统计学第七章、第八章课后题答案

合集下载

统计学人教版第五版7,8,10,11,13,14章课后题答案

统计学人教版第五版7,8,10,11,13,14章课后题答案

统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。

估计量也是随机变量。

如样本均值,样本比例、样本方差等。

根据一个具体的样本计算出来的估计量的数值称为估计值。

2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。

(2)有效性:是指估计量的方差尽可能小。

对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。

(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。

3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

置信区间的论述是由区间和置信度两部分组成。

有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。

因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。

在公布调查结果时给出被调查人数是负责任的表现。

这样则可以由此推算出置信度(由后面给出的公式),反之亦然。

4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。

也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。

不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。

5. 简述样本量与置信水平、总体方差、估计误差的关系。

1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为 其中: 2222α2222)(E z n σα=n z E σα2=▪ 与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪ 与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪ 与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。

统计学7-10章课后作业答案

统计学7-10章课后作业答案

第7章 相关与回归分析1、设销售收入x 为自变量,销售成本y 为因变量。

现已根据某百货公司某年12个月的有关资料计算出以下数据(单位:万元):2()425053.73ix x -=∑ 647.88x =2()262855.25iy y -=∑549.8y =()()334229.09iix x y y --=∑(1)拟合简单线性回归方程,并对方程中回归系数的经济意义作出解释。

(2)计算可决系数和回归估计的标准误差。

(3)对回归系数进行显著性水平为5%的显著性检验。

(4)假定下年一月销售收入为800万元,利用拟合的回归方程预测销售成本,并给出置信度为95%的预测区间。

解:(1)定性分析可知,销售收入影响销售成本,以销售收入为自变量,销售成本为因变量拟合线性回归方程i i i y x u αβ=++,采用最小二乘法估计回归参数得:22()()(,)334229.09ˆ0.7863()425053.73ii xix x y y Cov x y x x βσ--===≈-∑∑ˆˆ549.80.7863647.8840.372y x αβ=-=-⨯= 因此,拟合的回归方程为:ˆˆˆ40.3720.7863i i iy x x αβ=+=+ 其中,回归系数β表示自变量每变动一个单位,因变量的平均变量幅度。

在此,表示销售收入每增加1万元,销售成本平均增加0.7863万元。

(2)可决系数22222[()()]334229.090.9998()()425053.73262855.25i i i i x x y y SSR R SST x x y y --===≈-⋅-⨯∑∑∑ (本问接下来的计算不做要求:为计算回归系数的标准误差,根据离差平方和分解,可知:2222222[()()]ˆˆˆˆˆˆ()[()()]()()334229.09262811.68425053.73i i i iiix x y y SSR y y x x x x x x αβαββ--=-=+-+=-=-==∑∑∑∑∑22ˆ()()262855.25262811.6843.57i i SSE SST SSR y y yy =-=---=-=∑∑因此有ˆ()0.0032S β===≈) (3)陈述假设:01:0 :0H H ββ=≠在原假设成立的前提下,构造t 检验统计量245.598t ===在5%的双侧检验显著性水平下,查自由度为10的t 分布表,得临界值0.025(10) 2.228t t =<,因此拒绝原假设。

《统计学概论》第八章课后练习题答案

《统计学概论》第八章课后练习题答案

《统计学概论》第八章课后练习答案一、思考题1.什么是相关系数?它与函数关系有什么不同?P237- P2382.什么是正相关、负相关、无线性相关?试举例说明。

P238- P2393.相关系数r的意义是什么?如何根据相关系数来判定变量之间的相关系数?P245 4.简述等级相关系数的含义及其作用?P2505.配合回归直线方程有什么要求?回归方程中参数a、b的经济含义是什么?P2566.回归系数b与相关系数r之间有何关系?P2587.回归分析与相关分析有什么联系与区别?P2548.什么是估计标准误差?这个指标有什么作用?P2619.估计标准误差与相关系数的关系如何?P258-P26410.解释判定系数的意义和作用。

P261二、单项选择题1.从变量之间相互关系的方向来看,相关关系可以分为()。

A.正相关和负相关B.直线关系与曲线关系C.单相关和复相关D.完全相关和不完全相关2.相关分析和回归分析相比较,对变量的要求是不同的。

回归分析中要求()。

A.因变量是随机的,自变量是给定的B.两个变量都是随机的C.两个变量都不是随机的D.以上三个答案都不对3.如果变量x与变量y之间的相关系数为-1,这说明两个变量之间是()。

A.低度相关关系B.完全相关关系C.高度相关关系D.完全不相关4.初学打字时练习的次数越多,出现错误的量就越少,这里“练习次数”与“错误量”之间的相关关系为()。

A.正相关B.高相关C.负相关D.低相关5.假设两变量呈线性关系,且两变量均为顺序变量,那么表现两变量相关关系时应选用()。

A.简单相关系数r B.等级相关系数r sC.回归系数b D.估计标准误差S yx6.变量之间的相关程度越低,则相关系数的数值()。

A.越大B.越接近0C.越接近-1 D.越接近17.下列各组中,两个变量之间的相关程度最高的是()。

A.商品销售额和商品销售量的相关系数是0.9B.商品销售额和商品利润率的相关系数是0.84C.产量与单位成本之间的相关系数为-0.94D.商品销售价格与销售量的相关系数为-0.918.相关系数r的取值范围是()。

统计学原理 第七章课后习题及答案

统计学原理 第七章课后习题及答案

第七章 相关和回归一、单项选择题1.相关关系中,用于判断两个变量之间相关关系类型的图形是( )。

(1)直方图 (2)散点图 (3)次数分布多边形图 (4)累计频率曲线图 2.两个相关变量呈反方向变化,则其相关系数r( )。

(1)小于0 (2)大于0 (3)等于0 (4)等于13.在正态分布条件下,以2yx S (提示:yx S 为估计标准误差)为距离作平行于回归直线的两条直线,在这两条平行直线中,包括的观察值的数目大约为全部观察值的( )。

(1)68.27% (2)90.11% (3)95.45% (4)99.73% 4.合理施肥量与农作物亩产量之间的关系是( )。

(1)函数关系 (2)单向因果关系 (3)互为因果关系 (4)严格的依存关系 5.相关关系是指变量之间( )。

(1)严格的关系 (2)不严格的关系(3)任意两个变量之间关系 (4)有内在关系的但不严格的数量依存关系 6.已知变量X 与y 之间的关系,如下图所示:其相关系数计算出来放在四个备选答案之中,它是( )。

(1)0.29 (2)-0.88 (3)1.03 (4)0.997.如果变量z 和变量Y 之间的相关系数为-1,这说明两个变量之间是( )。

(1)低度相关关系 (2)完全相关关系 (3)高度相关关系 (4)完全不相关 8.若已知2()x x -∑是2()y y -∑的2倍,()()x x y y --∑是2()y y -∑的1.2倍,则相关系数r=( )。

(1)1.2 (3)0.92 (4)0.65 9.当两个相关变量之问只有配合一条回归直线的可能,那么这两个变量之间的关系是( )。

(1)明显因果关系 (2)自身相关关系(3)完全相关关系 (4)不存在明显因果关系而存在相互联系 10.在计算相关系数之前,首先应对两个变量进行( )。

(1)定性分析 (2)定量分析 (3)回归分析 (4)因素分析 11.用来说明因变量估计值代表性高低的分析指标是( )。

统计学原理 第七章课后习题及答案

统计学原理 第七章课后习题及答案

第七章 相关和回归一、单项选择题1.相关关系中,用于判断两个变量之间相关关系类型的图形是( )。

(1)直方图 (2)散点图 (3)次数分布多边形图 (4)累计频率曲线图 2.两个相关变量呈反方向变化,则其相关系数r( )。

(1)小于0 (2)大于0 (3)等于0 (4)等于13.在正态分布条件下,以2yx S (提示:yx S 为估计标准误差)为距离作平行于回归直线的两条直线,在这两条平行直线中,包括的观察值的数目大约为全部观察值的( )。

(1)68.27% (2)90.11% (3)95.45% (4)99.73% 4.合理施肥量与农作物亩产量之间的关系是( )。

(1)函数关系 (2)单向因果关系 (3)互为因果关系 (4)严格的依存关系 5.相关关系是指变量之间( )。

(1)严格的关系 (2)不严格的关系(3)任意两个变量之间关系 (4)有内在关系的但不严格的数量依存关系 6.已知变量X 与y 之间的关系,如下图所示:其相关系数计算出来放在四个备选答案之中,它是( )。

(1)0.29 (2)-0.88 (3)1.03 (4)0.997.如果变量z 和变量Y 之间的相关系数为-1,这说明两个变量之间是( )。

(1)低度相关关系 (2)完全相关关系 (3)高度相关关系 (4)完全不相关 8.若已知2()x x -∑是2()y y -∑的2倍,()()x x y y --∑是2()y y -∑的1.2倍,则相关系数r=( )。

(1)1.2 (3)0.92 (4)0.65 9.当两个相关变量之问只有配合一条回归直线的可能,那么这两个变量之间的关系是( )。

(1)明显因果关系 (2)自身相关关系(3)完全相关关系 (4)不存在明显因果关系而存在相互联系 10.在计算相关系数之前,首先应对两个变量进行( )。

(1)定性分析 (2)定量分析 (3)回归分析 (4)因素分析 11.用来说明因变量估计值代表性高低的分析指标是( )。

统计学课后练答案

统计学课后练答案

第七章 参数估计(1)x σ==(2)2x z α∆==1.96=某快餐店想要估计每位顾客午餐的平均花费金额。

在为期3周的时间里选取49名顾客组成了一个简单随机样本。

(1)假定总体标准差为15元,求样本均值的抽样标准误差。

x σ=== (2)在95%的置信水平下,求估计误差。

x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=z α 因此,x x t σ∆=⋅x z ασ=⋅0.025x z σ=⋅=×=(3)如果样本均值为120元,求总体均值 的95%的置信区间。

置信区间为:2x z x z αα⎛-+ ⎝=()120 4.2,120 4.2-+=(,)2x z x z αα⎛-+ ⎝=104560±(,) 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。

要求:大样本,样本均值服从正态分布:2,x N n σμ⎛⎫ ⎪⎝⎭:或2,s x N n μ⎛⎫⎪⎝⎭:置信区间为:22x z x z αα⎛-+ ⎝, (1)构建μ的90%的置信区间。

2z α=0.05z =,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(,) (2)构建μ的95%的置信区间。

2z α=0.025z =,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(,) (3)构建μ的99%的置信区间。

2z α=0.005z =,置信区间为:()81 2.576 1.2,81 2.576 1.2-⨯+⨯=(,)(1)2x z α±=25 1.96±(,) (2)2x z α±=119.6 2.326±=(,) (3)2x z α±=3.419 1.645±(,) (1)2x z α±=8900 1.96±=(,)(2)2x z α±=8900 1.96±=(,) (3)2x z α±=8900 1.645±=(,)(4)2x z α±=8900 2.58±=(,) 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36人,调查解:(1)样本均值x =,样本标准差s=1α-=,t=z α=0.05z =,xz α±=3.32 1.645±(,) 1α-=,t=z α=0.025z =,x z α±=3.32 1.96±(,)1α-=,t=z α=0.005z =,x zα±=3.32 2.76±(,)2x t α±=10 2.365±=,某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是:10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。

统计学第四版第七章课后题最全答案

7.23下表就是由4对观察值组成得随机样本。
配对号
来自总体A得样本
来自总体B得样本
1
2
3
4
2
5
10
8
0
7
6
5
(1)计算A与B各对观察值之差,再利用得出得差值计算与。
=1、75,=2、62996
(2)设分别为总体A与总体B得均值,构造得95%得置信区间。
解:小样本,配对样本,总体方差未知,用t统计量
均值=1、75,样本标准差s=2、62996
(2)已知:E=0、1,=0、8,=0、05,=1、96
应抽取得样本量为:=≈62
7.20
(1)构建第一种排队方式等待时间标准差得95%得置信区间。
解:估计统计量
经计算得样本标准差=3、318
置信区间:
=0、95,n=10,==19、02,==2、7
==(0、1075,0、7574)
因此,标准差得置信区间为(0、3279,0、8703)
(3)已知=0、01,=2、58
由于n=100为大样本,所以总体均值得99%得置信区间为:
=812、58*813、096,即(77、94,84、096)
7、5(1)已知=3、5,n=60,=25,=0、05,=1、96
由于总体标准差已知,所以总体均值得95%得置信区间为:
=251、96*250、89,即(24、11,25、89)
7、4(1)已知n=100,=81,s=12, =0、1,=1、645
由于n=100为大样本,所以总体均值得90%得置信区间为:
=811、645*811、974,即(79、026,82、974)
(2)已知=0、05,=1、96
由于n=100为大样本,所以总体均值得95%得置信区间为:

统计学课后答案第七八章汇总

6.1 调理一个装瓶机使其对每个瓶子的灌装量均值为盎司,经过察看这台装瓶机对每个瓶子的灌装量听从标准差 1.0 盎司的正态散布。

随机抽取由这台机器灌装的9 个瓶子形成一个样本,并测定每个瓶子的灌装量。

试确立样本均值偏离整体均值不超出0.3 盎司的概率。

解:整体方差知道的状况下,均值的抽样散布听从N , 2的正态散布,由正态散布,n标准化获得标准正态散布:z= x~ N 0,1 ,所以,样本均值不超出整体均值的概率P n为:P x 0.3 =P x 0.3= P0.3 x 0.3n n 1 9 n 1 9= P 0.9 z 0.9 =2 0.9 -1,查标准正态散布表得0.9 =0.8159所以, P x 0.3 =0.63186.2 在练习题 6.1 中,我们希望样本均值与整体均值的偏差在 0.3 盎司以内的概率达到0.95,应该抽取多大的样本?解: P xx 0.3= P0.3 x 0.30.3 =Pn n 1 n n 1 n= 2 (0.3 n) 1 0.95 (0.3 n) 0.9750.3 n 1.96 n 42.68288 n 436.3 Z1,Z2 ,,Z6表示从标准正态整体中随机抽取的容量,n=6 的一个样本,试确立常数b,使得6P Z i2b0.95i 1解:因为卡方散布是由标准正态散布的平方和构成的:设 Z1, Z2,,Z n是来自整体N(0,1)的样本,则统计量2 Z12 Z 22 Z n2听从自由度为2 2~ 2n 的χ散布,记为χχ( n)6 6 62所以,令2Z i2,则 2 Z i2 2 6 ,那么由概率 P Z i b0.95 ,可知:i 1 i 1 i 120.95 6 ,查概率表得: b=12.59b= 1121 6.4 在习题 6.1 中,假定装瓶机对瓶子的灌装量听从方差 的标准正态散布。

假定我们计划随机抽取 10 个瓶子构成样本,观察每个瓶子的灌装量,获得 10 个观察值,用这1n10 个观察值我们能够求出样本方差S 2 (S 2(Y i Y )2 ) ,确立一个适合的范围使得有n 1 i 1较大的概率保证 S 2落入此中是实用的,试求 b 1, b 2 ,使得p(b 1 S 2 b 2 ) 0.90解:更为样本方差的抽样散布知识可知,样本统计量:(n 1s)22(n 1 ) 2~此处, n=10,21 ,所以统计量(n 1)s 2(10 1)s 22~ 2(n 1)21 9s依据卡方散布的可知:P b 1 S 2 b 2P 9b 1 9S 29b 20.90又因为:2n122 n11P 1 29S2所以:P 9b 129b 2P2n 19S 22n1 10.909S122P 9b 12P222n 19S 9b 2 12 n 1 9S2P2922 9 0.900.959S0.05则:222 9299b 19b 10.95, b 20.050.959 ,9b 2 0.0599查概率表: 2 9 =3.325 ,2 9 =19.919 ,则0.950.052 92 90.95=0.369, b 20.05=1.88b 19927.1 从一个标准差为 5 的整体中采纳重复抽样方法抽出一个样本容量为40 的样本,样本均值为 25。

统计学第八章课后作业答案

第八章练习题
一、单项选择
(1)当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于( )。

A.相关关系
B.函数关系
C.回归关系
D.随机关系
(2)相关系数的取值范围是( )。

A. 0≤r ≤1
B. -1<r <1
C. -1≤r ≤1
D. -1≤r ≤0
(3)一元线性回归方程y=12+3.6x,如x每增加1个单位,则y平均增加( )。

A. 12个单位
B. 15.6个单位
C. 3.6个单位
D. 8.4个单位
(4)一元线性回归方程中的两个变量( )。

A.都是随机变量
B.地位是对等的
C.都是给定的量
D.一个是自变量,另一个是因变量
二、多项选择题
(5)相关系数表明两变量之间的关系( )。

A.线性关系
B.因果关系
C.变异关系
D.相关方向
E.相关的密切程度
(6)如果两个变量之间的相关系数是1,则这两个变量是( )。

A.负相关关系
B.正相关关系
C.完全相关关系
D.不完全相关关系
E.零相关
(7)在一元线性回归分析中( )。

A.自变量是可控变量,因变量是随机变量
B.两个变量不是对等的关系
C.利用回归方程,两个变量可以相互推算
D.根据回归系数可判定相关的方向
E.自变量是随机变量,因变量是可控变量
(8)利用一元线性回归方程,可以( )。

A.进行两个变量的互相推算
B.用自变量推算因变量
C.用因变量推算自变量
D.确定两个变量的变动关系
E.研究两个变量之间的密切程度。

统计学课后习题答案(全章节)(精品).docx

第二章、练习题及解答2.为了确定灯泡的使用寿命(小时),在一批灯泡中随机抽取100只进行测试,所得结果如下:700 716 728 719 685 709 691 684 705 718 706 715 712 722 691 708 690 692 707 701 708 729 694 681 695 685 706 661 735 665 668 710 693 697 674 658 698 666 696 698 706 692 691 747 699 682 698 700 710 722 694 690 736 689 696 651 673 749 708 727 688 689 683 685 702 741 698 713 676 702 701 671 718 707 683 717 733 712 683 692 693 697 664 681 721 720 677 679 695 691 713 699 725 726 704 729 703 696 717 688要求:(2)以组距为10进行等距分组,生成频数分布表,并绘制直方图。

3.某公司下属40个销售点2012年的商品销售收入数据如下:单位:万元152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 10897 88 123 115 119 138 112 146 113 126要求:(1)根据上面的数据进行适当分组,编制频数分布表,绘制直方图。

(2)制作茎叶图,并与直方图进行比较。

1.已知下表资料:25 20 10 500 2.5 30 50 25 1500 7.5 35 80 40 2800 14 40 36 18 1440 7.2 4514 7 630 3. 15 合 计200100687034. 35_y xf 6870根据频数计算工人平均日产量:〒=金^ =北* = 34.35 (件)£f 200结论:对同一资料,采用频数和频率资料计算的变量值的平均数是一致的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学复习笔记第七章参数估计一、思考题1.解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。

估计量也是随机变量。

如样本均值,样本比例、样本方差等。

根据一个具体的样本计算出来的估计量的数值称为估计值。

2.简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。

(2)有效性:是指估计量的方差尽可能小。

对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。

(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。

3.怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

置信区间的论述是由区间和置信度两部分组成。

有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。

因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。

在公布调查结果时给出被调查人数是负责任的表现。

这样则可以由此推算出置信度(由后面给出的公式),反之亦然。

4.解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。

也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。

不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以的概率覆盖总体参数。

5.简述样本量与置信水平、总体方差、估计误差的关系。

1. 估计总体均值时样本量n 为(z 2 )2 2其中: E znn E22 其中: E z 2 n2. 样本量n 与置信水平1- α、总体方差、估计误差E之间的关系为与置信水平成正比,在其他条件不变的情况下,置信水平越大,所x 需要的样本量越大; 与总体方差成正比,总体的差异越大,所要求的样本量也越大; 与与总体方差成正比, 样本量与估计误差的平方成反比,即可以接 受的估计误差的平方越大,所需的样本量越小。

二、 练习题1. 从一个标准差为 5 的总体中采用重复抽样方法抽出一个样本量 为 40 的样本,样本均值为 25。

1) 样本均值的抽样标准差等于多少?2) 在 95%的置信水平下,估计误差是多少?解: 1 ) 已知 σ = 5 , n = 40 x , = 25/√ 40 ≈2 ) 已知估计误差 E = ×5÷√ 40 ≈2. 某快餐店想要估计每位顾客午餐的平均花费金额,在为期 3 周 的时间里选取 49 名顾客组成了一个简单随机样本。

1) 假定总体标准差为 15 元,求样本均值的抽样标准误差。

2) 在 95%的置信水平下,求估计误差。

3) 如果样本均值为 120 元,求总体均值 μ的 95%的置信区间 。

解: 1)已知 σ = 15 ,n = 49xx= 15 ÷√49 =估计误差 E = ×15÷√ 49 ≈3) 已知x = 120∵ 置信区间为x ± E其置信区间= 120 ±3.从一个总体中随机抽取n =100 的随机样本,得到x=104560 ,假定总体标准差σ = 85414 ,试构建总体均值μ的95%的置信区间。

解:已知n =100,x =104560,σ = 85414 ,1- =95% ,由于是正态总体,且总体标准差已知。

总体均值在1- 置信水平下的置信区间为10x1z04256n0105.36 1.9±6×2585414÷√ 100105.36 3.92= 104560 101.44,109.±284.从总体中抽取一个n =100 的简单随机样本,得到x =81 ,s=12。

要求:1) 构建μ的90%的置信区间。

2) 构建μ的95%的置信区间。

3) 构建μ的99%的置信区间。

2 )已知解:由于是正态总体,但总体标准差未知。

总体均值在1- 置信水平下的置信区间公式为81 ±× 12÷√ 100 = 81 ±×1) 1- =90%,其置信区间为81 ±2) 1- =95% ,其置信区间为81 ±3) 1- =99%,其置信区间为81 ±5.利用下面的信息,构建总体均值的置信区间。

1) x = 25,σ = ,n =60 ,置信水平为95%2) x =119,s = ,n =75 ,置信水平为98%3) x =,s = ,n =32 ,置信水平为90%1 ) 1- =95% ,其置信区间为:25±×÷√ 60= 25 ±2 ) 1- =98% ,则=, /2=, 1- /2=, 查标准正态分布表, 可知:其置信区间为: 119 ±×÷√ 75= 1193) 1- =90%,其置信区间为 : ±×÷√ 326. 利用下面的信息,构建总体均值 μ的置信区间:1) 总体服从正态分布,且已知 σ = 500 ,n = 15x , =8900 ,置 信水平为 95%。

置信水平为 95%。

解:为大样本总体非正态分布,但 σ 已知。

则 1- = 95%,。

其置信 区间公式为 x z 22105.36 1.96 10 n 25∴置信区间为: 8900±× 500÷√ 35=( )105.36 3.92101.44,109.28 3) 总体不服从正态分布,σ 未知, n = 35 x , =8900 ,s =500 ,置信水平为 90%。

解:为大样本总体非正态分布,且 σ 未知, 1- =90%,其置信区间为: 8900 ±× 500÷√ 35=( 8761 9039)4) 总体不服从正态分布,σ 未知, n = 35 x , =8900 ,s =500 , 置信水平为 99%。

解:为大样本总体非正态分布,且 σ 未知, 1- =99%,。

其置信区间为: 8900±× 500÷√ 35=( )解: N=15,为小样本正态分布,但 已知。

则 1- 信区间公式为 x z 22 n∴置信区间为: 8900±× 500÷√ 15=( , ) 105.36 =95%,。

其置10 1.96 252) 总体不服从正态分布,且已知 σ = 500 , 105.36 101.44,109.28 n =35x , =8900 ,7.某大学为了解学生每天上网的时间,在全校7500 名学生中采取重复抽样方法随机抽取36 人,调查他们每天上网的时间,得到下面的数据(单位:小时)(略)。

求该校大学生平均上网时间的置信区间,置信水平分别为90% 解:先求样本均值:=再求样本标准差:置信区间公式:8.从一个正态总体中随机抽取样本量为8 的样本,各样本值分别为:10,8,12,15,6,13,5,11。

求总体均值μ的95%置信区间。

解:本题为一个小样本正态分布,σ 未知。

先求样本均值:= 80 ÷8=10再求样本标准差:= √84/7 =于是, 的置信水平为的置信区间是已知,n = 8,则, α /2= ,查自由度为n-1 = 7 的分布表得临界值所以,置信区间为:10±×÷√ 7 9.某居民小区为研究职工上班从家里到单位的距离,抽取了由16 个人组成的一个随机样本,他们到单位的距离分别是:10,3,14,8,6,9,12,11,7,5,10,15,9,16,13,2。

假设总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。

解:小样本正态分布,σ 未知。

已知,n = 16 ,,则, α/2= ,查自由度为n-1 = 15 的分布表得临界值样本均值=150/16=再求样本标准差:= √15 ≈于是, 的置信水平为的置信区间是±×÷√ 1610.从一批零件是随机抽取36 个,测得其平均长度是,标准差是。

1) 求确定该种零件平均长度的95%的置信区间。

2) 在上面估计中,你使用了统计中的哪一个重要定理?请解释。

解:1) 这是一个大样本分布。

已知N=36,=x,S =,1-α=,。

其置信区间为:±×÷√ 362) 中心极限定理论证:如果总体变量存在有限的平均数和方差,那么,不论这个总体的分布如何,随着样本容量的增加,样本均值的分布便趋近正态分布。

在现实生活中,一个随机变量服从正态分布未必很多,但是多个随机变量和的分布趋于正态分布则是普遍存在的。

样本均值也是一种随机变量和的分布,因此在样本容量充分大的条件下,样本均值也趋近于正态分布,这为抽样误差的概率估计理论提供了理论基础。

11.某企业生产的袋装食品采用自动打包机包装,每袋标准重量为100 克,现从某天生产的一批产品中按重复抽样随机抽取50 包进行检查,测得每包重量如下:(略)已知食品包重服从正态分布,要求:1)确定该种食品平均重量的95%的置信区间。

2)如果规定食品重量低于100克属于不合格,确定该批食品合格率的95%的置信区间。

解: 1 )本题为一个大样本正态分布,σ 未知。

已知N=50,μ= 100,1- α=,。

①每组组中值分别为97、99、101、103、105,即此50 包样本平均值= (97+99+101+103+105)/5 = 101②样本标准差为:= √{(97-101 )2×2+(99-101 )2×3+(101-101 )2×34+(103-101 )2 ×7+(105-101 )2×4}÷(50-1)≈③其置信区间为:101±×÷√ 502 )∵不合格包数(<100 克)为2+3=5 包,5/50 = 10% (不合格率),即P = 90%。

∴ 该批食品合格率的95%置信区间为:= ±×√×÷ 50= ±×12.假设总体服从正态分布,利用下面的数据构建总体均值μ的99%的置信区间。

(略)解:样本均值样本标准差:尽管总体服从正态分布,但是样本n=25 是小样本,且总体标准差未知,应该用T 统计量估计。

1- α=,则α=, α/2= ,查自由度为n-1 = 24 的分布表得临界值的置信水平为的置信区间是,13.一家研究机构想估计在网络公司工作的员工每周加班的平均时间,为此随机抽取了18 个员工,得到他们每周加班的时间数据如下(单位:小时):(略)假定员工每周加班的时间服从正态分布,估计网络公司员工平均每周加班时间的90%的置信区间。

相关文档
最新文档