初等几何研究试题答案(2)李长明版
初等几何研究试题答案(李长明版)

初等几何研究试题答案(I)、线段与角的相等1. O O、O Q相交于A B, O O的弦BC交O Q于E, O 02的弦BD交O0于F,求证:(1)若2 DBA2 CBA贝卩若DF二CE则 / DBA M CBA.证明:⑴连接AC AE AF、AD在O 0 中,由/ CBA W DBA得AC=AF在O O 中,由/ CBA W DBA得AE=AD由A C、B、E四点共圆得/仁/2由A D B、E四点共圆得/ 3二/4所以△ ACE^A AFD••• DF=CE(2) 由(1)得/ 仁/ 2, / 3=2 4v DF=CE• △ACE^A AFD••• AD=AE在O Q 中,由AD=AE^得/ DBA M CBA2. 在厶ABC中,AC=BC,Z ACB=90,D是AC上的一点,AE丄BD的延长线于E,又AE=1BD,2求证:BD平分/ ABC.证明:延长AE,BC交于点F7 AED "BCA =90 ADE "BDC•CBD =/CAF又7 ACF BCA = 90 AC 二BC•ACF 三BCD . AF = BD1 1又、:AE BD . AE AF2 2又ABEE _ BE■ BE平分ABF即BD平分.ABC3. 已知在凸五边形ABCDE中, / BAE=3 ,BC=CD=DE M/ BCD玄CDE=180-求证:/ BAC 2 CAD h DAE.证明:过点B 作BDL BC,交圆周于点D,连结CD ©D•••/ DBC=90, • CD 是直径,则/CAD=90证明:连接BD,得△ CBD 是等腰三角形且底角是/ CDB=[18(0-(180o — 2 - )] -2=.:丄 BDE=(180° — 2G )-O (=180O — 3«••• A B 、D E 共圆同理A C D E 共圆• h BAC h CAD h DAE4. 设H 为锐角△ ABC 的垂心,若AH 等于外接圆的半径由题,可得AH L BC, BH丄AC••• BD// AH, AD// BH二四边形ADBH是□••• AH=BD又;AH等于外接圆的半径(R)• BD=R M CD=2R•••在Rt △ BCD中,CD=2BD即/ BCD=30• / BDC=60又;/ BAC K BDC BAC M BDC=605. 在厶ABC中, / C=90,BE是/B的平分线,CD是斜边上的高,过BE CD之交点0且平行于AB的直线分别交AC BC于F、G,求证AF=CE.证明:如图;/ 1 = 2 3, / 仁/2. 2二/ 3, • GB = GO,;2 5=2 4=2 6, • CO =CE,;FG// AB,「. AF/CF二B$CG二G0CG,又;△ FCO^COG/. CO7CF=G/CG=A/CF,• CO=AF;CO=CE,\ AF=CE.6. 在厶ABC中,先作角A B的平分线,再从点C作上二角的平分线值平行线,并连结它们的交点 D E,若DE// BA,求证:△ ABC等腰.证:如图所示设AG ED的交点为Fv AD是/ A的平分线•••/仁/2T DE// AB 仁/ 3v CE// AD :丄 3二/ 5, / 4二/ 2•/仁/2二/3=Z 4=2 5则厶FAD ffi^ FCE是等腰三角形•A F=DF,EF=CF•A C=DE同理可证BC=DE•A C=BC• △ ABC是等腰三角形7. 三条中线把△ ABC分成6个三角形,若这六个三角形的内切圆中有4个相等.求证:△ ABC是正三角形.AB D C证明:•/△ AOF △ AOE △ COD △ COE △ BOF △ BOD面积都相等--S A OFE=S A OEC即: 11111 1BF X 叶一FOX 叶BO X r= CEX 叶一OE< 叶一OC X r 2 2 2 2 2 21 12 (BF+FO+BO X r= - (CE+OE+OC X r••• BF+FO+BO二CCE+OE+OC••• CE+OE+OC-OG-OI二CE+OE+OC-OL-OJ• 2DH+2BH=2FK+2CK• 2BF=2CE又F、E分别为AB AC之中点••• AB=AC同理:AB=BC故厶ABC是正三角形.8. 平行四边形被对角线分成四个三角形中,若有三个的内切圆相等证明:该四边形为菱形.C证明:又•••△ AOBA BOC、△ CODA DOA四个三角形的面积相等1 1OD DC OC r OB BC OC r2 2CD OC OD 二BC OB OCOD OC DC - OE - OG = OB OC BC - Ol - OG二2DF +2CF =2BH +2CH二2DC =2BC=DC =BC•四边形为菱形9. 凸四边形被对角线分成4个三角形,皆有相等的内切圆,求证:该四边形是菱形证明:连结O i 、O 2,分别作O i 、O 2到AC 的垂线,垂足分别为P 、M•••在厶ABC 中 ,BO 是。
精品《初等几何研究》练习题

《初等几何研究》作业一、填空题1、对直线a上任意两点A、B,把B以及a上与B在A同侧的点的集合称作,并记作。
2、在绝对几何中,外角定理的内容是:。
3、第四组公理由条公理组成,它们的名称分别是。
4、欧氏平行公理是:。
5、罗氏几何公理系统与欧氏几何公理系统的共同之处是,不同之处是。
6、几何证明的基本方法,从推理形式上分为法与归纳法;从思维方向上分为法与分析法;从命题结构上分为证法与间接证法,其中间接证法包括法与法。
7、过反演中心的圆,其反演图形是(过或不过)反演中心的。
8、锐角三角形的所有内接三角形中,周长最短的是三角形。
9、锡瓦定理:设⊿ABC的三边(所在直线)BC、CA、AB上分别有点X、Y、Z,则AX、BY、CZ三线共点(包括平行)的充要条件是。
10、解作图问题的常用方法有:、、、等。
11、数学公理系统的三个基本问题是性、性和性.12、对于共面的直线a和a外两点A、B,若a与(AB)相交,则称A、B在a的,否则称A、B在a的 .13、命题:“过直线外一点,至少有一条直线与已知直线共面但不相交”是定理的推论.14、证明直线和圆的连续性时,主要依据了原理.15、罗氏平行公理是: .16、在罗氏几何中,共面的两条直线有种关系,它们分别是17、几何证明的通用方法一般有法、法、法、法、法、法等.18、等边三角形外接圆周上任一点到三顶点的连线段中,最长线段与另两条线段之和具有的关系.19、尺规可作图的充要条件是 .20.由公理可以证明,线段的合同关系具有性、性、性和性.21.如果线段与角对应,那么线段的中点与角的对应.22.命题:“线段小于任意一条连接其两个端点的折线”是定理的推论.23.绝对几何包括有组公理,它们分别是 .24.写出一条与欧氏平行公理等价的命题: .25.在罗氏几何中,两条直线为分散线的充要条件是 .26、.常用的几何变换有等27.托勒密定理:四边形ABCD是圆内接四边形,则 .28.请写出两条作图公法: .29.在希尔伯特给出的欧几里得公理系统中,三角形的定义是:。
初等几何研究答案

《初等几何研究》作业一、填空题1、对直线a 上任意两点A 、B ,把B 以及a 上与B 在A 同侧的点的集合称作 射线(或半直线),; ,并记作 AB 。
2、在绝对几何中,外角定理的内容是: 三角形的外角大于任一不相邻的内角 。
3、第四组公理由 两 条公理组成,它们的名称分别是 度量公理(或阿基米德公理)和康托儿公理 。
4、欧氏平行公理是:对任意直线a 及其外一点A ,在a 和A 决定的平面上,至多有一条过A 与a 不相交的直线 。
5、罗氏几何公理系统与欧氏几何公理系统的共同之处是 前4组公理(或绝对几何) ,不同之处是 平行公理 。
6、几何证明的基本方法,从推理形式上分为 演绎 法与归纳法;从思维方向上分为 综合 法与分析法;从命题结构上分为 直接 证法与间接证法,其中间接证法包括 反证 法与 同一 法。
7、过反演中心的圆,其反演图形是 不过 (过或不过)反演中心的 直线 。
8、锐角三角形的所有内接三角形中,周长最短的是 垂足三角形。
9、锡瓦定理:设⊿ABC 的三边(所在直线)BC 、CA 、AB 上分别有点X 、Y 、Z ,则AX 、BY 、CZ 三线共点(包括平行)的充要条件是1=⋅⋅ZBAZYA CY XC BX 。
10、解作图问题的常用方法有: 交轨法 、三角奠基法、 代数法 、 变换法 等。
11、数学公理系统的三个基本问题是 相容性、 独立性和 完备 性.33.①答案不惟一.34.①(0,+∞),②,(0,π/2),③连续,④单调递减. 35.①平移,②旋转,③轴对称.36. ①1=⋅⋅ZB AZYA CY XC BX (或-1)37.①写出已知与求作,②分析,③作法,④证明,⑤讨论.12、对于共面的直线a和a外两点A、B,若a与(AB)相交,则称A、B在a的异侧,否则称A、B在a的同侧.13、命题:“过直线外一点,至少有一条直线与已知直线共面但不相交”是外角定理的推论.14、证明直线和圆的连续性时,主要依据了戴德金分割原理.15、罗氏平行公理是:对任意直线a及其外一点A,在a和A决定的平面上,至多有一条过A与a不相交的直线.,16、在罗氏几何中,共面的两条直线有3种关系,它们分别是平行,相交,分散.17、几何证明的通用方法一般有化归法、类比法、构造法、数形结合法、变换法、模型法等.18、等边三角形外接圆周上任一点到三顶点的连线段中,最长线段与另两条线段之和具有相等的关系.19、尺规可作图的充要条件是所求的量可用已知量的有理式或只含平方根的无理式表出.20.由公理可以证明,线段的合同关系具有反身性、对称性、传递性和可加性.21.如果线段与角对应,那么线段的中点与角的角平分线对应.22.命题:“线段小于任意一条连接其两个端点的折线”是外角定理的推论.23.绝对几何包括有四组公理,它们分别是结合公理、顺序公理、合同公理、连续公理. 24.写出一条与欧氏平行公理等价的命题:.25.在罗氏几何中,两条直线为分散线的充要条件是.26、.常用的几何变换有合同变换、相似变换、射影变换、反演变换等27.托勒密定理:四边形ABCD是圆内接四边形,则1=⋅⋅ZBAZYACYXCBX(或-1).28.请写出两条作图公法:过两点可作一条直线(或其部分)。
初等几何研究习题2(李长明版)

汕头职业技术学院初等几何研究习题课数学教育(师范类)1. I是△ABC的内心,AI、BI、CI的延长线分别交△ABC的外接圆于D、E、F求证:EF⊥AD。
D AB C EFI 五、关于平行与垂直2. A、B、C、D在圆周上相继的四点,P、Q、R、S分别是弧AB、BC、、CD、DA的中点,求证:PR⊥QS。
ACBP QDRS3. 凸四边形ABCD的每条对角线皆平分它的面积,求证:ABCD是平行四边形。
A BDC4. 已知:△BCX 和△DAY 是□ABCD 外的等边三角形,E 、F 、G 、H 是YA 、AB 、XC 、CD 的中点。
求证:EFGH 是平行四边形。
ABXD C YE F GH5. 在△ABC的各边上向外作正方形BCDE、CAFG、ABHI,其中心依次为O1、O2、O3求证:AO1⊥O2O3。
AO1O2BCO36. 在正方形ABCD 内任取一点E ,连接AE 、BE ,在△ABE 外以AE 、BE 为边作正方形AEMN 和EBFG ,连NC 、AF 。
求证:NC∥AF 。
A BCD E MNFG7. 以□ABCD的对角线AC为一边的两侧各作一个正三角形ACP、ACQ。
求证:BPDQ是□。
ABPDCQ8. 已知:凸五边形的四条边平行于所对的对角线。
求证:第五边也平行于所对的对角线。
CA B DE9.在△ABC中,∠B≠90°,BC边的垂直平分线交AB于D,△ABC的外接圆在A、C两点之切线交于E.求证:DE∥BC.AD EB C10.P 是正方形ABCD 的边CD 上的一点,过D 作AP 的垂线分别交AP 、BC 于Q 、R ,O 是正方形的中心.求证:OP ⊥OR.ABCDOPR12. 给定正方形ABCD ,P 、Q 分别人为AB 、BC 上的点,满足BP=BQ ,自B 作BH ⊥PC 于H ,求证:∠DHQ=900.ABCDO PHQ13. 在△ABC中,AB=AC,O为外心,D为AB的中点,E是△ACD的重心。
初等数学研究(李长明 周焕山编) p494第7题,p497第3题,p498第9题答案

初等数学研究(李长明 周焕山编) p494第7题,p497第3题,p498第9题答案.F AB AB ABCD 7.EF AC AB E E 平分,求证:于作底的平行线交过,为直径之圆于腰切以是垂直二底的腰,另一中,在直角梯形证明: ∠DAB=∠ABC=90°, 圆O 以AB 为直径, ∴AD,BC 均与圆O 相切; 又 圆O 与CD 相切于E, ∴AD=ED;EC=BC;又 AD ∥EF ∥BC,∴FG/BC=AF/AB=DE/DC=AD/DC=EG/EC=EG/BC.∴EG=FG .即.EF AC 平分3.凸四边形ABCD 的每条对角线皆平分它的面积.求证:ABCD 是平行四边形()()对角线互相平分是平行四边形凸四边形同理易证得:对顶角相等又的面积,平分凸四边形于于于于证明:作..,.,90.2121.,,,ABCD DO BO CO AO CFOAEO COF AOE CFO AEO CF AE CF BD AE BD ABCD BD N AC DN M AC BM F BD CF E BD AE ⇒==∴∆≅∆⇒=∠=∠=∠=⇒⋅=⋅∴⊥⊥⊥⊥︒.//.,,,90.9BC DE E C A ABC D AB BC B ABC 求证:两点之切线交于的外接圆在于边的垂直平分线交中,在∆≠∠∆︒()()()BC DE ABC ACE ADE ACE E C D A AEC AOC DBC BDC DBC DCB BDC ABC AOC DCB DBC CD BD BC DM AEC AOC OCE OAE O CE AE CD OC OA //.ADE .ABC ,..,,,.1802180.180,2.2...180.90,.,,∴∠=∠∴∠=∠∠=∠∴∴∠=∠-︒=∠-︒=∠∴∠-∠-︒=∠∠=∠∠=∠∴=∴︒=∠+∠∴︒=∠=∠∴同弧弦切角等于圆周角同弧圆周角相等四点共圆倍同弧圆心角是圆周角的又的垂直平分线是的切线,是圆证明:连结。
初等几何研究试题答案(2)李长明版

初等几何研究试题答案(II )二、关于和、差、倍、分线段(角)1、 等腰ABC 中,0100,A B ∠=∠的平分线交AC 于D ,证明:BD+AD=BC 。
D 'BCA4321证:在BC 上取点D ,,使BD ,=BD,连结DD ,0100A ∠=且BD 平分∠ABC00120,40C ∴∠=∠=又BD=BD ,,0380∴∠=,23C ∠+∠=∠0240∴∠=即2C ∠=∠ ,,CD DD ∴=又03180A ∠+∠=∴点A 、D 、D ,、B 四点共圆且14∠=∠∴DD,=ADBC=BD,+CD ,=BD+AD已知,ABCD 是矩形,BC=3AB,P 、Q 位于BC 上,且BP=PQ=QC, 求证:∠DBC +∠DPC=∠DQC解:作矩形BCEF 与矩形ABCD 相等,在EF 上选取点O 使得FO=2EO.连结BO 、DO 。
由图可知,由BO=DO ,且有△BF O ≌△OED,∵∠FBO+∠BOF=90º ∠BOF=∠DOE ∴∠BOF+∠DOE=90º ∴∠BOD=90º △BOD 为等腰直角三角形 有∠DBO=45º ∴∠DBP+∠QBO=45º ∵∠DPC=∠QBO ∴∠DBP+∠DPC=45º ∵△DQC 为等腰直角三角形∴有∠DQC=45º 因此,有∠DBP+∠DPC=∠DQCP QAB CF EO P D3、圆内接四边形ABCD 的对角线AC 、BD 交于X ,由X 向AB 、BC 、CD 和DA 作垂线,垂足分别为A ´、B ´、C ´和D ´. 求证:A ´B ´+C ´D ´=B ´C ´+D ´A ´证明:(方法一)∵X 、A ´、A 、D ´四点共圆(对角和180°) ∴∠XA ´D ´=∠XAD ´又∵∠XAD ´=∠XBC(圆周角)同理∠XA ´B ´=∠XBC,即∠XA ´D ´=∠XA ´B ´ 同理可得∠XB ´A ´=∠XB ´C ´,∠XC ´B ´=∠XC ´D ´, ∠XD ´C ´=∠XD ´A ´∴X 是四边形A ´B ´C ´D ´的内心。
初等几何研究作业参考答案

《初等几何研究》作业参考答案一.填空题1.①射线(或半直线),②。
2. ①两,②度量公理(或阿基米德公理)和康托儿公理。
3.①前4组公理(或绝对几何),②平行公理。
4.①平移,②旋转,③轴对称. 5.1=⋅⋅ZBAZYA CY XC BX 。
6.①交轨法,②三角奠基法,③代数法,④变换法。
7.①反身性、②对称性、③传递性、④可加性. 8.外角. 9.答案不惟一.10.①演绎,②综合,③直接,④反证,⑤同一; 11.1=⋅⋅ZBAZYA CY XC BX .(答-1也对) 12. ①过两点可作一条直线(或其部分),②已知圆心和半径可作一圆(或其部分). 13.①不共线的三点A 、B 、C 及(AB)、(BC)、(CA)构成的点的集合。
14.连续. 15.答案不惟一. 16.①不过,②圆.17.1=⋅⋅ZB AZYA CY XC BX (或-1).18.①写出已知与求作,②分析,③作法,④证明,⑤讨论. 19.①相容,②独立,③完备.20.合同变换、相似变换、射影变换、反演变换等21.对任意直线a 及其外一点A ,在a 和A 决定的平面上,至少有两条过A 与a 不相交的直线. 22.①代数,②解析,③三角,④面积,⑤复数,⑥向量. 23.相等。
24.所求的量可用已知量的有理式或只含平方根的无理式表出. 二.问答题1.对于公理系统∑,若有一组具体事物M ,其性质是已知的,在规定∑中每一个基本概念指M 中某一具体事物后,可验证∑中每个公理在M 中都成立,则称M 为公理系统∑的一个模型;2.①若AB ≡B A '',则d(AB)=d(B A '');②当C BA ˆ时,有d(AB)+d(BC)=d(AC).3.命题“三角形的内角和不大于两个直角” 与欧氏平行公理不等价。
4.结合,介于,合同;结合——即有公共点,介于——即在…之间,合同——相等或完全相等. 5.长度、角度、相等、全等、运动、移置、叠合、重合等.6.由第五公设引出了该公理独立性的问题,对该问题的研究导致了非欧几何等结果的产生. 7.通常用“在……上”、“属于”、“通过”等语句来表述。
初等几何研究试题答案(5)李长明版汇总

五、关于平行与垂直1、I是△ABC 的内心,AI 、BI 和CI 的延长线分别交△ABC 的外接圆于D 、E 和F. 求证:EF ⊥AD.证明:已知I 是△ABC 的内心, ∴AD 、BE 和CF 是∠BAC 、∠ABC 和∠ACB 的角平分线∴⌒BD =⌒CD ,⌒BF=⌒AF ,⌒AE =⌒CE∴⌒BD +⌒BF +⌒AE =⌒CD +⌒AF +⌒CE ∴⌒DF +⌒AE =⌒DE +⌒AF∴∠AIF=∠AIE=∠DIF=∠DIE∴EF ⊥AD2. A 、B 、C 、D 是圆周上“相继的”四点,P 、Q 、R 、S 分别是弧AB 、BC 、CD 、DA 的中点,求证:PR ⊥QS.ADECFIBPQRSDCBA证明:∵P 、Q 、R 、S 分别是AB 、BC 、CD 、DA 的中点 ∴⌒AP =⌒PB ,⌒BQ =⌒QC ,⌒CR =⌒RD ,⌒DS =⌒SA ∴⌒AP +⌒QC +⌒CR +⌒SA =⌒PB +⌒BQ +⌒RD +⌒DS又∵⌒PQ +⌒RS =⌒PB +⌒BQ +⌒RD +⌒DS , ⌒SP +⌒RQ =⌒AP +⌒QC +⌒CR +⌒SA ∴⌒PQ +⌒RS =⌒SP +⌒RQ ∴SQ ⊥PR3、凸四边形ABCD 的每条对角线皆平分它的面积,求证:ABCD 是平行四边形。
证明:设AC 和BD 相交于点O ,作AE ⊥BD 于E ,CF ⊥BD 于F ,ABCDFOE连接AF,CE∵对角线BD平分四边形ABCD的面积∴S△ABD=S△CBD∴AE=CF又∵AE⊥BD,CF⊥BD∴AE∥CF∴四边形AECF为平行四边形∴AO=CO同理可得 BO=DO∴四边形ABCD是平行四边形4、已知△BCX和△DAY是□ABCD外的等边三角形,E、F、G和H是YA、AB、XC和CD的中点。
求证:EFGH是平行四边形。
GCHD YEAFBX证:∵ABCD是平行四边形,且F、H是AB、CD的中点∴CH=AF,∠BCD=∠BAD,且AD=BC∵△BCX、△DAY是分别以BC、AD为边的等边三角形且E、G分别是AY、XC的中点∴∠XCB=∠DAY,CG=AE ∴∠GCH=∠EAF∴△GCH≌△AEF∴EF=GH 且∠GHC=∠AFE∵AB∥CD∴∠AFH=∠AEF,∠GHF=∠EFH∴EF∥HG,∴四边形EFGH是平行四边形OO5. 在△ABC 的各边上向外作正方形BCDE 、CAFG 、ABHI,其中心依次为O 1,O 2, O 3求证:AO 1┴O 2 O 3证明:如上图所示取AC 中点M ,连结MO 2、CE 、AE 、HC ∵ BH=AB BC=CE∠HBA+∠ABC=∠EBC+∠ABC 即∠HBC=∠ABE ∴△ABE ≌△HBC ∴AE=HC HB=AB BE=BC 又∵∠HBA=90º ∴AE ┴HC又∵O 3 、M 、O 1、中点GFAIHBECDOO 3MO 2∴O 3M=21HC MO 1=21AE 又∵HC=AE∴MO 1=┴O 3M 且 MO 1┴O 3M又∵AM=MO 2 ∠AM O 2 +AMO 3 =∠O 1MO 3 +∠AM O 3即∠O 1MO 2 =∠AM O 1∴△O 2MO 3≌△AM O 1∴ AM=M O 2 AO 1=O 2 O 3 ∠AM O 2 =90º ∴AO 1┴O 3M6. 正方形ABCD 内任取一点E ,连AE 、BE ,在△ABE 外分别以AE 、BE 为边作正方形AEMN 和EBFG ,连NC 、AF . 求证:NC ∥AF证明:连结CF 、DN .如图所示 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初等几何研究试题答案(II )二、关于和、差、倍、分线段(角)1、 等腰ABC 中,0100,A B ∠=∠的平分线交AC 于D ,证明:BD+AD=BC 。
D 'BCA4321证:在BC 上取点D ,,使BD ,=BD,连结DD ,0100A ∠=且BD 平分∠ABC00120,40C ∴∠=∠=又BD=BD ,,0380∴∠=,23C ∠+∠=∠0240∴∠=即2C ∠=∠ ,,CD DD ∴=又03180A ∠+∠=∴点A 、D 、D ,、B 四点共圆且14∠=∠∴DD,=ADBC=BD,+CD ,=BD+AD已知,ABCD 是矩形,BC=3AB,P 、Q 位于BC 上,且BP=PQ=QC, 求证:∠DBC +∠DPC=∠DQC解:作矩形BCEF 与矩形ABCD 相等,在EF 上选取点O 使得FO=2EO.连结BO 、DO 。
由图可知,由BO=DO ,且有△BF O ≌△OED,∵∠FBO+∠BOF=90º ∠BOF=∠DOE ∴∠BOF+∠DOE=90º ∴∠BOD=90º △BOD 为等腰直角三角形 有∠DBO=45º ∴∠DBP+∠QBO=45º ∵∠DPC=∠QBO ∴∠DBP+∠DPC=45º ∵△DQC 为等腰直角三角形∴有∠DQC=45º 因此,有∠DBP+∠DPC=∠DQCP QAB CF EO P D3、圆内接四边形ABCD 的对角线AC 、BD 交于X ,由X 向AB 、BC 、CD 和DA 作垂线,垂足分别为A ´、B ´、C ´和D ´. 求证:A ´B ´+C ´D ´=B ´C ´+D ´A ´证明:(方法一)∵X 、A ´、A 、D ´四点共圆(对角和180°) ∴∠XA ´D ´=∠XAD ´又∵∠XAD ´=∠XBC(圆周角)同理∠XA ´B ´=∠XBC,即∠XA ´D ´=∠XA ´B ´ 同理可得∠XB ´A ´=∠XB ´C ´,∠XC ´B ´=∠XC ´D ´, ∠XD ´C ´=∠XD ´A ´∴X 是四边形A ´B ´C ´D ´的内心。
∴A ´B ´+C ´D ´=B ´C ´+A ´D ´(方法二)利用正弦定理. 设r 是四边形ABCD 的外接圆CABA ′C ′DB ′D ′X半径,A B ''在以BX 为直径的圆上∴s i n A BX B B ''=同理sin C D XD D ''= ∴s i n=2r s i n s A B C D B D B A B''''+= 同理可得2sin sin B C A D r C D ''''+= 又A ∠和;C ∠B ∠和D ∠是两对互补的角∴A B C D B C AD ''''''''+=+4. 在梯形ABCB 中,AB//CB ∠D=2∠B,求证AB=AD+DC证明:在AB 上取一点E ,使AE=AD .∴∠AED=∠ADE因为AB//CD所以∠EDC=∠AED 所以∠AED=∠ADE=∠EDC 所以∠ADC= 2∠AED 因为∠D=2∠B 所以∠AED=∠B 所以DE//CB∴四边形DEBC 是平行四边形所以DC=EB所以AB=AE+EB=AD+DCD CA E B5 已知:G 是∆ABC 的重心,过G 作直线分别与AB,AC 交于E,F ,求证:EG ≤2GF 。
HGFEDCBA证明:在EF 上取点D 使DH//AB,故∆BE G ~∆GDF,故G 为∆ABC 的重心,则GH/BG=1/2=DG/EG ,故EG=2DG ≤2GF 命题得证6.已知:在凸四边形ABCD 中,AC ⊥BD 于O ,且OA>OC ,OB>OD ,求证:BC+AD>AB+CDEC 1D 1CAODB证明:如图做AD 1=AD ,BC 1=BCAD 1=AD ,BC 1=BC∴四边形CDC 1D 1是菱形,则CD=C 1D 1又 在∆ABE 、11D C ∆E 中AE+BE>AB,E D E C 11+>11D C111C AB AD BC +>+∴D 1即BC+AD>AB+CD7. 在直角梯形ABCD 中,AB 是垂直二底的腰,另一腰切以AB 为直径之圆于E ,过E 作底的平行线交AB 于F ,求证AC 平分EF证明:连结AE 并交于的延长线于G 如图因为AD=DE ∴∠AED=∠DAE又∠AED=∠CEG 因为AD//BC ∴ AD//BG∴∠DAE=∠EGC ∴ ∠EGC= ∠GEC ∴CE=CG 又因为 BC=CE ∴ BC=CG ∴C 是BG 的中点∴M 也是EF 的中点∴FM=ME ∴AC 平分EF8、在梯形ABCD 的底边AD 上有一点E ,使△ABE 、△BCE 、△CDE 的周长相等。
求证:BC=2ADEG B D C EF A证明:如下图在BC 边或其延长上取点C ′,使B C ′=AE,∵ABCD 是平行四边形 ∴AD //B C ' 又∵AE=B C '∴AE C 'B 是平行四边形 ∴AB=E C '∴△ABE 、△BE C '周长相等 又∵△ABE 、△BEC 周长相等 ∴C '=C ∴BC=AE 同理 BC=ED∴BC=21AD9、在△ABC 中,E 、F 分别是AC 、AB 的中点,D 为BC 上 的任一点,过D 作DP ∥CF 交BF 于P,作DQ ∥BE 交CE 于Q ,连结PQ 分别交BE 、CF 于R 、S ,求证:RS=31PQABCDEC ’证明:FC与DQ 的交点为G ,BE 与FC 的交点为H由题知点H 为△ABC 的重心,则31=EB HE ∵FC ∥PD ∴QDQGQP SQ =又∵QD ∥EB ∴EBHEQD GQ = ∴31===EB HE QD GD QP SQ ∴SQ=31QP 同理可证得PR=31QP ∴RS=31PQ10.以矩形ABCD 的各顶点为中心,分别以D C B A r r r r ,,,为半径作圆,使AC r r r r D B CA <+=+,再作两对圆☉A 、☉C 、☉B 、☉D的四条外公切线。
求证:这四条外公切线围成的四边形有一内切圆。
AHFERP SBDCGQEOBDCAEFMN证明:连结AC 、BD 交于O ,☉A 、☉C 的两条公切线为EF 、MN ,E 、F 、M 、N 为切点。
连AE 、CF 过点O 作OP ⊥EF ,垂足为P ,作OQ ⊥MN ,垂足为Q∴四边形ACFE 为直角梯形 ∴)(21)(21C A r r CF AE OP +=+= 同理 )(21)(21C A r r AN AM OQ +=+=同理 点O 到其他一对公切线长为)(21D B r r + 又D B CA r r r r +=+∴点到4条公切线的距离相等 ∴4条公切线所围成的四边形有内切圆11.在凸六边形ABCDEF 中,所有的内角相等,求证:AB-DE=EF-BC=CD-FABDER PQCAF证明:∵六边形各内角相等, ∴其内角皆为120° ∴各对边互相平行 作□ABCP □CDEQ PQ =∣AB-DE ∣ 同理,再作□AFEQ ,则PR=∣AB-DE ∣ QR=∣CD-AF ∣ ∵PQR 各内角皆为60° ∴PQ=QR=RP ∴AB-DE=EF-BC=CD-F A12.利用上题,若长度分别为a 1,a 2……a 6的线段,且满足条件a 1-a 4=a 2-a 5=a 3-a 6求证:这6条线段可以作为一个各内角皆相等的凸六边形,BDER PQCAF证:利用上题结果,可如下作之:(1) 先以彼此相等的三数a 1-a 4,a 2-a 5,a 3-a 6为边作正△PQR (2) 延长PQ 至C ,QR 至E ,使PC=a ,则QC=a 4,使QE=a 3,则QR=a 6 (3) 在PC 异侧各作□ PCBA 、□ QCDE(4) 过A 、E 分别引QE 、PA 的平行线,设它们相交于F ,则ABCDE即为所求。
13设⊙O 1、⊙O 2和⊙O 3是共点于O 的三个相等的圆周,A 、B 、O 是它们两两相交的另一点。
求证:OA+OB+OC=1800AO 3O 2O 1BOC证:利用两等圆的连心垂直平分公共弦设⊙O 2、⊙O 3交于A ,⊙O 3、⊙O 2交于B ,⊙O 1、⊙O 2交于C 再连O 1O 2、O 2O 3和O 3O 1,则因OB 、OC 分别垂直平分O 3O 1、O 1O 2, 故知∠O 2O 1O 3=∠O 3O 1O +∠OO 1O 2=12(∠BO 1O +∠OO 1C )=1)2OB OC (+同理:∠O 2=1()2OC OA +31()2O OA OB ∠=+ 所以,1800=∠O 2O 1O 3+∠O 2+∠O 3=OA OB OC ++14. 如图,设⊙O 1、⊙O 2、⊙O 3是相等的三个圆周,⊙O 1与⊙O 2相交于A 、A 1,⊙O 2与⊙O 3相交于B 、B 1 ,⊙O 3与 ⊙O 1 相交于C 、C 1 ,求证:111111111()180AA BB CC A B B C C A ++-++=︒C 1B 1A 1CBAo 3o 2o 1证明:连结O 1O 2,O 2O 3和O 3O 1,则有 ∠O 1=∠O 2O 1C 1+∠B 1O 1O 2﹣∠B 1O 1C 1=21(∠BOB 1+∠COC 1)﹣∠B 1O 1C 111111()2BB CC B C =+-同理211111()2O CC AA C A ∠=+-311111O ()2AA BB A B ∠=+-。