统计学第七章、第八章课后题答案
统计学人教版第五版7,8,10,11,13,14章课后题答案

统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。
估计量也是随机变量。
如样本均值,样本比例、样本方差等。
根据一个具体的样本计算出来的估计量的数值称为估计值。
2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的方差尽可能小。
对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。
(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。
3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
置信区间的论述是由区间和置信度两部分组成。
有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。
因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。
在公布调查结果时给出被调查人数是负责任的表现。
这样则可以由此推算出置信度(由后面给出的公式),反之亦然。
4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。
也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。
不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。
5. 简述样本量与置信水平、总体方差、估计误差的关系。
1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为 其中: 2222α2222)(E z n σα=n z E σα2=▪ 与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪ 与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪ 与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。
统计学7-10章课后作业答案

第7章 相关与回归分析1、设销售收入x 为自变量,销售成本y 为因变量。
现已根据某百货公司某年12个月的有关资料计算出以下数据(单位:万元):2()425053.73ix x -=∑ 647.88x =2()262855.25iy y -=∑549.8y =()()334229.09iix x y y --=∑(1)拟合简单线性回归方程,并对方程中回归系数的经济意义作出解释。
(2)计算可决系数和回归估计的标准误差。
(3)对回归系数进行显著性水平为5%的显著性检验。
(4)假定下年一月销售收入为800万元,利用拟合的回归方程预测销售成本,并给出置信度为95%的预测区间。
解:(1)定性分析可知,销售收入影响销售成本,以销售收入为自变量,销售成本为因变量拟合线性回归方程i i i y x u αβ=++,采用最小二乘法估计回归参数得:22()()(,)334229.09ˆ0.7863()425053.73ii xix x y y Cov x y x x βσ--===≈-∑∑ˆˆ549.80.7863647.8840.372y x αβ=-=-⨯= 因此,拟合的回归方程为:ˆˆˆ40.3720.7863i i iy x x αβ=+=+ 其中,回归系数β表示自变量每变动一个单位,因变量的平均变量幅度。
在此,表示销售收入每增加1万元,销售成本平均增加0.7863万元。
(2)可决系数22222[()()]334229.090.9998()()425053.73262855.25i i i i x x y y SSR R SST x x y y --===≈-⋅-⨯∑∑∑ (本问接下来的计算不做要求:为计算回归系数的标准误差,根据离差平方和分解,可知:2222222[()()]ˆˆˆˆˆˆ()[()()]()()334229.09262811.68425053.73i i i iiix x y y SSR y y x x x x x x αβαββ--=-=+-+=-=-==∑∑∑∑∑22ˆ()()262855.25262811.6843.57i i SSE SST SSR y y yy =-=---=-=∑∑因此有ˆ()0.0032S β===≈) (3)陈述假设:01:0 :0H H ββ=≠在原假设成立的前提下,构造t 检验统计量245.598t ===在5%的双侧检验显著性水平下,查自由度为10的t 分布表,得临界值0.025(10) 2.228t t =<,因此拒绝原假设。
《统计学概论》第八章课后练习题答案

《统计学概论》第八章课后练习答案一、思考题1.什么是相关系数?它与函数关系有什么不同?P237- P2382.什么是正相关、负相关、无线性相关?试举例说明。
P238- P2393.相关系数r的意义是什么?如何根据相关系数来判定变量之间的相关系数?P245 4.简述等级相关系数的含义及其作用?P2505.配合回归直线方程有什么要求?回归方程中参数a、b的经济含义是什么?P2566.回归系数b与相关系数r之间有何关系?P2587.回归分析与相关分析有什么联系与区别?P2548.什么是估计标准误差?这个指标有什么作用?P2619.估计标准误差与相关系数的关系如何?P258-P26410.解释判定系数的意义和作用。
P261二、单项选择题1.从变量之间相互关系的方向来看,相关关系可以分为()。
A.正相关和负相关B.直线关系与曲线关系C.单相关和复相关D.完全相关和不完全相关2.相关分析和回归分析相比较,对变量的要求是不同的。
回归分析中要求()。
A.因变量是随机的,自变量是给定的B.两个变量都是随机的C.两个变量都不是随机的D.以上三个答案都不对3.如果变量x与变量y之间的相关系数为-1,这说明两个变量之间是()。
A.低度相关关系B.完全相关关系C.高度相关关系D.完全不相关4.初学打字时练习的次数越多,出现错误的量就越少,这里“练习次数”与“错误量”之间的相关关系为()。
A.正相关B.高相关C.负相关D.低相关5.假设两变量呈线性关系,且两变量均为顺序变量,那么表现两变量相关关系时应选用()。
A.简单相关系数r B.等级相关系数r sC.回归系数b D.估计标准误差S yx6.变量之间的相关程度越低,则相关系数的数值()。
A.越大B.越接近0C.越接近-1 D.越接近17.下列各组中,两个变量之间的相关程度最高的是()。
A.商品销售额和商品销售量的相关系数是0.9B.商品销售额和商品利润率的相关系数是0.84C.产量与单位成本之间的相关系数为-0.94D.商品销售价格与销售量的相关系数为-0.918.相关系数r的取值范围是()。
统计学原理 第七章课后习题及答案

第七章 相关和回归一、单项选择题1.相关关系中,用于判断两个变量之间相关关系类型的图形是( )。
(1)直方图 (2)散点图 (3)次数分布多边形图 (4)累计频率曲线图 2.两个相关变量呈反方向变化,则其相关系数r( )。
(1)小于0 (2)大于0 (3)等于0 (4)等于13.在正态分布条件下,以2yx S (提示:yx S 为估计标准误差)为距离作平行于回归直线的两条直线,在这两条平行直线中,包括的观察值的数目大约为全部观察值的( )。
(1)68.27% (2)90.11% (3)95.45% (4)99.73% 4.合理施肥量与农作物亩产量之间的关系是( )。
(1)函数关系 (2)单向因果关系 (3)互为因果关系 (4)严格的依存关系 5.相关关系是指变量之间( )。
(1)严格的关系 (2)不严格的关系(3)任意两个变量之间关系 (4)有内在关系的但不严格的数量依存关系 6.已知变量X 与y 之间的关系,如下图所示:其相关系数计算出来放在四个备选答案之中,它是( )。
(1)0.29 (2)-0.88 (3)1.03 (4)0.997.如果变量z 和变量Y 之间的相关系数为-1,这说明两个变量之间是( )。
(1)低度相关关系 (2)完全相关关系 (3)高度相关关系 (4)完全不相关 8.若已知2()x x -∑是2()y y -∑的2倍,()()x x y y --∑是2()y y -∑的1.2倍,则相关系数r=( )。
(1)1.2 (3)0.92 (4)0.65 9.当两个相关变量之问只有配合一条回归直线的可能,那么这两个变量之间的关系是( )。
(1)明显因果关系 (2)自身相关关系(3)完全相关关系 (4)不存在明显因果关系而存在相互联系 10.在计算相关系数之前,首先应对两个变量进行( )。
(1)定性分析 (2)定量分析 (3)回归分析 (4)因素分析 11.用来说明因变量估计值代表性高低的分析指标是( )。
统计学原理 第七章课后习题及答案

第七章 相关和回归一、单项选择题1.相关关系中,用于判断两个变量之间相关关系类型的图形是( )。
(1)直方图 (2)散点图 (3)次数分布多边形图 (4)累计频率曲线图 2.两个相关变量呈反方向变化,则其相关系数r( )。
(1)小于0 (2)大于0 (3)等于0 (4)等于13.在正态分布条件下,以2yx S (提示:yx S 为估计标准误差)为距离作平行于回归直线的两条直线,在这两条平行直线中,包括的观察值的数目大约为全部观察值的( )。
(1)68.27% (2)90.11% (3)95.45% (4)99.73% 4.合理施肥量与农作物亩产量之间的关系是( )。
(1)函数关系 (2)单向因果关系 (3)互为因果关系 (4)严格的依存关系 5.相关关系是指变量之间( )。
(1)严格的关系 (2)不严格的关系(3)任意两个变量之间关系 (4)有内在关系的但不严格的数量依存关系 6.已知变量X 与y 之间的关系,如下图所示:其相关系数计算出来放在四个备选答案之中,它是( )。
(1)0.29 (2)-0.88 (3)1.03 (4)0.997.如果变量z 和变量Y 之间的相关系数为-1,这说明两个变量之间是( )。
(1)低度相关关系 (2)完全相关关系 (3)高度相关关系 (4)完全不相关 8.若已知2()x x -∑是2()y y -∑的2倍,()()x x y y --∑是2()y y -∑的1.2倍,则相关系数r=( )。
(1)1.2 (3)0.92 (4)0.65 9.当两个相关变量之问只有配合一条回归直线的可能,那么这两个变量之间的关系是( )。
(1)明显因果关系 (2)自身相关关系(3)完全相关关系 (4)不存在明显因果关系而存在相互联系 10.在计算相关系数之前,首先应对两个变量进行( )。
(1)定性分析 (2)定量分析 (3)回归分析 (4)因素分析 11.用来说明因变量估计值代表性高低的分析指标是( )。
统计学课后练答案

第七章 参数估计(1)x σ==(2)2x z α∆==1.96=某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
x σ=== (2)在95%的置信水平下,求估计误差。
x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=z α 因此,x x t σ∆=⋅x z ασ=⋅0.025x z σ=⋅=×=(3)如果样本均值为120元,求总体均值 的95%的置信区间。
置信区间为:2x z x z αα⎛-+ ⎝=()120 4.2,120 4.2-+=(,)2x z x z αα⎛-+ ⎝=104560±(,) 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。
要求:大样本,样本均值服从正态分布:2,x N n σμ⎛⎫ ⎪⎝⎭:或2,s x N n μ⎛⎫⎪⎝⎭:置信区间为:22x z x z αα⎛-+ ⎝, (1)构建μ的90%的置信区间。
2z α=0.05z =,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(,) (2)构建μ的95%的置信区间。
2z α=0.025z =,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(,) (3)构建μ的99%的置信区间。
2z α=0.005z =,置信区间为:()81 2.576 1.2,81 2.576 1.2-⨯+⨯=(,)(1)2x z α±=25 1.96±(,) (2)2x z α±=119.6 2.326±=(,) (3)2x z α±=3.419 1.645±(,) (1)2x z α±=8900 1.96±=(,)(2)2x z α±=8900 1.96±=(,) (3)2x z α±=8900 1.645±=(,)(4)2x z α±=8900 2.58±=(,) 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36人,调查解:(1)样本均值x =,样本标准差s=1α-=,t=z α=0.05z =,xz α±=3.32 1.645±(,) 1α-=,t=z α=0.025z =,x z α±=3.32 1.96±(,)1α-=,t=z α=0.005z =,x zα±=3.32 2.76±(,)2x t α±=10 2.365±=,某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是:10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。
统计学第四版第七章课后题最全答案

配对号
来自总体A得样本
来自总体B得样本
1
2
3
4
2
5
10
8
0
7
6
5
(1)计算A与B各对观察值之差,再利用得出得差值计算与。
=1、75,=2、62996
(2)设分别为总体A与总体B得均值,构造得95%得置信区间。
解:小样本,配对样本,总体方差未知,用t统计量
均值=1、75,样本标准差s=2、62996
(2)已知:E=0、1,=0、8,=0、05,=1、96
应抽取得样本量为:=≈62
7.20
(1)构建第一种排队方式等待时间标准差得95%得置信区间。
解:估计统计量
经计算得样本标准差=3、318
置信区间:
=0、95,n=10,==19、02,==2、7
==(0、1075,0、7574)
因此,标准差得置信区间为(0、3279,0、8703)
(3)已知=0、01,=2、58
由于n=100为大样本,所以总体均值得99%得置信区间为:
=812、58*813、096,即(77、94,84、096)
7、5(1)已知=3、5,n=60,=25,=0、05,=1、96
由于总体标准差已知,所以总体均值得95%得置信区间为:
=251、96*250、89,即(24、11,25、89)
7、4(1)已知n=100,=81,s=12, =0、1,=1、645
由于n=100为大样本,所以总体均值得90%得置信区间为:
=811、645*811、974,即(79、026,82、974)
(2)已知=0、05,=1、96
由于n=100为大样本,所以总体均值得95%得置信区间为:
统计学课后答案第七八章汇总

6.1 调理一个装瓶机使其对每个瓶子的灌装量均值为盎司,经过察看这台装瓶机对每个瓶子的灌装量听从标准差 1.0 盎司的正态散布。
随机抽取由这台机器灌装的9 个瓶子形成一个样本,并测定每个瓶子的灌装量。
试确立样本均值偏离整体均值不超出0.3 盎司的概率。
解:整体方差知道的状况下,均值的抽样散布听从N , 2的正态散布,由正态散布,n标准化获得标准正态散布:z= x~ N 0,1 ,所以,样本均值不超出整体均值的概率P n为:P x 0.3 =P x 0.3= P0.3 x 0.3n n 1 9 n 1 9= P 0.9 z 0.9 =2 0.9 -1,查标准正态散布表得0.9 =0.8159所以, P x 0.3 =0.63186.2 在练习题 6.1 中,我们希望样本均值与整体均值的偏差在 0.3 盎司以内的概率达到0.95,应该抽取多大的样本?解: P xx 0.3= P0.3 x 0.30.3 =Pn n 1 n n 1 n= 2 (0.3 n) 1 0.95 (0.3 n) 0.9750.3 n 1.96 n 42.68288 n 436.3 Z1,Z2 ,,Z6表示从标准正态整体中随机抽取的容量,n=6 的一个样本,试确立常数b,使得6P Z i2b0.95i 1解:因为卡方散布是由标准正态散布的平方和构成的:设 Z1, Z2,,Z n是来自整体N(0,1)的样本,则统计量2 Z12 Z 22 Z n2听从自由度为2 2~ 2n 的χ散布,记为χχ( n)6 6 62所以,令2Z i2,则 2 Z i2 2 6 ,那么由概率 P Z i b0.95 ,可知:i 1 i 1 i 120.95 6 ,查概率表得: b=12.59b= 1121 6.4 在习题 6.1 中,假定装瓶机对瓶子的灌装量听从方差 的标准正态散布。
假定我们计划随机抽取 10 个瓶子构成样本,观察每个瓶子的灌装量,获得 10 个观察值,用这1n10 个观察值我们能够求出样本方差S 2 (S 2(Y i Y )2 ) ,确立一个适合的范围使得有n 1 i 1较大的概率保证 S 2落入此中是实用的,试求 b 1, b 2 ,使得p(b 1 S 2 b 2 ) 0.90解:更为样本方差的抽样散布知识可知,样本统计量:(n 1s)22(n 1 ) 2~此处, n=10,21 ,所以统计量(n 1)s 2(10 1)s 22~ 2(n 1)21 9s依据卡方散布的可知:P b 1 S 2 b 2P 9b 1 9S 29b 20.90又因为:2n122 n11P 1 29S2所以:P 9b 129b 2P2n 19S 22n1 10.909S122P 9b 12P222n 19S 9b 2 12 n 1 9S2P2922 9 0.900.959S0.05则:222 9299b 19b 10.95, b 20.050.959 ,9b 2 0.0599查概率表: 2 9 =3.325 ,2 9 =19.919 ,则0.950.052 92 90.95=0.369, b 20.05=1.88b 19927.1 从一个标准差为 5 的整体中采纳重复抽样方法抽出一个样本容量为40 的样本,样本均值为 25。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学复习笔记第七章参数估计一、思考题1.解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。
估计量也是随机变量。
如样本均值,样本比例、样本方差等。
根据一个具体的样本计算出来的估计量的数值称为估计值。
2.简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的方差尽可能小。
对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。
(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。
3.怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
置信区间的论述是由区间和置信度两部分组成。
有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。
因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。
在公布调查结果时给出被调查人数是负责任的表现。
这样则可以由此推算出置信度(由后面给出的公式),反之亦然。
4.解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。
也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。
不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以的概率覆盖总体参数。
5.简述样本量与置信水平、总体方差、估计误差的关系。
1. 估计总体均值时样本量n 为(z 2 )2 2其中: E znn E22 其中: E z 2 n2. 样本量n 与置信水平1- α、总体方差、估计误差E之间的关系为与置信水平成正比,在其他条件不变的情况下,置信水平越大,所x 需要的样本量越大; 与总体方差成正比,总体的差异越大,所要求的样本量也越大; 与与总体方差成正比, 样本量与估计误差的平方成反比,即可以接 受的估计误差的平方越大,所需的样本量越小。
二、 练习题1. 从一个标准差为 5 的总体中采用重复抽样方法抽出一个样本量 为 40 的样本,样本均值为 25。
1) 样本均值的抽样标准差等于多少?2) 在 95%的置信水平下,估计误差是多少?解: 1 ) 已知 σ = 5 , n = 40 x , = 25/√ 40 ≈2 ) 已知估计误差 E = ×5÷√ 40 ≈2. 某快餐店想要估计每位顾客午餐的平均花费金额,在为期 3 周 的时间里选取 49 名顾客组成了一个简单随机样本。
1) 假定总体标准差为 15 元,求样本均值的抽样标准误差。
2) 在 95%的置信水平下,求估计误差。
3) 如果样本均值为 120 元,求总体均值 μ的 95%的置信区间 。
解: 1)已知 σ = 15 ,n = 49xx= 15 ÷√49 =估计误差 E = ×15÷√ 49 ≈3) 已知x = 120∵ 置信区间为x ± E其置信区间= 120 ±3.从一个总体中随机抽取n =100 的随机样本,得到x=104560 ,假定总体标准差σ = 85414 ,试构建总体均值μ的95%的置信区间。
解:已知n =100,x =104560,σ = 85414 ,1- =95% ,由于是正态总体,且总体标准差已知。
总体均值在1- 置信水平下的置信区间为10x1z04256n0105.36 1.9±6×2585414÷√ 100105.36 3.92= 104560 101.44,109.±284.从总体中抽取一个n =100 的简单随机样本,得到x =81 ,s=12。
要求:1) 构建μ的90%的置信区间。
2) 构建μ的95%的置信区间。
3) 构建μ的99%的置信区间。
2 )已知解:由于是正态总体,但总体标准差未知。
总体均值在1- 置信水平下的置信区间公式为81 ±× 12÷√ 100 = 81 ±×1) 1- =90%,其置信区间为81 ±2) 1- =95% ,其置信区间为81 ±3) 1- =99%,其置信区间为81 ±5.利用下面的信息,构建总体均值的置信区间。
1) x = 25,σ = ,n =60 ,置信水平为95%2) x =119,s = ,n =75 ,置信水平为98%3) x =,s = ,n =32 ,置信水平为90%1 ) 1- =95% ,其置信区间为:25±×÷√ 60= 25 ±2 ) 1- =98% ,则=, /2=, 1- /2=, 查标准正态分布表, 可知:其置信区间为: 119 ±×÷√ 75= 1193) 1- =90%,其置信区间为 : ±×÷√ 326. 利用下面的信息,构建总体均值 μ的置信区间:1) 总体服从正态分布,且已知 σ = 500 ,n = 15x , =8900 ,置 信水平为 95%。
置信水平为 95%。
解:为大样本总体非正态分布,但 σ 已知。
则 1- = 95%,。
其置信 区间公式为 x z 22105.36 1.96 10 n 25∴置信区间为: 8900±× 500÷√ 35=( )105.36 3.92101.44,109.28 3) 总体不服从正态分布,σ 未知, n = 35 x , =8900 ,s =500 ,置信水平为 90%。
解:为大样本总体非正态分布,且 σ 未知, 1- =90%,其置信区间为: 8900 ±× 500÷√ 35=( 8761 9039)4) 总体不服从正态分布,σ 未知, n = 35 x , =8900 ,s =500 , 置信水平为 99%。
解:为大样本总体非正态分布,且 σ 未知, 1- =99%,。
其置信区间为: 8900±× 500÷√ 35=( )解: N=15,为小样本正态分布,但 已知。
则 1- 信区间公式为 x z 22 n∴置信区间为: 8900±× 500÷√ 15=( , ) 105.36 =95%,。
其置10 1.96 252) 总体不服从正态分布,且已知 σ = 500 , 105.36 101.44,109.28 n =35x , =8900 ,7.某大学为了解学生每天上网的时间,在全校7500 名学生中采取重复抽样方法随机抽取36 人,调查他们每天上网的时间,得到下面的数据(单位:小时)(略)。
求该校大学生平均上网时间的置信区间,置信水平分别为90% 解:先求样本均值:=再求样本标准差:置信区间公式:8.从一个正态总体中随机抽取样本量为8 的样本,各样本值分别为:10,8,12,15,6,13,5,11。
求总体均值μ的95%置信区间。
解:本题为一个小样本正态分布,σ 未知。
先求样本均值:= 80 ÷8=10再求样本标准差:= √84/7 =于是, 的置信水平为的置信区间是已知,n = 8,则, α /2= ,查自由度为n-1 = 7 的分布表得临界值所以,置信区间为:10±×÷√ 7 9.某居民小区为研究职工上班从家里到单位的距离,抽取了由16 个人组成的一个随机样本,他们到单位的距离分别是:10,3,14,8,6,9,12,11,7,5,10,15,9,16,13,2。
假设总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。
解:小样本正态分布,σ 未知。
已知,n = 16 ,,则, α/2= ,查自由度为n-1 = 15 的分布表得临界值样本均值=150/16=再求样本标准差:= √15 ≈于是, 的置信水平为的置信区间是±×÷√ 1610.从一批零件是随机抽取36 个,测得其平均长度是,标准差是。
1) 求确定该种零件平均长度的95%的置信区间。
2) 在上面估计中,你使用了统计中的哪一个重要定理?请解释。
解:1) 这是一个大样本分布。
已知N=36,=x,S =,1-α=,。
其置信区间为:±×÷√ 362) 中心极限定理论证:如果总体变量存在有限的平均数和方差,那么,不论这个总体的分布如何,随着样本容量的增加,样本均值的分布便趋近正态分布。
在现实生活中,一个随机变量服从正态分布未必很多,但是多个随机变量和的分布趋于正态分布则是普遍存在的。
样本均值也是一种随机变量和的分布,因此在样本容量充分大的条件下,样本均值也趋近于正态分布,这为抽样误差的概率估计理论提供了理论基础。
11.某企业生产的袋装食品采用自动打包机包装,每袋标准重量为100 克,现从某天生产的一批产品中按重复抽样随机抽取50 包进行检查,测得每包重量如下:(略)已知食品包重服从正态分布,要求:1)确定该种食品平均重量的95%的置信区间。
2)如果规定食品重量低于100克属于不合格,确定该批食品合格率的95%的置信区间。
解: 1 )本题为一个大样本正态分布,σ 未知。
已知N=50,μ= 100,1- α=,。
①每组组中值分别为97、99、101、103、105,即此50 包样本平均值= (97+99+101+103+105)/5 = 101②样本标准差为:= √{(97-101 )2×2+(99-101 )2×3+(101-101 )2×34+(103-101 )2 ×7+(105-101 )2×4}÷(50-1)≈③其置信区间为:101±×÷√ 502 )∵不合格包数(<100 克)为2+3=5 包,5/50 = 10% (不合格率),即P = 90%。
∴ 该批食品合格率的95%置信区间为:= ±×√×÷ 50= ±×12.假设总体服从正态分布,利用下面的数据构建总体均值μ的99%的置信区间。
(略)解:样本均值样本标准差:尽管总体服从正态分布,但是样本n=25 是小样本,且总体标准差未知,应该用T 统计量估计。
1- α=,则α=, α/2= ,查自由度为n-1 = 24 的分布表得临界值的置信水平为的置信区间是,13.一家研究机构想估计在网络公司工作的员工每周加班的平均时间,为此随机抽取了18 个员工,得到他们每周加班的时间数据如下(单位:小时):(略)假定员工每周加班的时间服从正态分布,估计网络公司员工平均每周加班时间的90%的置信区间。