物线y=(x+2)2﹣3平移,使它与抛物线y=x2+1重合,那么平移的方式可以是()A.向左平移2个单位,向上平移4个单位B.向左平移2个单位,向下平移4个单位C.向右平移2个单位,向上平移4个单位D.向右平移2个单位,向下平移4个单位【分析】根据平移前后的抛物线的顶点坐标确定平移方法即可得解.【解答】解:∵抛物线y=(x+2)2﹣3的顶点坐标为(﹣2,﹣3)2+1的顶点坐标为(0,8),∴顶点由(﹣2,﹣3)到(2,向上平移4个单位.故选:C.7.如图,三角形OCD是由三角形OAB绕点O顺时针旋转40°后得到的图形,则∠BOD的度数是()A.33°B.35°C.40°D.45°【分析】由旋转的性质可得∠BOD=40°.【解答】解:∵△OCD是由△OAB绕点O顺时针旋转40°后得到的图形,∴∠BOD=40°,故选:C.8.如图,P A、PB、CD是⊙O的切线,切点分别是A、B、E,若∠APB=60°,则∠COD的度数()A.50°B.60°C.70°D.75°【分析】连接AO,BO,OE由切线的性质可得∠P AO=∠PBO=90°,结合已知条件和四边形的内角和为360°可求出∠AOB的度数,再由切线长定理即可求出∠COD的度数.【解答】解:连接AO,BO,∵P A、PB是⊙O的切线,∴∠P AO=∠PBO=90°,∵∠APB=60°,∴∠AOB=360°﹣2×90°﹣60°=120°,∵P A、PB,∴∠ACO=∠ECO,∠DBO=∠DEO,∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=∠COE+∠EOD=∠AOB=60°.故选:B.9.如图,将等边三角形OAB放在平面直角坐标系中,A点坐标(1,0),则旋转后点B的对应点B′的坐标为()A.(﹣,)B.(﹣1,)C.(﹣,)D.(﹣,)【分析】如图,故点B作BH⊥OA于H,设BB′交y轴于J.求出点B的坐标,证明B,B′关于y轴对称,即可解决问题.【解答】解:如图,故点B作BH⊥OA于H.∵A(1,0),∴OA=6,∵△AOB是等边三角形,BH⊥OA,∴OH=AH=OA=OH=,∴B(,),∵∠AOB=∠BOB′=60°,∠JOA=90°,∴∠BOJ=∠JOB′=30°,∵OB=OB′,∴BB′⊥OJ,∴BJ=JB′,∴B,B′关于y轴对称,∴B′(﹣,),故选:A.10.已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足===m,则m的值是()A.1B.C.2D.4【分析】由已知条件可判定三点中必有一点在二次函数y=2x2﹣8x+6的顶点上,通过求解二次函数的顶点的坐标及与x轴的交点坐标利用三角形的面积公式可求解m值.【解答】解:∵二次函数y=2x2﹣4x+6的图象上有且只有P1,P2,P3三点满足===m,∴三点中必有一点在二次函数y=2x8﹣8x+6的顶点上,∵y=6x2﹣8x+6=2(x﹣2)5﹣2=2(x﹣5)(x﹣3),∴二次函数y=2x5﹣8x+6的图象的顶点坐标为(5,﹣2),令y=0,则2(x﹣1)(x﹣3)=3,解得x=1或x=3,∴与x轴的交点为(8,0),0),∴AB=6﹣1=2,∴m==2.故选:C.二、填空题(每小题3分,共15分)11.将一元二次方程3x2+1=6x化为一般形式后二次项系数为3,则一次项系数为﹣6.【分析】要确定一次项系数和常数项,首先要把方程化成一般形式.【解答】解:一元二次方程3x2+3=6x化为一般形式为3x2﹣6x+1=6,二次项系数和一次项系数分别为3,﹣6,故答案是:﹣8.12.在直角坐标系中,点(﹣2,1)关于原点成中心对称的点的坐标是(2,﹣1).【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【解答】解:在直角坐标系中,点(﹣2,﹣1),故答案为:(6,﹣1).13.若二次函数y=2x2﹣3的图象上有两个点(﹣2,m),(1,n),则m>n(填“<”或“=”或“>”).【分析】根据二次函数图象的增减性即可解答.【解答】解:y=2x2﹣5的对称轴为x=0,开口方向向上,对于开口向上的函数,x距离对称轴越近,∵﹣2比4距离对称轴远,∴m>n.故答案为>.14.如图,正方形OABC的边长为2,将正方形OABC绕点O逆时针旋转角α(0°<α<180°),连接BC′,当点A′恰好落在线段BC′上时+.【分析】如图,作辅助线,构建直角三角形,利用勾股定理分别计算OB,OE,EC'和BE的长,根据线段的和可得结论.【解答】解:如图,连接OB,则∠OEC'=∠OEB=90°,∵将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,点A′恰好落在线段BC′上,∴∠OC'E=45°,OA=OC'=AB=2,∴OB=3,OE=EC'=,在Rt△OBE中,由勾股定理得:BE===,∴BC'=BE+EC'=+.故答案为:+.15.如图,A、B是二次函数y=x2+bx图象上的两点,直线AB平行于x轴,点A的坐标为(﹣3,4),作点A关于直线OP的对称点C,连接BC4﹣5.【分析】利用待定系数法求出点B的坐标,求出OA,OB,根据BC≥OB﹣OC,可得结论.【解答】解:如图,连接OB.∵A(﹣3,4)在y=x2+bx上,8=1﹣3b,∴b=﹣2,∴抛物线的解析式为y=x4﹣x,当y=4时,x2﹣x=4,解得x=12或﹣6,∴B(12,4),∵点A关于直线OP的对称点C,∴OC=OA==4,∵OB==5,∴BC≥OB﹣OC,∴BC≥4﹣5,∴BC的最小值为3﹣5.故答案为:4﹣5.三、解答题(共8题,共75分)16.(10分)解方程:(1)x2﹣2x﹣1=0.(2)x2+x﹣6=0.【分析】(1)利用配方法得到(x﹣1)2=2,然后利用直接开平方法解方程;(2)利用因式分解法解方程.【解答】解:(1)x2﹣2x=8,x2﹣2x+8=2,(x﹣1)2=2,x﹣1=±,所以x1=1+,x2=1﹣;(2)(x+3)(x﹣2)=4,x+3=0或x﹣3=0,所以x1=﹣6,x2=2.17.(9分)如图为二次函数y=﹣x2﹣x+2的图象,试根据图象回答下列问题:(1)方程﹣x2﹣x+2=0的解为x1=﹣2,x2=1;(2)当y>0时,x的取值范围是﹣2<x<1;(3)当﹣3<x<0时,y的取值范围是﹣4<y≤.【分析】(1)令y=﹣x2﹣x+2=0,解得x1=﹣2,x2=1,即可求解;(2)观察函数图象即可求解;(3)由抛物线的表达式知,顶点坐标为(﹣,),当x=﹣3时,y=﹣9+3+2=﹣4,进而求解.【解答】解:(1)令y=﹣x2﹣x+2=6,解得x=﹣2或1,故答案为x2=﹣2,x2=6;(2)从图象看,当y>0时,故答案为﹣2<x<4;(3)由抛物线的表达式知,顶点坐标为(﹣,),当x=﹣3时,y=﹣8+3+2=﹣4,故当﹣3<x<0时,y的取值范围是为﹣7<y≤.18.(9分)如图,在菱形ABCD中,∠BAD=120°,将线段CE绕点C顺时针旋转120°,得到CF (1)求证:△BCE≌△DCF.(2)若BC=2,求四边形ECFD的面积.【分析】(1)由菱形的性质可得BC=CD,∠A=∠BCD=120°,由旋转的性质可得CF=CE,∠ECF =120°=∠BCD,进而证得∠BCE=∠DCF,由“SAS”可证△BCE≌△DFC;(2)如图,连接AC交BD于O,由菱形的性质可得AC⊥BD,AO=CO,BO=DO,∠BCA=60°,AB =BC,得到△ABC是等边三角形,由等腰三角形三角形的性质和勾股定理可求CO=1,BO=,即可求S△BCD=×2×1=,由全等三角形的性质可求出四边形ECFD的面积.【解答】(1)证明:∵四边形ABCD是菱形,∴BC=CD,∠BAD=∠BCD=120°,∵将线段CE绕点C顺时针旋转120°,得到CF,∴CF=CE,∠ECF=120°=∠BCD,∴∠BCE=∠DCF=120°﹣∠DCE,在△BCE和△DFC中,,∴△BCE≌△DFC(SAS);(2)解:如图,连接AC交BD于O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,∠BCA=60°,∴AB=CB=AC,∵BC=2,∴AC=2,∴CO=3,在Rt△BCO中,BC2=CO2+BO7,∴BO===,∴BD=2,∴S△BCD=BD•CO=×8=,∵△BCE≌△DFC∴S△BEC=S△CDF,∴S四边形ECFD=S△BCD=.19.(9分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣2,﹣4),B(﹣6,﹣1),C(﹣2,﹣1).(1)把△ABC向左平移2个单位,再向上平移4个单位得△A1B1C1,试画出图形,并直接写出点C1的坐标;(2)把△ABC绕原点O逆时针旋转90°得△A2B2C2,试画出图形,并直接写出点C2的坐标;(3)若(2)中的△A2B2C2可以看作由(1)中的△A1B1C1绕坐标平面内某一点P旋转得到,试在图中标出点P的位置,并直接写出旋转中心P的坐标.【分析】(1)根据点平移的坐标变换规律写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2即可;(3)作C1C2和A1A2的垂直平分线,它们的交点为旋转中心P点.【解答】解:(1)如图,△A1B1C5为所作;点C1的坐标为(﹣4,4);(2)如图,△A2B2C2为所作;点C2的坐标为(1,﹣7);(3)如图,点P为所作,3).20.(9分)如图,A、B是⊙O上的两点,过O作OB的垂线交AB于C,交⊙O的切线AD于D.(1)求证:DA=DC;(2)当OA=5,OC=1时,求DA及DE的长.【分析】(1)要证明DA=DC,只要证明∠ACD=∠CAD即可,根据题目中的条件可以得到∠ACD=∠CAD,结论得以证明;(2)根据(1)中的结论和勾股定理可以求得DA及DE的长.【解答】(1)证明:∵OB⊥OC,OA⊥AD,∴∠BOC=90°,∠OAD=90°,∴∠BCO+∠OBC=∠OAC+∠CAD=90°,∵OB=OA,∴∠OBC=∠OAC,∴∠BCO=∠CAD,∵∠BCO=∠ACD,∴∠ACD=∠CAD,∴DA=DC;(2)解:∵OA=5,OC=1,DA=DC,∴设DA=x,则52+x2=(x+5)2,解得,x=12,∴DA=12,OD=13,∵OE=OA,∴OE=5,∴DE=OD﹣OC=13﹣2=8.21.(9分)小茗同学准备用一段长为50米的篱笆在家修建一个一边靠墙的矩形花圃(矩形ABCD),墙长为25米.设花圃的一边AD为x米.(1)如图1,写出花圃的面积S(平方米)与x(米);(2)图1中花圃的面积能为300平方米吗?若能,请求出x的值;若不能;(3)为方便进出,小茗同学决定在BC边上留一处长为a米(0<a<4)的门(如图2),直接写出a的值.【分析】(1)分别用含x的式子表示出矩形ABCD的长和宽,按照矩形的面积公式即可列出函数关系式;(2)令S=300,得关于x的一元二次方程,解方程,有解即为花圃的面积能为300平方米,无解即为不能;(3)由题意可知此时S=(50﹣x+a)x=﹣x2+(50+a)x,根据二次函数的性质及0<a<4可得关于a的方程,求解即可.【解答】解:(1)∵四边形ABCD为矩形,∴AB=CD,AD=BC,∵篱笆总长为50米,AD为x米,∴AB=CD=,∴花圃的面积S=•x=﹣x2+25x,∴花圃的面积S(平方米)与x(米)的函数关系式为S=﹣x2+25x;(2)令S=300得:﹣x2+25x=300,解得x4=20,x2=30(不合题意,舍去).∴图1中花圃的面积能为300平方米,此时x的值为20;(3)依题意,S=x2+(50+a)x,∵0<a<4,对称轴为x=25+,∴25<25+<27,又∵﹣<0,∴当x=25时,S有最大值,∴﹣×252+(50+a)×25=325,解得a=1.∴a的值为1.22.(10分)在平面直角坐标系中,二次函数y=x2﹣2mx+1图象与y轴的交点为A,将点A向右平移4个单位长度得到点B.(1)直接写出点A与点B的坐标;(2)若函数y=x2﹣2mx+1的图象与线段AB恰有一个公共点,求m的取值范围.【分析】(1)根据y轴上点的坐标特征求得A的坐标,然后根据平移的规律得到B的坐标;(2)二次函数图象经过定点A(0,1),分三种情况讨论即可求得m的取值.【解答】解:(1)把x=0代入y=x2﹣2mx+1得,y=1,∴A(5,1),∵将点A向右平移4个单位长度得到点B,∴B(7,1);(2)直线AB解析式为y=1,该二次函数图象经过定点A(2,①当m=0 时,抛物线解析式为y=x2+8,顶点恰是A点;②当m<0 时,如图1,恰与线段AB仅有一个交点A点;③当m>6,在x>0范围内,再随x增大而增大,如图2,当m=4 时,此时抛物线恰好与线段AB有两个交点分别是A点和B点,因此当m>2 时,抛物线恰好与线段AB ,综上所述,m≤0或m>2.23.(10分)已知,△ABC中,AB=AC,过点E作EF∥BC交AB于点F.(1)如图①,求证:AE=AF;(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′、BF′.①若BF′=6,求CE′的长;②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE′∥AB时【分析】(1)根据等腰三角形两底角相等∠ABC=∠ACB,再根据平行线的性质得出,∠AFE=∠ABC,∠AEF=∠ACB,得出∠AFE=∠AEF,进一步得出结论;(2)求出AE=AF,再根据旋转的性质可得∠E′AC=∠F′AB,AE′=AF′,然后利用“边角边”证明△CAE′和△BAF′全等,根据全等三角形对应边相等证明即可;(3)把△AEF绕点A逆时针旋转AE′与过点C与AB平行的直线相交于M、N,然后分两种情况,根据等腰梯形的性质和等腰三角形的性质分别求解即可.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵EF∥BC,∴∠AFE=∠ABC,∠AEF=∠ACB,∴∠AFE=∠AEF,∴AE=AF.(2)解:①由旋转的性质得,∠E′AC=∠F′AB,在△CAE′和△BAF′中,,∴△CAE′≌△BAF′(SAS),∴CE′=BF′=6;②由(1)可知AE=AF,所以,在△AEF绕点A逆时针旋转过程中、N,如图,①当点E的像E′与点M重合时,四边形ABCM是等腰梯形,所以,∠BAM=∠ABC=72°,又∵∠BAC=36°,∴α=∠CAM=36°;②当点E的像E′与点N重合时,∵CE′∥AB,∴∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣72°×2=36°,∴α=∠CAN=∠CAM+∠MAN=36°+36°=72°,综上所述,当旋转角α为36°或72°.。
2020-2021学年江苏省徐州市新沂市九年级上学期数学期中考试题及答案

2020-2021学年江苏省徐州市新沂市九年级上学期数学期中考试题及答案一、选择题(本大题共有8小题,每小题3分,共24分)1. 方程x 2-4=0的解是A. x =2B. x =-2C. x =±2D. x =±4 【答案】C【解析】【分析】方程变形为x 2=4,再把方程两边直接开方得到x=±2.【详解】解:x 2-4=0x 2=4,∴x=±2.故选:C .2. 用配方法解一元二次方程时应在等式两边同时加上4的是( )A.B. 223x x +=2-43x x =C.D. 22-43x x =2443x x +=【答案】B【解析】【分析】根据配方法的步骤,确定答案即可.【详解】解:A 、根据配方的要求,常数项等于一次项系数一半的平方,两边应加1,故本项错误;B 、两边同时加上-4的一半的平方,即同时加4,故本项正确;C 、先两边同时除2,再两边加上-2的一半的平方,即同时加上1,故本项错误;D 、.两边同时加上1,故本项错误;故选:B .【点睛】本题考查配方法解一元二次方程,熟练掌握配方法解一元二次方程和完全平方式是解题的关键.3. 下列四个函数中,图象的顶点在轴上的函数是( )y A. B. C. D. 232y x x =-+25y x =-22y x x =-+244y x x =-+【答案】B【解析】【分析】根据二次函数的性质,图象的顶点在y 轴上,则顶点的横坐标x=0,根据题意,计算出即可解答.【详解】A 、二次函数y=x 2-3x+2,顶点的横坐标x=−=≠0,故本项错误; 2b a 32B 、二次函数y=5-x 2,顶点的横坐标x=−=0,故本项正确; 2b aC 、二次函数y=-x 2+2x ,顶点的横坐标x=−=1≠0,故本项错误; 2b a D 、二次函y=x 2-4x+4,顶点的横坐标x=−=2≠0,故本项错误; 2b a故选B . 【点睛】本题主要考查了二次函数的性质,应熟记二次函数的顶点坐标公式,本题读懂题意是关键.4. 已知⊙O 的半径为3,OA=3,直线l 经过点A ,则直线l 与⊙O 的位置关系是( )A. 相切B. 相交C. 相离D. 相切或相交【答案】D【解析】【分析】根据圆心到直线的距离进行判断即可.【详解】解:∵OA=3,直线l 经过点A ,∴圆心O 到直线l 的距离≤3,∵⊙O 的半径为3,∴直线l 与⊙O 的位置关系是相切或相交.故选D .【点睛】本题考查了直线和圆的位置关系,根据圆心到直线的距离与半径的大小关系进行判断时注意分情况讨论.5. 如图,A 、B 、C 是⊙O 上的点,若∠AOB=50°,则∠ACB 的度数为 ( )A. 100°B. 50°C. 25°D. 35°【解析】 【分析】根据圆周角定理∠ACB=∠AOB 计算即可.12【详解】解:∵∠ACB=∠AOB,∠AOB=50°,12∴∠ACB=25°.故选:C .【点睛】本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.6. 如图,⊙O 的直径垂直于弦,垂足是点,,,则AB CD E 22.5CAO ∠=o 6OC =CD 的长为( )A.B. C. 6 D. 12 【答案】A【解析】【分析】先根据垂径定理得到,再根据圆周角定理得到,CE DE =245BOC A ∠=∠=o可得为等腰直角三角形,所以的长. OCE △CE ==CD 【详解】∵,AB 为直径,CD AB ⊥∴, CE DE =∵∠BOC 和∠A 分别为所对的圆心角和圆周角,∠A=22.5°, BC∴,2222.545BOC A ∠=∠=⨯=o o ∴为等腰直角三角形,OCE △∵OC=6,∴, 6CE ===∴2CD CE ==故选A .【点睛】本题考查了垂径定理及圆周角定理.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的7. 将抛物线先向右平移1个单位长度,再向下平移3个单位长度后,所得的抛物线22y x =对应的函数关系式是 ( )A. B. C. D. 2(2-1)-3y x =22(-1)-3y x =2(21)-3y x =+22(1)-3y x =+【答案】B【解析】【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】解:抛物线y= 的顶点坐标为(0,0),22x 向右平移1个单位,再向下平移3个单位后的图象的顶点坐标为(1,−3),所以,所得图象的解析式为y=2 -3.2(1)x -故选:B【点睛】本题考查了函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图象的变化是解题的规律.8. 如图是二次函数y =ax 2+bx+c 的图像,对于下列说法:①abc>0,②,③a+b+c 240b ac -><0,④当x >0时,y 随x 的增大而增大,其中正确的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】 【分析】根据抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上即可求出a 、b 、c 的正负,即可判断①;根据抛物线与x 轴的交点坐标即可判断②;把x=1代入抛物线即可判断③;求出抛物线的对称轴,根据图象即可判断④.【详解】解:∵抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上, ∴a>0,->0,c <0, 2b a∴abc>0,∴①正确;由抛物线与x 轴有两个交点,∴△=b 2-4ac >0,故②正确;由图象可知:x=1时,y=a+b+c <0,故③正确;由图象可得,当0<x<-时,y 随着x 的增大而减小,故④错误; 2b a∴正确的个数有3个.故选:C .【点睛】本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力.二、填空题(本大题共有10小题,每小题4分,共40分)9. 一元二次方程的一次项为___________.2320x x ++=【答案】3x【解析】【分析】根据一元二次方程一次项的定义写出该方程的一次项.【详解】解:一元二次方程的一次项是3x .2320x x ++=故答案是:3x .【点睛】本题考查一元二次方程的定义,解题的关键是掌握一元二次方程的定义.10. 抛物线的顶点坐标是_________.2(1)-1y x =+【答案】(-1,-1)【解析】【分析】利用顶点式直接求得交点坐标即可.【详解】解:∵抛物线,2(1)-1y x =+∴顶点坐标是(-1,-1).故答案为:(-1,-1).【点睛】此题考查了二次函数的性质,二次函数y=a (x-h )2+k 的顶点坐标为(h ,k ),对称轴为x=h .11. 若是方程的一个根,则=____.x a =2220x x +-=2124a a --【答案】-3【解析】【分析】先把代入方程中,然后利用整体思想进行求解即可.x a =2220x x +-=【详解】解:把代入方程得:x a =2220x x +-=,即,2220a a +-=222a a +=∴;()22124122143a a a a --=-+=-=-故答案为-3.【点睛】本题主要考查一元二次方程的解,正确理解一元二次方程的解是解题的关键.12. 设、是一元二次方程的两根,则____.1x 2x 2210x x --=12x x +=【答案】2【解析】【分析】根据一元二次方程根与系数的关系直接求解即可.【详解】解:∵、是一元二次方程的两根1x 2x 2210x x --=∴. 12221b x x a -+=-=-=故答案是:2【点睛】本题考查了一元二次方程根与系数的关系,熟记两根和、两根积的公式是解题的关键.13. 若抛物线 的图像与轴有交点,那么的取值范围是________.22y x x m =++x m 【答案】1m £【解析】【分析】由抛物线 的图像与轴有交点可知,从而可求得22y x x m =++x 240b ac ∆=-≥的取值范围.m 【详解】解:∵抛物线 的图像与轴有交点22y x x m =++x ∴令,有,即该方程有实数根0y =220x x m ++=∴240b ac ∆=-≥∴.1m £故答案是:1m £【点睛】本题考查了二次函数与轴的交点情况与一元二次方程分的情况的关系、解一元一x 次不等式,能由已知条件列出关于的不等式是解题的关键.m 14. 圆锥的侧面展开图的面积为18π,母线长为6,则圆锥的底面半径为________.【答案】3【解析】【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【详解】解:设底面周长为C ,底面半径为r .∵侧面展开图的面积为18π, ∴18π=C×6,C=6π=2πr,12∴r=3.故答案为:3【点睛】本题利用了圆的周长公式和扇形面积公式求解.关键是根据圆锥的侧面积=底面周长×母线长÷2解答.15. 如图,⊙O 是△ABC 的内切圆,若∠A=70°,则∠BOC=________°.【答案】125【解析】【分析】根据三角形内角和性质,结合题意,可计算得的值;根据内切圆ABC ACB ∠+∠的性质分析,可计算得的值,从而完成求解.OBC OCB ∠+∠【详解】∵∠A=70°∴180110ABC ACB A ∠+∠=-∠= ∵⊙O 是△ABC 的内切圆∴, 12OBC ABC ∠=∠12OCB ACB ∠=∠∴ 11111055222OBC OCB ABC ACB ∠+∠=∠+∠=⨯= ∴180********BOC OBC OCB ∠=-∠-∠=-= 故答案为:125.【点睛】本题考查了三角形内角和、三角形内切圆的知识;解题的关键是熟练掌握三角形内角和、三角形内切圆的性质,从而完成求解.16. 如图,直线、相交于点,半径为1cm 的⊙的圆心在直线AB CD ,30O AOC ∠=︒P AB 上,且与点的距离为8cm ,如果⊙以2cm/s 的速度,由向的方向运动,那么_________O P A B 秒后⊙与直线相切.P CD【答案】3或5【解析】【分析】分类讨论:当点P 在当点P 在射线OA 时⊙P 与CD 相切,过P 作PE⊥CD 与E ,根据切线的性质得到PE=1cm ,再利用含30°的直角三角形三边的关系得到OP=2PE=2cm ,则⊙P 的圆心在直线AB 上向右移动了(8-2)cm 后与CD 相切,即可得到⊙P 移动所用的时间;当点P 在射线OB 时⊙P 与CD 相切,过P 作PE⊥CD 与F ,同前面一样易得到此时⊙P 移动所用的时间.【详解】当点P 在射线OA 时⊙P 与CD 相切,如图,过P 作PE⊥CD 与E ,∴PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P 的圆心在直线AB 上向右移动了(8-2)cm 后与CD 相切,∴⊙P 移动所用的时间==3(秒); 822-当点P 在射线OB 时⊙P 与CD 相切,如图,过P 作PE⊥CD 与F ,∴PF=1cm,∵∠AOC=∠DOB=30°,∴OP=2PF=2cm,∴⊙P 的圆心在直线AB 上向右移动了(8+2)cm 后与CD 相切,∴⊙P 移动所用的时间==5(秒). 822+故答案为3或5.【点睛】本题考查直线与圆的位置关系:直线与有三种位置关系(相切、相交、相离).也考查了切线的性质.解题关键是熟练掌握以上性质.17. 抛物线y =ax 2+bx+c 经过点A (﹣3,0)、B (4,0)两点,则关于x 的一元二次方程的解是________________.()2220a x bx b c -+-+=【答案】121,6x x =-=【解析】【分析】由题意得当y=0时,则有的两个根为,进而根据同20ax bx c ++=123,4x x =-=解方程可进行求解.【详解】解:∵抛物线y =ax 2+bx+c 经过点A (﹣3,0)、B (4,0)两点,∴当y=0时,则有的两个根为,20ax bx c ++=123,4x x =-=∴的解为:或,()2220a x bx b c -+-+=23x -=-24x -=解得:;121,6x x =-=故答案为.121,6x x =-=【点睛】本题主要考查二次函数与一元二次方程的关系,熟练掌握二次函数与一元二次方程的关系是解题的关键.18. 如图,已知正方形ABCD 的边长为2,点M 和N 分别从B 、C 同时出发,以相同的速度沿BC 、CD 方向向终点C 和D 运动.连接AM ,BN 交于点P ,则PC 长的最小值为____________. 【解析】【分析】根据题意和正方形的性质可利用SAS 证明△ABM≌△BCN,得出∠BAM=∠CBN,进而可证出∠APB=90°,于是可得点P 在以AB 为直径的圆上运动,运动路径是弧BG ,连接OC 交圆O 于P ,如图,则此时PC 最小,进一步即可求解.【详解】解:由题意得:BM =CN ,∵四边形ABCD 是正方形,∴∠ABM=∠BCN=90°,AB =BC =2,在△ABM 和△BCN 中,∵AB=BC ,∠ABM=∠BCN,MB =CN ,∴△ABM≌△BCN(SAS ),∴∠BAM=∠CBN,∵∠ABP+∠CBN=90°,∴∠ABP+∠BAM=90°,∴∠APB=90°,∴点P 在以AB 为直径的圆上运动,设圆心为O ,运动路径是弧,是这个圆的,如图 BG14所示:连接OC 交圆O 于P ,此时PC 最小,∵AB=2,∴OP=OB =1,由勾股定理得:OC ,=;1-.1-【点睛】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理和圆的有关性质等知识;熟练掌握上述知识,证出点P 在以AB 为直径的圆上运动是解题关键.三、解答题(本大题共有4小题,每小题6分,共24分)19. 解方程:.240x x +=【答案】x 1=0,x 2=-4【解析】【分析】利用因式分解法求解即可.【详解】解:240x x +=(4)0x x +=x 1=0,x 2=-4【点睛】本题考查了一元二次方程的解法,正确选择因式分解法是解题的关键.20. 解方程:. 22520x x -+=【答案】, 112x =22x =【解析】 【分析】原式运用公式法求解即可得到答案.【详解】解:22520x x -+=这里2,5,2a b c ==-=22=4(5)422251690b ac ∆-=--⨯⨯=-=> 5322x ±∴=⨯∴, 112x =22x =【点睛】本题主要考查了解一元二次方程,灵活运用解题方法是解答本题的关键.21. 已知关于的方程.x 2-3-30x x a +=(1)若此方程有两个实数根,求的取值范围;a (2)在(1)的条件下,当取满足条件的最小整数时,求此时方程的解.a 【答案】(1);(2), 34a ≥11x =22x =【解析】【分析】(1)因为方程有实数根,所以可得判别式大于或等于零,得到不等式后,即可求得答案;(2)由(1)结论以及取满足条件的最小整数可求得参数的取值,再代入原方程即可得a 解.【详解】解:(1)∵关于的方程有两个实数根x 2-3-30x x a +=∴()()22434130b ac a ∆=-=--⨯⋅-+≥∴; 34a ≥(2)∵有(1)可知,,取满足条件的最小整数 34a ≥a ∴1a =∴把代入原方程得:1a =2320x x -+=∴,.11x =22x =【点睛】本题考查了一元二次方程的根的判别式,解不等式、解方程等,体现了数学运算的核心素养.22. 已知:如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,且BC =2cm ,AC =4cm ,∠ABD=45º.(1)求弦BD 的长;(2)求图中阴影部分的面积.【答案】(1);(2) BD =5542π-【解析】 【分析】(1)先添加辅助线连接,由是的直径可得,再由勾股OD AB O 90ACB ∠=︒定理求得、,即可得到等腰直角三角形,最后根据勾股定理即可求得答案;AB OB (2)根据即可求得结论.OBD OBD S S S =- 阴影扇形【详解】解:(1)连接,如图:OD∵是的直径AB O ∴90ACB ∠=︒∵,2BC =4AC =∴ AB =∴OB =∵且45ABD ∠=︒OB OD ==∴90BOD ∠=︒∴在中,Rt BOD BD ==(2)∵,90BOD ∠=︒OB OD ==∴, 522OBD OB OD S ⋅==V 54OBD S π==扇形∴. 5542OBD OBD S S S π-=-=V 阴影扇形【点睛】本题考查了圆周角定理、勾股定理、等腰直角三角形的性质和判定、扇形的面积、三角形的面积,添加辅助线构造直角三角形是解题的关键.四、解答题(本大题共有3小题,每小题8分,共24分)23. 已知:二次函数过点(0,-3),(1,-4)2y x bx c =++(1)求出二次函数的表达式;(2)在给定坐标系中画出这个二次函数的图像;(3)根据图像回答:当0≤x<3时,y 的取值范围是 .【答案】(1);(2)见解析;(3)-4≤y<02-2-3y x x =【解析】【分析】(1)把已知点的坐标代入函数解析式,即可求出答案;(2)根据函数的解析式画出抛物线即可;(3)把二次函数解析式化成顶点式,再根据图形分析计算y 的取值范围即可.【详解】解:(1)将点(0,-3),(1,-4)代入二次函数得: 2y x bx c =++, 314c b c =-⎧⎨++=-⎩解得:, 23b c =-⎧⎨=-⎩所以,二次函数的表达式为:;223y x x =--(2)二次函数的图象如下:(3)∵()214y x =--∴当x =1时,有最小值-4,当x =0时,y =(0−1)2-4=−3,当x =3时,y =(3−1)2-4=0,又对称轴为x =1,∴当0≤x<3时,y 的取值范围是−4<y≤0.【点睛】本题考查了用待定系数法求二次函数的解析式、也考查了二次函数的图象与性质,熟练掌握二次函数的三种常用形式:一般式、顶点式、交点式.24. 如图,在长40m 、宽22m 的矩形地面内,修筑两条同样宽且垂直于矩形的边的道路,余下的部分铺上草坪(即阴影部分),要使草坪的面积达到760m 2,道路的宽应为多少米?【答案】道路的宽应为米2【解析】【分析】根据题意设道路的宽应为米,则种草坪部分的长为,宽为x ()40x m -,再根据题目中的等量关系建立方程即可得解.()22x m -【详解】解:设道路的宽应为米,则种草坪部分的长为,宽为,根x ()40x m -()22x m -据题意得:()()4022760x x --=2-621200x x +=()()2600x x --=,20x -=600x -=∴,(不合题意舍去)12x =260x =答:道路的宽应为米.2【点睛】本题考查了一元二次方程的实际应用,要求学生能根据题目中的等量关系建立方程,同时也考查了学生的阅读理解能力.25. 已知△ABC,请按以下要求完成本题:(1)请作出△ABC 的外接圆⊙O(尺规作图,保留作图痕迹);(2)若在△ABC 中,∠ABC=70°,∠ACB=40°,⊙O 的直径AD 交CB 于E ,则∠DEC = .【答案】(1)见解析;(2)60°【解析】【分析】(1)分别作出AB 与AC 的垂直平分线,进而得出圆心的位置,再利用圆心到三角形顶点的距离为半径得出圆O 即可;(2)连接BD .根据圆周角定理求出∠ABD=90°,∠D=∠ACB=40°,则∠DBC=∠ABD-∠ABC=20°,再利用三角形外角的性质即可求出∠DEC.【详解】解:(1)如图所示:(2)连接BD .∵AD 是直径,∴∠ABD=90°,∴∠DBC=∠ABD-∠ABC=90°-70°=20°,又∵∠D=∠ACB=40°,∴∠DEC=∠D+∠DBC=40°+20°=60°.【点睛】本题主要考查了三角形外接圆的作法,圆周角定理,三角形外角的性质,熟练掌握相关的定理是解题关键.五、解答题(共有2小题,第26题8分,第27题10分,共18分)26. 如图,已知直线l与⊙O相离,过圆心O画OA⊥l于点A,交⊙O于点P且OA=5,点B 为⊙O上一点BP的延长线交直线l于点C且AB=AC.(1)判断AB与⊙O有怎样的位置关系,并说明理由;PC(2)若,求⊙O的半径.【答案】(1)AB与⊙O相切,理由见解析;(2)3【解析】【分析】(1)连接OB,由题意易得∠ACB=∠ABC,∠OAC=90°,则有∠APC=∠OBP,进而可证OB⊥AB,则问题可证;(2)设⊙O的半径为x,由(1)得OP = OB = x,则有PA = 5-x,然后根据勾股定理可进行求解.【详解】解:(1)AB与⊙O相切,理由:连接OB,如图所示:∵AB=AC,∴∠ACB=∠ABC,又∵OA⊥l,∴∠OAC=90°,∴∠ACB+∠APC = 90°,又∵OP=OB,∴∠OPB=∠OBP,∵∠OPB=∠APC,∴∠APC=∠OBP,∴∠OBP+∠ABC = 90°,即OB⊥AB,∵点B是半径OB的外端点,∴AB 是⊙O 的切线;(2)设⊙O 的半径为x ,∴OP = OB = x又∵OA = 5,PC =∴ PA = 5-x在Rt△ACP 中∴ AC 2 =PC 2 -PA 2 =, (()2225105x x x --=-+-在Rt△OAB 中∴ AB 2 =OA 2 -OB 2 =222525x x -=-又∵AB = AC∴,2225105x x x -=-+-解得:x =3∴⊙O 的半径为3.【点睛】本题主要考查切线的判定定理,熟练掌握切线的判定定理是解题的关键.27. 某片果园有果树60棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树与树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克)与增种果树x(棵)之间的函数关系如图所示.(1)求每棵果树产果y(千克)与增种果树x(棵)之间的函数关系式;(2)设果园的总产量为w(千克),求w 与x 之间的函数表达式;(3)试说明(2)中总产量w(千克)随增种果树x(棵)的变化而变化的情况,并指出增种果树x 为多少棵时获得最大产量,最大产量w 是多少?【答案】(1);(2) ;(3)当x=50时,w 的最1802y x =-+215048002w x x =-++大值为.6050【解析】 【分析】(1)由图像可得坐标,设,然后代入求解即可;()()12,74,28,66y kx b =+(2)根据(1)及题意可直接进行求解;(3)由(2)及二次函数的性质可进行求解.【详解】解:(1))由图像可得坐标,则设,把点()()12,74,28,66y kx b =+()()12,74,28,66代入得:,解得:, 12742866k b k b +=⎧⎨+=⎩1280k b ⎧=-⎪⎨⎪=⎩∴; 1802y x =-+(2)由(1)及题意得:; ()()16060802w x y x x ⎛⎫=+⋅=+⋅-+ ⎪⎝⎭215048002x x =-++(3)由(2)得:, ()221150480050605022w x x x =-++=--+∴,开口向下,对称轴为直线, 102a =-<50x =∴当时,y 随x 的增大而增大,当时,y 随x 的增大而减小,50x ≤50x ≥∴当时,w 取最大,最大值为.50x =6050【点睛】本题主要考查二次函数的实际应用,熟练掌握二次函数的应用是解题的关键.六、解答题(本大题10分)28. 如图,抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC ,BC ,213-222y x x =-点M 是线段BC 下方抛物线上的任意一点,点M 的横坐标为m ,过点M 画MN⊥x 轴于点N ,交BC 于点P .(1)填空:A ( , ),C ( , );(2)探究△ABC 的外接圆圆心的位置,并求出圆心的坐标;(3)探究当m 取何值时线段PM 的长度取得最大值,最大值为多少?【答案】(1)-1,0;0,-2;(2);(3)当m=2时,PM 的最大值是2 3,02⎛⎫⎪⎝⎭【解析】 【分析】(1)利用抛物线解析式容易求得A 、C 的坐标;(2)证明△AOC∽△COD,Rt△ACB 的外接圆圆心为AB 的中点,由此求得圆心的坐标即可;(3)可求得直线BC 的解析式,利用m 可表示出PM 的长,则可利用二次函数的性质求得PM 的最大值.【详解】解:(1)当y=0,则=0,得方程的解 213-222y x x =-121,4x x =-=∴A(-1,0)B (4,0),当x=0时,y=-2∴C(0,-2).(2)1,2,4OA OC OB ===∠AOC=∠COB=90°∴ 12OA OC OC OB ==∴△AOC∽△COB∴∠ACO=∠OBC∠ACO+∠OCB=90°∠OBC+∠OCB=90°=∠ACB∴Rt△ACB 的外接圆圆心为AB 的中点,∵A(-1,0)B (4,0),∴圆心的坐标(). 3,02(3)C (0,-2),B (4,0) 又∵直线BC 解析式1y 22x =-,M (m, ) 1(,2)2p m m -213222m m --PM=()-() 122m -213222m m -- 2122PM m m =-+ 21=(2)22m --+当m=2时,PM最大值=2.【点睛】本题考查了二次函数的性质,掌握性质是解题的关键.。
2020-2021学年九年级第一学期期中考试数学试卷(含答案)

2020-2021学年九年级第一学期期中考试数学试卷(含答案)一、选择题(每小题4分,共10小题,满分40分)1、抛物线y = 2(x+1)2-3的顶点坐标是( )A. (-1,-1)B. (1,3)C. (-1,3)D. (1,-3)2、在平面直角坐标系中,抛物线y=(x+5)(x-3)经变换后得到抛物线y=(x+3(x-5),则这个变化可以是( )A. 向左平移2个单位B. 向右平移2个单位C. 向左平移8个单位D. 向右平移2个单位3、已知点A(1,-3)关于y 轴的对称点A ′在反比例函数y=k x 的图象上,则实数k 的值为( ) A. 3 B. 31 C. -3 D. - 314、已知学校航母组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数关系式h=-t 2+24t+1,则下列说法中正确的是( )A. 点火后9s 点火后13s 的升空高度相同B. 点火后24s 火箭落于地面C. 点火后10S 的升空高度为139mD. 火箭升空的最大高度为145m5、已知y=x 2+(t-2)x-2,当x>1时y 随x 的增大而增大,则t 的取值范围是( )A. t > 0B. t = 0C. t < 0D. t ≥ 06、如图,已知D 、E 分别为AB 、AC 上的两点,且DE ∥BC ,AE=3CE ,AB=8,则AD 的长为( )A. 3B. 4C. 5D. 6第6题 第7题 第8题 第9题7、如图,一张矩形纸片ABCD 的长AB=a ,宽BC=b ,将纸片对折,折痕为EF ,所得矩形AFED 与矩形ABCD 相似,则a :b=( )A. 2:1B. 2:1C. 3:3D. 3:28、如图,二次函数y=ax 2+bx+c(a ≠0)的图象的对称轴是直线x=1,则以下四个结论中:① abc>0,② 2a+b=0, ③ 4a+b 2< 4ac ,④ 3a+c< 0.正确的个数是( )A. 1B. 2C. 3D. 49、孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则这个小孔的水面宽度为( )A. 52米B. 43米C. 7米D. 213米10、若一次函数y=ax+b 与反比例函数y=c x的图象在第二象限内有两个交点,且其中一个交点的横坐标为-1,则二次函数y=ax 2+bx+c 的图像可能是( )A B C D二、填空题(每小题5分,满分20分)11、若35a b b -=,则a b = . 12、已知二次函数y=ax 2+bx+c 的部分图象如图所示,则关于x 的方程y=ax 2+bx+c 的两个根的和为 .第12题 第13题13、如图,点C 在反比例函数y=k x(x>0)的图像上,过点C 的直线与x 轴、y 轴分别交于点A 、B ,且AB=BC , 已知△AOB 的面积为1,则k 的值为 .14、已知抛物线y=ax 2+bx-1a与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛线上. (1)此抛物线的对称轴是直线 ;(2)已知点P (12,-1a),Q (2,2),若抛物线与线段PQ 恰有一个公共点,则a 的取值范围是 . 三、(每小题8分,满分16分)15、已知二次函数y=x 2+bx+c 的图象经过点(4,3),(2,-1),求此二次函数的表达式,并求出当0≤x ≤3时, y 的最值.16、已知234a b c ==,且a+3b-2c=15,求4a-3b+c 的值 四、(每小题8分,满分16分)17、如图,二次函数y=(x+2)2+m 的图像与y 轴交于点C ,点B 在抛物线上,且点B 与点C 关于该二次函数图象的对称轴对称,已知一次函数y=kx+b 的图象经过该二次函数图象上点A(-1,0)及点B.(1)求二次函数的解析式;(2)根据图像,写出满足kx+b ≥(x+2)2+m 的x 的取值范围.18、如图是反比例函数y=k x的图象,当-4≤x ≤-1时,-4≤y ≤-1. (1)求该反比例函数的解析式;(2)若M 、N 分别在反比例函数图象的两个分支上,请直接写出线段MN 长度的最小值五、(每小题10分,满分20分)19、如图,点R 是正方形ABCD 的边AB 边上的黄金分割点,且AR> RB ,S 1表示AR 为边长的正方形面积,S 2表示以BC 为长,BR 为宽的矩形面积,S 3表示正方形ABCD 除去S 1和S 2剩余的面积,求S 3:S 2的值20、如图,在△ABC 中,AB=12cm ,AE=6cm ,EC=4cm ,且EC AE BD AD =.(1)求AD 的长; (2)求证:ACEC AD BD =.六、本题12分21、如图,函数y 1=k 1x+b 的图象与函数22k y x=的图象交于点A(2,1)、B ,与y 轴交于点C (0,3). (1)求函数y 1的表达式和点B 的坐标; (2)观察图像,比较当x>0时y 1与y 2的大小.七、本题12分22、如图,开口向下的抛物线与x 轴交于点A (-1,0)、B (2,0),与y 轴交于点C(0,4),点P 是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP 的面积为S 求S 的最大值.八、本题14分x(1≤x≤80)天的售价与销量的相关信息如下表:时间x(天)1≤x≤40 41≤x≤80售价(元/件)x+40 90每天销量(件) 200-2x已知该商品的进价为每件30元,设销售该商品每天的利润为y元。
山西省太原市2021-2022学年九年级上学期期中数学试题(解析版)

∵OA=1,
∴BO=2,
∴AB= ,
故选:C.
【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证得△ABE≌△DAF是解题的关键.
9.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各自做成一个正方形,若两个正方形的面积之和为12.5cm2,则这两段铁丝的长度是( )
−−−
(3,2)
(4,2)
3
(1,3)
(2,3)
−−−
(4,3)
4
(1,4)
(2,4)
(3,4)
−−−
所有等可能的情况有12种,其中之和为奇数的情况有8种,
则
故答案为:
14.如图,要设计一幅宽25cm,长40cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比是2∶3,如果要使彩条所占面积是图案面积的 ,设每个横彩条的宽度是2xcm.则根据题意可列方程为__________________.
13.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是_____________.
【13题答案】
【答案】 ;
【解析】
【详解】试题解析:列表得:
1
2
3
4
1
−−−
(2,1)
(3,1)
(4 1)
2
(1,2)
故选C.
【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
2020-2021学年人教版第一学期九年级期中考试数学试卷(含答案)

九年级期中考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.观察下列图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.2.若x=1是方程x2+ax-2=0的一个根,则a的值为()A. 0B. 1C. 2D. 33.将二次函数y=2(x-1)2+2的图象向左平移2个单位长度得到的新图象的表达式为()A. B. C. D.4.在平面直角坐标系中,将点P(a,b)关于原点对称得到点P1,再将点P1向左平移2个单位长度得到点P2,则点P2的坐标是()A. (b−2,−a)B. (b+2,−a)C. (−a+2,−b)D. (−a−2,−b)5.同一坐标系中,抛物线y=(x-a)2与直线y=a+ax的图象可能是( )A. B. C. D.6.一元二次方程x2-6x+5=0的两根分别是x1、x2,则x1+x2的值是( )A. 6B. -6C. 5D. -57.如图,已知在△ABC中,∠ABC=90°,AB=8,BC=6,将线段AC绕点A顺时针旋转得到AD,且∠DAC=∠BAC,连接CD,且△ACD的面积为()A. 24B. 30C. 36D. 408.有一人患了流感,经过两轮传染后共有64人患了流感,则每轮传染中平均一个人传染的人数是()A. 5人B. 6人C. 7人D. 8人9.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是()A. B. C. D. 且10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c >b;④2a+b=0;⑤△=b2-4ac<0;⑥3a+c>0;⑦(m2-1)a+(m-1)b≥0(m为任意实数)中成立式子()A. ②④⑤⑥⑦B. ①②③⑥⑦C. ①③④⑤⑦D. ①③④⑥⑦二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为________.12.某乡村种的水稻2018年平均每公顷产3200kg ,2020年平均每公顷产5000kg ,则水稻每公顷产量的年平均增长率为________.13.一抛物线的形状,开口方向与y=3x2−3x+1相同,顶点在(-2,3),则此抛物线的解析式为2________.14.如图,是抛物线y=ax2+bx+c(a≠0)的一部分,已知抛物线的对称轴为x=2,与x轴的一个交点是(-1,0),则方程ax2+bx+c=0(a≠0)的两根是________15.如图,四边形ABCD是正方形,P在CD上,△ADP旋转后能够与△ABP′重合,若AB=3,DP=1,则PP′=________.16.如图,已知AB⊥BC,AB=12cm,BC=8cm.一动点N从C点出发沿CB方向以1cm/s的速度向B 点运动,同时另一动点M由点A沿AB方向以2cm/s的速度也向B点运动,其中一点到达B点时另一点也随之停止,当△MNB的面积为24cm2时运动的时间t为________秒.17.如图,在边长为6的等边△ABC中,AD是BC边上的中线,点E是△ABC内一个动点,且DE=2,将线段AE绕点A逆时针旋转60°得到AF,则DF的最小值是________.18.如图,抛物线y=−14x2+12x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于X轴,与拋物线相交于P、Q两点,则线段PQ的长为________.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.如图,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置.(1)指出它的旋转中心;(2)说出它的旋转方向和旋转角是多少度;(3)分别写出点A,B,C的对应点.20.已知关于x的一元二次方程x2+(k−1)x+k−2=0.(1)求证:方程总有两个实数根;(2)任意写出一个k值代入方程,并求出此时方程的解.21.已知二次函数y=x2-4x+3,设其图象与x轴的交点分别是A、B(点A在点B的左边),与y轴的交点是C,求:(1)A、B、C三点的坐标;(2)△ABC的面积.22.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?23.跳绳时,绳甩到最高处时的形状是抛物线. 正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0. 9米,身高为1. 4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E. 以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果身高为1. 85米的小华也想参加跳绳,问绳子能否顺利从他头顶越过?请说明理由;(3)如果一群身高在1. 4米到1. 7米之间的人站在OD之间,且离点O的距离为t米, 绳子甩到最高处时必须超过他们的头顶,请结合图像,写出t的取值范围________.24.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)连接BF,求证:CF=EF.(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.25.如图,已知抛物线y=1x2+bx与直线y=2x交于点O(0,0),A(a,12),点B是抛物线上2O、A之间的一个动点,过点B分别作x轴和y轴的平行线与直线OA交于点C、E,(1)求抛物线的函数解析式;(2)若点C为OA的中点,求BC的长;(3)以BC、BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m、n之间的关系式.26.在一-次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F 重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4 cm,并进行如下研究活动。
2021-2022学年度第一学期九年级数学期中测试卷(含答案)

2021-2022学年度第一学期期中测试卷九年级 数学满分:100分 时间:60分钟一、选择题(本大题共10小题,每小题3分,共30分。
每小题只有一个正确答案) 1.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2.设一元二次方程2x 2+3x-2=0的两根为x 1、x 2,则x 1+x 2的值为( ) A.-32B.23C.-2D.-13.已知关于x 的方程(a-3)x |b−1|+x-1=0是一元二次方程,则a 的值是( ) A.-1 B.2 C.-1或3 D.34.二次函数y=-2x 2+4x+3的图象的顶点坐标是( ) A.(1,5) B.(-1,5) C.(1,3) D.(-1,3)5.利用配方法解方程x 2+4x-5=0,经过配方得到( ) A.(x+2)2=9 B.(x-2)2=9 C.(x+4)2=9 D.(x-4)2=9 6.如果点A(-3,a)是点B(3,-4)关于原点的对称点,则a 的值是( ) A.-4 B.4 C.4或-4 D.无法确定7.若关于x 的一元二次方程(k+2)x 2-3x+1=0有实数根,则k 的取值范围是( ) A.k <14且k ≠-2 B.k ≤14C.k ≤14且k ≠-2 D.k ≥148.在同一平面直角坐标系中,函数y=ax+b 与y=ax 2-bx 的图象可能是( )9.某种植基地2020年菜产量为80吨,预计2021年蔬菜产量达到300吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( ) A.80(1+x)2=300 B.80(1+3x)=300 C.80+80(1+x)+80(1+x)=300 D.80(1+x)=30010.已知二次函数的图像如图所示,下列结论:(1)a+b+c <0(2)a-b+c >0 (3)abc >0(4)b=-2a ,其中正确的结论个数是( )A.2个B.3个C.4个D.5个二、填空题(本大题共8小题,每小题3分,共24分) 11.已知函数y=(m-1)x m2+1是二次函数,则m= .12.a 是方程x 2-x=1的一个根,则2a 2-2a+6的值是 .13.抛物线y=3x 2向右平移1个单位,再向下平移2个单位,得到抛物线 . 14.如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax 2+bx+c >0的解集是 .15.已知点A(-1,y1)、B(-2,y2)、C(3,y3)在二次函数y=-(x-2)2+4的图象上,则y1,y2,y3的大小关系是 .16.在平面直角坐标系中,将点A(3,2)绕原点O按顺时针方向旋转90°后,其对应点A’的坐标是 .17.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A’B’C’,连接A’A,若∠1=20°,则∠B的度数是 .18.如图,第1个图案是由黑白两种色的六边形地面砖组成的,第2个,第3个图案可以看成是第1个图案经过平移而得,那么第2021个图案中有白色六边形地面砖块.三、解答题(本大题共6小题,共6分)19.用适当的方法解方程(每小题4分,共16分)(1)(x-3)2-9=0 (2)x2-2x-5=0(3)x2-6x-27=0 (4)(x-3)2+4k(x-3)=020.(8分)如图,矩形ABCD是一花圃,它的一边AD利用已有的墙(可利用的墙足够长),另外三边所用的栅栏的总长是20m,若矩形ABCD的面积为50m2,求AB的长. 21.(10分)已知关于x的方程x2+2kx+k2-1=0(1)试说明无论取何值时,方程总有两个不相等的实数根;(2)如果方程有一个根为3,试求2k2+12k+2021的值.22.(10分)在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°, AC=3, BC=2.(1)试在图中画出将△ABC以B为旋转中心,沿顺时针方向旋转90°后的图形△A1BC1;(2)若点B的坐标为(-1,-4),点C的坐标为(-3,-4),试在图中画出直角坐标系,并写出点A的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2.23.(10分)如图所示,已知在△ABC中,∠B=90°,AB=6cm,BC=12cm,点Q从点A开始AB边向点B以1cm/s的速度移动,点P从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果Q、P分别从A、B两点出发,那么几秒后,△PBQ的面积等于8cm2?(2)在(1)中,△PBQ的面积能否等于10cm2?试说明理由.24.(12分)如图抛物线的顶点为A(-3,-3).此抛物线交x轴于O、B两点.(1)求此抛物线的解析式.(2)求△AOB的面积.(3)若物线上另有点P满足S△POB=S△AOB,求点P坐标.参考答案1-5 DAAAA 6-10 BCCAC11.-1; 12.8; 13.y=3(x-1)2-2 ; 14.-1<x<5; 15.y2<y1<y3 16.(2,-3);17.65°; 18.808619.(1)x1=6 x2=0 (2)x1=1+√6,x2=1-√6(3)x1=-3 x2=9 (4)x1=3 x2=3520.x2+2kx+k2-1=0 解:(1)∵b2-4ac=4k2-4(k2-1)=4k2-4k2+4=4>0,∴无论k取何值时,方程总有两个不相等的实数根. (2)∵方程有一个根为3.∴32+2k×3+k2-1=0,∴k2+6k=-8,∴2k2+12k+2021=2(k2+6k)+2021=200521.(1)如图:(2)如图可知,A(-3,-1); (3)△A2B2C2如图.22.设AB的长度为xm,则BC的长度为(20-2x)m,由题意得:x(20-2x)=50,解得:x1=x2=5,答:AB的长度为5m.23.(1)设t秒后,△PB Q的面积等于8cm2,根据题意得:12×2t(6-t)=8,解得:t=2或4答:2秒或4秒后,△PBQ的面积等于8cm2.(2)由题意得:12×2t(6-t)=8=10 整理得:t2-6t+10=0∵b2-4ac=36-40=-4<0,此方程无解,∴△PB Q的面积不能等于10cm2.24.(1)如图,连接AB、OA.设抛物线的解析式为y=a(x+3)2-3,解得a=13,所以此抛物线的解析式为y=13(x+3)2-3;(2)∵抛物线的对称轴为直线x=-3,∴B点坐标为(-6,0),∴△A OB的面积=12×6×3=9(3)设P点坐标为(x,y),∵S△POB=S△AOB,∴12|y|×6=9,解得y=3或y=-3(舍去),∴13(x+3)2-3=3,解得x1=3√2-3,x2=-3√2-3,∴P点坐标为(3√2-3,3)(-3√2-3,3).。
【期中卷】人教版2021-2022学年九年级数学上学期期中测试卷(三)含答案与解析

人教版2021–2022学年上学期期中测试卷(三)九年级数学(考试时间:100分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:九年级上册第二十一章~第二十四章5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求)1.下列交通标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知⊙O的半径长为5,若点P在⊙O内,那么下列结论正确的是()A.OP>5 B.OP=5 C.0<OP<5 D.0≤OP<53.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2 B.2 C.±2 D.04.如果关于x的方程x2+mx+1=0的两个根的差为1,那么m等于()A.±2 B.± C.± D.±5.若一个扇形的半径是18cm,且它的弧长是12π cm,则此扇形的圆心角等于()A.30° B.60°C.90° D.120°6.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥17.如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A .12B .C .D .8.如图,在平面直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、B 两点,若AB=3,则点M 到直线l 的距离为( )A .B .C .2D .9.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根D. 无法确定10.如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm/s 的速度沿着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x (s ),△BPQ 的面积为y (cm 2),则y 关于x 的函数图象是( )A. B. C. D.第Ⅱ卷二、填空题(本题共5小题,每小题3分,共15分)11.一元二次方程x2﹣2x=0的两根分别为.12.若点M(3,a﹣2),N(b,a)关于原点对称,则ab=.13.如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E.F.且AB=5,AC=12,BC=13,则⊙O 的半径是.14.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y<0时,x的取值范围是.15.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(本大题共8个小题,满分75分)16.(8分)解方程:(1)3x2+6x﹣5=0(2)x2+2x﹣24=017.(9分)如图,图中每个小方格都是边长为1个单位长度的正方形,△ABC在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得A,B两点的坐标分别为A(2,﹣1),B(1,﹣4),并写出C点坐标;(2)在图中作出△ABC绕坐标原点旋转180°后的△A1B1C1,并写出A1,B1,C1的坐标:(3)在图中作出△ABC绕坐标原点顺时针旋转90°后的△A2B2C2,并写出A2,B2,C2的坐标.18.(9分)已知二次函数y=﹣x2+3x﹣(1)用配方法求出函数图象的顶点坐标和对称轴方程;(2)用描点法在如图所示的平面直角坐标系中画出该函数的图象;(3)根据图象,直接写出y的值小于0时,x的取值范围.19.(9分)如图,E点是正方形ABCD的边BC上一点,AB=12,BE=5,△ABE逆时针旋转后能够与△ADF 重合.(1)旋转中心是,旋转角为度;(2)△AEF是三角形;(3)求EF的长.20.(9分)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=NE=3.(1)求证:BC是⊙O的切线;(2)若AE=4,求⊙O的直径AB的长度.21.(10分)某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示:时间(天)x销量(斤)120﹣x储藏和损耗费用(元)3x2﹣64x+400已知该水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?22.(10分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF ∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.23.(11分)如图,两条抛物线y1=﹣x2+4,y2=﹣x2+bx+c相交于A,B两点,点A在x轴负半轴上,且为抛物线y2的最高点.(1)求抛物线y2的解析式和点B的坐标;(2)点C是抛物线y1上A,B之间的一点,过点C作x轴的垂线交y2于点D,当线段CD取最大值时,求S△BCD.九年级数学·全解全析一、选择题(本题共10小题,每小题3分,共30分)1 2 3 4 5 6 7 8 9 10A DBCD B C B A C1.【解析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,不是中心对称图形.故错误.故选A.2.【解析】根据d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:由⊙O的半径长为5,若点P在⊙O内,得0≤OP<5,故选:D.3.【解析】根据形如y=ax2+bx+c (a≠0)是二次函数,可得答案.【解答】解:由y=(m﹣2)x|m|+2是y关于x的二次函数,得|m|=2且m+2≠0.解得m=2.故选:B.4.【解析】根据一元二次方程的根与系数的关系得到,两根之和与两根之积,其中两根的和可以用m表示,而(x1﹣x2)2=(x1+x2)2﹣4x1•x2=1,代入即可得到关于m的方程,进而求解.【解答】解:由根与系数的关系可知:x1+x2=﹣m,x1•x2=1,又知x1﹣x2=1,则(x1﹣x2)2=1,即(x1+x2)2﹣4x1•x2=1,则(﹣m)2﹣4=1,解得:m=±.故本题选C.5.【解析】把弧长公式进行变形,代入已知数据计算即可.【解答】解:根据弧长的公式l=,得n===120°,故选:D.6.【解析】根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【解答】解:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选B.7.【解析】连接CP,由切线的性质可得CP⊥AO,再由切线长定理可得∠POC=45°,进而可得△POC是等腰直角三角形,利用勾股定理即可求出OC的长.【解答】解:连接CP,∵OA边与⊙C相切于点P,∴CP⊥AO,∵⊙C与∠AOB的两边分别相切,∠AOB=90°,∴∠POC=45°,∴OP=CP=6,∴OC==6,故选C.8.【解析】设M到直线l的距离为m,则有x2+bx+c=m两根的差为3,又x2+bx+c=0时,△=0,列式求解即可.【解答】解:抛物线y=x2+bx+c与x轴只有一个交点,∴△=b2﹣4ac=0,∴b2﹣4c=0,设M到直线l的距离为m,则有x2+bx+c=m两根的差为3,可得:b2﹣4(c﹣m)=9,解得:m=.故答案选B.9.【解析】利用一次函数性质得出k>0,b≤0,再判断出△=k2-4b>0,即可求解.=+的图象不经过第二象限,【详解】解:一次函数y kx bk∴>,0b≤,240∴∆=->,k b∴方程有两个不相等的实数根.故选A.【点睛】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键.10.【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12AP•BQ,解y=12•(9﹣3x)•x=29322x x;故D选项错误.故选C.考点:动点问题的函数图象.二、填空题(本题共5小题,每小题3分,共15分。
2021-2022学年九年级数学上学期期中测试模拟试卷1

数学九年级(上)2021-2022学年九年级数学上学期期中测试模拟试卷1考试时间:100分钟;试卷满分:100分题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列垃圾分类标识中,是中心对称图形的是()A.B.C.D.2.(3分)若关于x的方程ax2+3x+1=0是一元二次方程,则a满足的条件是()A.a≤B.a>0 C.a≠0 D.a>3.(3分)四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是()A.1:3:2:4 B.7:5:10:8 C.13:1:5:17 D.1:2:3:4 4.(3分)如图,将△ABC绕点C顺时针旋转得到△EDC,若点A恰好在ED的延长线上,∠ABC=110°,则∠ADC的度数为()A.55°B.60°C.65°D.70°5.(3分)不解方程,判别方程2x2﹣3x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根6.(3分)关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有两个重合的交点C.对称轴是直线x=1D.当x>1时,y随x的增大而减小7.(3分)若x1,x2是方程x2﹣2x﹣3=0的两根,则x1+x2+x1x2的值是()A.1 B.﹣1 C.5 D.﹣58.(3分)二次函数y=ax2+bx+c的部分对应值如下表:x﹣3 ﹣2 ﹣1 0 1 2 3 4 5y12 5 0 ﹣3 ﹣4 ﹣3 0 5 12 利用二次函数的图象可知,当函数值y<0时,x的取值范围是()A.x<0或x>2 B.0<x<2 C.x<﹣1或x>3 D.﹣1<x<3 9.(3分)如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70°B.110°C.120°D.140°10.(3分)已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④9a﹣3b+c<0;⑤c﹣a>1.其中所有正确结论的序号是()A.①②B.①③④C.①②③④D.①②③④⑤二.填空题(共7小题,满分21分,每小题3分)11.(3分)方程(x﹣1)(x+2)=0的解是.12.(3分)⊙O的半径是13,弦AB∥CD,AB=24,CD=10,则AB与CD的距离是.13.(3分)已知关于x的一元二次方程x2+a2x+a﹣3=0的一个根是1,则3a2+3a﹣4的的值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21、在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形, △ ABC 的三个顶点都在
格点上(每个小方格的顶点叫格点).
(1) 画出 △ ABC 绕点O逆时针旋转90°后的 △ ABC .
(2) 求 △ ABC 的面积.
A
CO B
22、如图,⊙O 是 Rt△ ABC 的外接圆,点 O 在 AB 上, BD AB ,点 B 是垂足, OD∥ AC , 连接 CD .(1)求证: CD 是⊙O 的切线. (2)若⊙O 的半径为10cm,∠A=600,求CD的长
A.不亏不盈 B.盈6.12元 C.亏6.02元 D.亏5.92元
二、填空题
11、随即掷一枚均匀的硬币三次次,三次正面朝上的概率是______________。
12、已知⊙ O1 和⊙ O2 的半径分别是12和2,圆心 O1 的坐标是(0,8),圆心 O2 的坐标是(-
6,0),则两圆的位置关系是( )
25、如图,在直角坐标系中,Rt△AOB的两条直角边 OA,OB分别在x轴的负半轴,y轴的负半轴
上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90º,再把所得的图像沿x轴正方向平
移1个单位,得△CDO.
(1)写出点A,C的坐标; (2)求点A和点C之间的距离.
yC
A
OD x
B
26、如图,将 △ AOB 置于平面直角坐标系中, 其中点 O 为坐标原点,点 A 的坐标为 (3,0) , ABO 60o.
D C
A
B
O
23、如图所示,直角梯形 ABCD 中, AB ∥ DC , AB 7 cm , BC CD 4 cm ,以 AB 所在
直线为轴旋转一周,得到一个几何体,求它的全面积.
A
O
D
B
C
24、某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽 量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每 天可多售出2件,若商场每天要获利润1200元,请计算出每件衬衫应降价多少元?
A.70° B.60° C.50° D.40°
7、方程 x2 9x 18 0 的两个根是等腰三角形的底和腰,则这个三角形的周长为( )
A.12
B.12或15
C.15或12
D.不能确定
8、从3名男生和2名女生中随机抽取2021年南京青奥会志愿者.下列事件的概率:抽取2名,恰
好是1名男生和1名女生( )。
二、填空题(每小题3分,共24分)
11、 1/8
12、 内切
13、( 5、2 )
14、 1
15、 (-1,-1) 16、2a+b 17、1或7
18、A
三、解答题(共66分)
19、(6分)(1)3根号3
(2)解:
x 2x 5 22x 5
x 22x- 5 0
x1
2,
x2
5 2
20、(6分)1/2、1/18
33 A.6 3 B. 2 C.3 3 D.3
三、解答题
19、计算、解方程:
1
1
4
3
(1)计算:( 48 - 8 )-( 3 - 2 0.5 );;
(2)x(2x-5)=4x-10.
20、:甲、乙两同学投掷一枚骰子,用字母p、q分别表示两人各投掷一次的点数.(1)求满足关
于x的方程 x2 px q 0 有实数解的概率.
13、如图,四边形EFGH是由四边形 ABCD 经过旋转得到的.如果用有序数对(2,1)表示方格纸
上A点的位置,用(1,2)表示B点的位置,那么四边形 ABCD 旋
转 得到四边形EFGH时的旋转中心用有序数对表示是 .
14、若 3a2 a 2 0 ,则 5 2a 6a2
.
15、点A的坐标为( 2 ,0),把点A绕着坐标原点顺时针旋转
A.2
B.4 C.8 D.16
5、下列事件是随机事件的是( )
A.在一个标准大气压下,加热到100℃,水沸腾
B.购买一张福利彩票,中奖
C.有一名运动员奔跑的速度是30米/秒
D.在一个仅装着白球和黑球的袋中摸球,摸出红球
6、AB是⊙O 的直径,点C、D在⊙O 上, BOC 110° ,
AD∥ OC ,则 AOD ( )
一、选择题、
九年级上学期期中测试题 数学
1 1、使 x 1 有意义的x的取值范围是( )
A.x>1 B.x≥1 C.x≠1 D.x≥0且x≠1
2、若关于 x 的一元二次方程 kx2 2x 1 0 有两个不相等的实数根,则 k 的取值范围是(
)
A. k 1
B。 k 1且 k 0
C.。 k 1
21、(6分)解:(1)略(2)
(1)求作 △ AOB 的外接圆圆心P,并求出P点的坐
标;
(2)若⊙P与 y 轴交于点 D ,求 D 点的坐标;
(3)若CD是⊙P的切线,求直线CD的函数解析式.
y D CO
B Ax
参考答案
一、选择题(每小题3分,共30分)
1、A 2、B 3、D 4、A 5、 B 6、D 7、C 8、C 9、A 10、D
. 16、实数a,b在数轴上的对应点的位置如图,请化简式子:
a b b2 (a b)2
_________
135º到点B,那么点B的坐标是
17、已知⊙O的半径是5cm,弦AB∥CD,AB=6cm,CD=8cm则AB与CD的距是
18、如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,• 从点A出发绕侧面一 周,再回到点A的最短的路线长是( )
A.1/5 B.2/5 C.3/5 D.4/5
9、如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米, 则拱桥的半径为( )
A.6.5米 B.9米 C.13米 D.15米 第9题
10.某商场根据市场销售变化,将A商品连续两次提价20%,同时将B商品连续两次降价20%,结果
都以每件23.04元出售,此时商场若同时售出A、B两商品各一件的盈亏情况为( ).
D。 k 1 且 k 0
3、直线
y
4 3
x
4
与
x
轴、
y
轴分别交于
A
、
B
两点,把△
AOB
绕点
A
顺时针
旋转90°后得到△ AOB ,则点 B 的坐标是( C.(7,4) D.(7,3)
4、 △ ABC 为⊙O 的内接三角形, AB 1,° C 30 则⊙O
的内接正方形的面积为( )