5.3.1任意角的三角函数的概念教案(一)

合集下载

三角函数的概念教学设计一等奖4篇

三角函数的概念教学设计一等奖4篇

第1篇三角函数的概念教学设计一等奖三角函数一. 教学内容:三角函数【结构】二、要求(一)理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。

(二)掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式)(三)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。

(四)会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及Y=Asin(ωx φ)的简图、理解A、ω、< 1271864542"> 的意义。

三、热点分析1. 近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强.2. 对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题3. 基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解.4. 立足课本、抓好基础.从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在中首先要打好基础.在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度.四、复习建议本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点:(1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理。

5.2.1 三角函数的概念(教学设计)

5.2.1 三角函数的概念(教学设计)

5.2.1 三角函数的概念课程目标1.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.2.掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.3.掌握公式一并会应用.数学学科素养1.数学抽象:理解任意角三角函数的定义;2.逻辑推理:利用诱导公式一求三角函数值;3.直观想象:任意角三角函数在各象限的符号;4.数学运算:诱导公式一的运用.重点:①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;②掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.难点:理解任意角三角函数(正弦、余弦、正切)的定义.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

一、情景导入在初中我们学习了锐角三角函数,那么锐角三角函数是如何定义的?若将锐角放入直角坐标系中,你能用角的终边上的点的坐标来表示锐角三角函数吗?若以单位圆的圆心O为原点,你能用角的终边与单位圆的交点来表示锐角三角函数吗?那么,角的概念推广之后,三角函数的概念又该怎样定义呢?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本177-180页,思考并完成以下问题1.任意角三角函数的定义?2.任意角三角函数在各象限的符号?3.诱导公式一?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究 1.单位圆在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆. 2.任意角的三角函数的定义(1)条件在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:图1-2-1 (2)结论①y 叫做α的正弦,记作sin_α,即sin α=y ; ②x 叫做α的余弦,记作cos_α,即cos α=x ; ③y x 叫做α的正切,记作tan_α,即tan α=yx (x ≠0). (3)总结正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.思考:若已知α的终边上任意一点P 的坐标是(x ,y ),则其三角函数定义为?在平面直角坐标系中,设α的终边上任意一点P 的坐标是(x ,y ),它与原点O 的距离是r (r =x 2+y 2>0). 三角函数定义定义域 名称 sinα yr R 正弦 cosα x r R余弦tanαy x⎩⎨⎧⎭⎬⎫α⎪⎪α≠k π+π2,k ∈Z正切正弦函数、余弦函数、正切函数统称三角函数. 3.正弦、余弦、正切函数在弧度制下的定义域三角函数 定义域 sin α R cos αRtan α⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠k π+π2,k ∈Z4.正弦、余弦、正切函数值在各象限内的符号 (1)图示:图1-2-2(2)口诀:“一全正,二正弦,三正切,四余弦”.四、典例分析、举一反三题型一 三角函数的定义及应用例1:求53π的正弦、余弦和正切值.例2 在平面直角坐标系中,角α的终边在直线y =-2x 上,求sin α,cos α,tan α的值. 【解析】当α的终边在第二象限时,在α终边上取一点P (-1,2),则r =-12+22=5,所以sin α=25=255,cos α=-15=-55,tan α=2-1=-2.当α的终边在第四象限时, 在α终边上取一点P ′(1,-2), 则r =12+-22=5,所以sin α=-25=-255,cos α=15=55,tan α=-21=-2.基础练习题 1、求π4、3π2、7π6的三角函数值.五、课堂小结让学生总结本节课所学主要知识及解题技巧 本节课我们主要学习了哪些内容? 1.三角函数的定义.2.运用三角函数数学思想解决问题.六、板书设计七、作业课本179页练习及182页练习.本节课主要采用讲练结合与分组探究的教学方法,借助单位圆探究任意角三角函数(正弦、余弦、正切)的概念,且借助单位圆与直角坐标系探究三角函数在各个象限符号,并会灵活运用.。

任意角三角函数教案

任意角三角函数教案

任意角三角函数教案教案标题:任意角三角函数教案教案目标:1. 理解任意角的概念和测量方法。

2. 掌握正弦、余弦和正切函数在任意角上的定义和性质。

3. 能够应用任意角三角函数解决实际问题。

教学准备:1. 教学投影仪和计算机。

2. 白板、彩色笔和橡皮。

3. 教学PPT或其他教学辅助材料。

4. 学生教材和练习册。

教学过程:引入活动:1. 使用一个实际问题引起学生对任意角的兴趣,例如:一个船在河流中行驶,如何确定船的航向角度?知识讲解:2. 介绍任意角的概念和测量方法,包括角度的单位和测量工具。

3. 详细讲解正弦、余弦和正切函数在任意角上的定义和性质,包括函数图像、周期性、定义域和值域等。

示范演示:4. 在白板上绘制一个单位圆,并标注角度。

通过旋转单位圆,展示不同角度下正弦、余弦和正切函数的变化。

5. 通过具体的角度值示例,计算和绘制对应的正弦、余弦和正切函数值。

练习活动:6. 分发练习册或工作纸,让学生完成一些基础练习题,巩固对任意角三角函数的理解和运用能力。

7. 引导学生思考并解决一些实际问题,例如:一个建筑物的斜坡角度是多少?拓展应用:8. 提供更复杂的练习题,让学生应用任意角三角函数解决更具挑战性的问题,例如:计算两个船只之间的夹角。

总结回顾:9. 总结任意角三角函数的定义、性质和应用,并强调学生在实际问题中的运用能力。

评估反馈:10. 针对学生的学习情况,布置相应的作业,并在下节课进行检查和评估。

教学延伸:11. 鼓励学生自主学习和探究,推荐相关的在线学习资源和参考书籍。

教学辅助:12. 使用教学PPT或其他教学辅助材料,图示和示意图能够帮助学生更好地理解和记忆。

教学方式:13. 以讲解、演示、练习和讨论相结合的方式进行教学,注重学生的参与和互动。

教学时间:14. 根据教学内容和学生的学习进度,合理安排教学时间,保证学生的学习效果。

教学评估:15. 在教学过程中,及时观察学生的学习情况,通过课堂练习和问题解答等方式进行评估,及时调整教学策略。

(完整)《任意角的三角函数》教学设计

(完整)《任意角的三角函数》教学设计

《任意角的三角函数(第一课时)》教学设计任意角的三角函数(1)一、教学内容分析:高一年《普通高中课程标准教科书·数学(必修4)》(人教版A版)1。

2.1任意角的三角函数第一课时。

本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。

在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。

《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义.在本模块中,学生将通过实例学习三角函数及其基本性质,体会三角函数在解决具有变化规律的问题中的作用。

二、学生学习情况分析我们的课堂教学常用“高起点、大容量、快推进”的做法,忽略了知识的发生发展过程,以腾出更多的时间对学生加以反复的训练,无形增加了学生的负担,泯灭了学生学习的兴趣.我们虽然刻意地去改变教学的方式,但仍太多旧时的痕迹,若为了新课程而新课程又会使得美景变成了幻影,失去新课程自然与清纯之味。

所以如何进行《普通高中数学课程标准(实验)》(以下简称课程标准)的教学设计就很值得思考探索。

如何让学生把对初中锐角三角函数的定义及解直角三角形的知识迁移到学习任意角的三角函数的定义中?《普通高中数学课程标准(实验)解读》中在三角函数的教学中,教师应该关注以下两点:第一、根据学生的生活经验,创设丰富的情境,例如单调弹簧振子,圆上一点的运动,以及音乐、波浪、潮汐、四季变化等实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,体会三角函数是刻画周期现象的重要模型以及三角函数模型的意义。

第二、注重三角函数模型的运用即运用三角函数模型刻画和描述周期变化的现象(周期振荡现象),解决一些实际问题,这也是《课程标准》在三角函内容处理上的一个突出特点。

根据《课程标准》的指导思想,任意角的三角函数的教学应该帮助学生解决好两个问题:其一:能从实际问题中识别并建立起三角函数的模型;其二:借助单位圆理解任意角三角函数的定义并认识其定义域、函数值的符号。

人教版A高中数学必修第一册5.2.1 三角函数的概念 教学设计(1)

人教版A高中数学必修第一册5.2.1 三角函数的概念 教学设计(1)

5.2.1 三角函数的概念本节课选自《普通高中课程标准数学教科书-必修第一册》(人教A版)第五章《三角函数》,本节课是第3课时,这是节关于任意角的三角函数的概念课.三角函数是高中范围内继指数函数、对数函数和幂函数之后学习的函数,是函数的一个下位概念,与指对数函数、幂函数属于同一抽象( 概括)层次。

它是一种重要的基本初等函数,是解决实际问题的重要工具,也是学习数学中其他知识内容的基础。

在初中,学生已学过锐角三角函数,知道直角三角形中锐角三角函数等于相应边长的比值。

在此基础上,随着角的概念的推广,引入弧度制,相应地将锐角三角函数推广为任意角的三角函数,此时它与三角形已经没有什么关系了。

任意角的三角函数是研究一个实数集( 角的弧度数构成的集合)到另一个实数集( 角的终边与单位圆交点的坐标或其比值构成的集合)的对应关系。

认识它需要借助单位圆、角的终边以及两者的交点这些几何图形的直观帮助,这里体现了数形结合的思想,由锐角三角函数到坐标表示的锐角三角函数,再到单位圆上的点的坐标表示的锐角三角函数,直至得到任意角的三角函数的定义,体现了合情推理的思想方法。

本节课将围绕任意角三角函数的概念展开,任意角三角函数的概念是本节课的重点,能够利用单位圆认识这个概念是解决教学重点的关键。

A.借助单位圆理解任意角三角函数的定义;B.根据定义认识函数值的符号,理解诱导公式一;C.能初步运用定义分析和解决与三角函数值有关的一些简单问题;D.体验三角函数概念的产生、发展过程,领悟直角坐标系的工具功能,丰富数形结1.教学重点:任意角的三角函数(正弦函数、余弦函数、正切函数)的定义;2.教学难点:任意角的三角函数概念的建构过程。

多媒体一、复习回顾,温故知新 1. 1弧度角的定义【答案】等于半径长的圆弧所对的圆心角 2. 角度制与弧度制的换算:【答案】︒︒︒≈==30.571801180)(弧度,ππ3. 关于扇形的公式【答案】.21)3(;21)2(;12lR S R S R l ===αα)( 4.在初中我们是如何定义锐角三角函数的? 【答案】.tan ,cos ,sin abc a c b ===ααα二、探索新知探究一.角α的始边在x 轴非负半轴,终边与单位圆交于点P 。

任意角的三角函数教案

任意角的三角函数教案

任意角的三角函数教案任意角的三角函数教案一、教学目标1、了解任意角的概念及其特点。

2、掌握任意角的三角函数的定义及其性质。

3、能够运用任意角的三角函数解决与实际问题相关的计算和应用题。

二、教学重点与难点1、任意角的概念及其特点。

2、任意角的三角函数的定义及其性质。

三、教学准备1、教材:《数学教材》2、教具:黑板、粉笔等。

四、教学过程(一)任意角的概念及其特点(10分钟)1、引入:同学们,我们之前学过的三角函数是在直角三角形中定义的,那么在直角以外的三角形中,是否可以定义三角函数呢?请看下面的图形。

2、呈现:通过黑板上画出一般三角形,告诉同学们这样的三角形中可以定义任意角。

3、引导:我们称这样的角为任意角,那么任意角有什么特点呢?4、总结:任意角的特点是:角度大小可以是任意的,不限于某个固定角度。

(二)任意角的三角函数的定义及其性质(20分钟)1、引入:同学们,我们知道在直角三角形中,三角函数是通过三角比来定义的。

那么在任意角中,我们应该如何定义三角函数呢?2、定义:通过黑板上画出一个一般的任意角,引导同学们回忆起直角三角形中的正弦、余弦、正切三角比的定义,告诉同学们这些三角比的定义可以推广到任意角中。

3、总结:定义任意角的三角函数如下:正弦函数sinθ、余弦函数cosθ、正切函数tanθ等。

4、性质:通过黑板上列举一些性质,告诉同学们这些性质与直角三角形中的三角函数性质相似,但是要根据勾股定理和正负分区来进行判断。

5、示例:通过黑板上画出一些示例题,引导同学们运用任意角的三角函数定义和性质进行计算。

(三)运用任意角的三角函数解决与实际问题相关的计算和应用题(40分钟)1、引入:同学们,任意角的三角函数不仅可以用来计算角度大小,还可以用来解决与实际问题相关的应用题。

请看下面的例子。

2、示例:通过黑板上列举一些实际问题相关的计算和应用题,引导同学们运用任意角的三角函数来解决这些问题。

3、练习:同学们进行课堂练习,通过黑板上列举一些练习题,让同学们在课堂上进行解答。

“任意角三角函数的概念”教学设计

“任意角三角函数的概念”教学设计

“任意角三角函数的概念”教学设计一.内容和内容解析三角函数是一个重要的基本初等函数,它是描述周期现象的重要数学模型.它的基础主要是几何中的相似形和圆,研究方法主要是代数中的图象分析和式子变形,三角函数的研究已经初步把几何与代数联系起来.它在物理学、天文学、测量学等学科中都有重要的应用,它是解决实际问题的重要工具,它是学习数学中其他学科的基础.角的概念已经由锐角扩展到0°~360°内的角,再扩充到任意角,相应地,锐角三角函数概念也必须有所扩充.任意角三角函数概念的出现是角的概念扩充的必然结果.比较锐角三角函数与任意角三角函数这两个概念,共同点是,它们都是“比值”,不同点是锐角三角函数是“线段长度的比值”,而任意角三角函数是直角坐标系中“坐标与长度的比值,或者是坐标的比值”.正是由于“比值”这一与在角的终边上所取点的位置无关的特点,因此,可以用角的终边与单位圆的交点的坐标(或坐标的比值)来表示任意角的三角函数,这是概念的核心.这样定义,不仅简化了任意角三角函数的表示,也为后续研究它的性质带来了方便.从锐角三角函数到任意角三角函数类似于从自然数到整数扩充的过程,产生了“符号问题”.因此,学习任意角三角函数可以与锐角三角函数相类比,借助锐角三角函数的概念建立起任意角三角函数的概念.任意角三角函数概念的重点是任意角的正弦、余弦、正切的定义.它们是本节,乃至本章的基本概念,是学习其他与三角函数有关内容的基础,具有根本的重要的作用.解决这一重点的关键,是学会用直角坐标系中,角的终边上的点的坐标来表示三角函数.因为正切函数并不独立,最主要的是正弦函数与余弦函数.任意角三角函数自然具有函数的一切特征,有它的定义域,对应法则以及值域.任意角三角函数的定义域是实数集(或它的子集),这是因为,在建立弧度制以后,角的集合与实数集合间建立了一一对应关系,从这个意义上说,“角是实数”,三角函数是定义在实数集上的函数.各种不同的三角函数定义了不同的对应法则,因而可能有不同的定义域与值域.任意角三角函数概念是核心概念,它是解决一切三角函数问题的基点.无论是研究三角函数在各象限中的符号、特殊角的三角函数值,还是同角三角函数间的关系,以及三角函数的性质,等等,都具有基本的重要的意义.在建立任意角三角函数这个定义的过程中,学生可以感受到数与形结合,以及类比、运动、变化、对应等数学思想方法.二.目标和目标解析本节课的目标是,理解任意角三角函数(正弦、余弦、正切)的定义.学生已经学习过锐角三角函数sinα,cosα,tanα,了解三角函数是直角三角形中边长的比值,这个比值仅与锐角的大小有关,是随着锐角取值的变化而变化的,其值是惟一确定的,等函数的要素.这是任意角三角函数概念的“生长点”.理解任意角三角函数(正弦、余弦、正切)定义的关键是由锐角三角函数这个线段长度的比值扩展为点的坐标或坐标的比值.因此,对锐角三角函数理解得怎样,对理解任意角三角函数有决定意义,复习锐角三角函数,加深对锐角三角函数的理解是必要的.要实现让学生“理解”任意角三角函数定义的教学目标,莫过于让学生参与任意角三角函数定义的过程.让学生感受到因角的概念的扩展,锐角三角函数概念扩展的必要性,任意角三角函数是锐角三角函数概念的自然延伸.反过来,既然锐角集合是任意角集合的子集,那么,锐角三角函数也应该是任意角三角函数的特殊情况,是一个包含关系.让学生参与定义,可以感受到这样定义的合理性,感受到这个定义是自然的.三.教学问题诊断分析从锐角三角函数到任意角三角函数的学习,从认知结构发展的角度来说,是属于“下、上位关系学习”,是一个从特殊到一般的过程,“先行组织者”是锐角三角函数的概念.教学策略上先复习包容性小、抽象概括程度低的锐角三角函数的概念,然后让学生“再创造”抽象程度高的上位概念(参与定义),并形成新的认知结构,让原有的锐角三角函数的概念类属于抽象程度更高的任意角三角函数的概念之中.学生过去在直角三角形中研究过锐角三角函数,这对研究任意角三角函数在认识上会有一定的局限性,所以学生在用角的终边上的点的坐标来研究三角函数可能会有一定的困难.可以让学生在原有的对锐角三角函数的几何认识的基础上,尝试让学生建立用终边上的点的坐标定义任意角三角函数,或者尝试用终边上的点的坐标定义锐角三角函数,然后再定义任意角的三角函数.教学的另一个难点是,任意角三角函数的定义域是实数集(或它的子集).因为学生刚刚接触弧度制,未必能理解“把角的集合与实数集建立一一对应”到底是为了什么.可以在复习锐角三角函数时,把锐角说成区间(0,π2)内的角,以便分散这个难点. 四.教学支持条件分析利用几何画板软件,可以动态改变角的终边位置,从而改变角的终边上点的坐标大小的特点,便于学生认识任意角的位置的改变,所对应的三角函数值也改变的特点,感受函数的本质;感受终边相同的角具有相同的三角函数值;也便于观察各三角函数在各象限中符号的变化情况,加深对任意角三角函数概念的理解,增强教学效果.五.教学过程设计1.理解锐角三角函数要理解任意角三角函数首先要理解锐角三角函数.锐角三角函数是任意角三角函数的先行组织者.问题1 任意画一个锐角α,借助三角板,找出sin α,cos α,tan α的近似值.教师用几何画板任意画一个锐角.要求学生自己任意也画一个锐角,利用手中的三角板画直角三角形,度量角α的对边长、斜边长,计算比值.意图:复习初中所学习过的锐角三角函数,加深对锐角三角函数概念的理解,它是学习任意角三角函数的基础.突出:(1)与点的位置的选取无关;(2)是直角三角形中线段长度的比值.问题2 能否把某条线段画成单位长,有些三角函数值不用计算就可以得到?意图:学生根据自己实际画图操作,以及计算比值的体验,会很快认为把斜边画成单位长比较方便,为后续任意角三角函数的“单位圆定义法”做铺垫.问题3 锐角三角函数sin α作为一个函数,自变量以及与之对应的函数值分别是什么? 意图:以便与后面的任意角三角函数的自变量是角(的弧度,对应一个实数),对应的函数值是α的终边与单位圆交点的纵坐标比较.锐角三角函数sin α作为一个函数,自变量是锐角.由于角的弧度值与实数可以一一对应,所以,α是(0,π2)上的实数.而与之对应的函数值sin α是线段长度的比值,是区间(0,1)上的实数.问题4 你产生过这个疑问吗:“三角函数只有这三个?”意图:这个问题具有元认知提示的特点,引导学生勤于思考,逐步学会发现问题、提出问题、研究问题.三条边相互比,可以产生六个比.还有哪三个呢?再把已知的三个倒过来.2.任意角三角函数定义的“再创造”教师利用几何画板,把角α的顶点定义为原点,一边与x 轴的正半轴重合,转动另一条边,表现任意角.问题5 现在,角的范围扩大了.在直角坐标系中,使得角的顶点在原点,始边与x 轴的正半轴重合.在这样的环境下,你认为,对于任意角α,sin α,cos α,tan α怎样来定义好呢?意图:可以打破知识结构的平衡,感受到学习新知识的必要性——角的范围扩大了,锐角三角函数也应该“与时俱进”,并不显得突然.把定义的主动权交给学生,引导学生参与定义过程,发展思维.有两种可能的回答.可能一:在α的终边上任意画一点P (x ,y ),|OP |=r .sin α=y r ,cos α=x r ,tan α=y x. 可能二:设角α的终边与单位圆的交点为P (x ,y ).sin α=y ,cos α=x ,tan α=y x. 不论出现可能一还是可能二,都再问:“都是这样的吗?”引导学生议论,以确认两种定义方法的一致性、各自特点.再问“你赞成哪一种?”,统一认识,建立任意角三角函数的定义.(板书)因为前面已经有引导,学生可能很快接受“可能二”.3.任意角三角函数的认识(对定义的体验)问题6(1)求下列三角函数值:sin270°,cos π,tan 7π6. 问题6(2) 说出几个使得cos α=1的α的值.意图:通过定义的简单应用,把握定义的内涵.逐题给出,对于每一个答案,都要求学生说出“你是怎样得到的.”突出“画终边,找交点坐标,算比值(对正切函数)”的步骤.问题6(3) 指出下列函数值:sin π6; sin 13π6; sin (-11π6). 意图:角的终边位置决定了三角函数值的大小.终边位置相同的角同一三角函数值相等.于是有sin (α+2k π)=sin α,cos (α+2k π)=cos α,tan (α+2k π)=tan α.(其中k ∈Z )问题6(4)①确定下列三角函数的符号:cos250°; sin (-π4); tan (-1030°); sin1650°; tan (-9π4); cos (11π4). ②⎩⎨⎧cos θ<0,tan θ<0,θ在哪个象限?请说明理由.反过来呢? ③角α的哪些三角函数值在第二、三象限都是负数?为什么?④tan α在哪些象限中取正数?为什么?意图:认识三角函数在各象限中的符号.问题7 做了这么多题,要反思.你是否发现了任意角三角函数的一些性质?还有些什么体会?意图:体验以后的概括,阶段小结.(1)抓住各三角函数的定义不放;(2)各象限中三角函数的符号特点,等.教师板书学生获得的成果、感受.4.任意角三角函数的定义域问题8 α是任意角,作为函数的sin α,cos α,tan α,它们的定义域分别是什么?意图:三角函数也是函数,自然应该关心它的定义域.建立了角的弧度制,角的集合与实数集合之间建立了一一对应关系,因此,sin α,cosα的定义域是R ;tan α=y x 中,x ≠0,于是tan α的定义域是{α|α≠π2+k π,k ∈Z ,α∈R }. 仍然紧扣定义,并引导以弧度制表示它的定义域.5.练习(1)确定下列三角函数值的符号,并借助计算器计算:cos260°; sin (-π3); tan (5π). (2)求下列三角函数值:cos 17π4; tan (-23π6); sin (1140°). 6.小结问题9 下课后,你走出教室,如果有人问你:“过去你就学习过锐角三角函数,今天又学习了任意角的三角函数,它们的差别在哪里呢?”你怎么回答他?意图:通过问题小结.不追求面面俱到,突出锐角三角函数是三角形中,边长的比值,而任意角的三角函数是直角坐标系中角的终边与单位圆交点的坐标,或者是坐标的比值.若时间允许,再问:“还有其他收获吗?”比如,终边相同的角的同一三角函数相等;各象限三角函数的符号;任意角三角函数的定义域,等.六.目标检测设计(1)α=5π4,写出α的终边与单位圆交点的横坐标,并写出tan α的值. (2)求下列三角函数的值:cos (-23π6); tan (25π6). (3)角α的终边与单位圆的交点是Q ,点Q 的纵坐标是12,说出几个满足条件的角α. (4)点P (3,-4)在角α终边上,说出sin α,cos α,tan α分别是多少?。

任意角的三角函数的定义教案

任意角的三角函数的定义教案

教 案5.3.1任意角的三角函数的定义授课教师——王定洲教学目标:1.掌握任意角的三角函数的定义;2.任意角的三角函数和锐角的三角函数的联系和区别;3.理解角的三角函数值与角终边上点的位置无关;4.正弦函数、余弦函数、正切函数的定义域;5.已知角α终边上一点,会求角α的各三角函数值。

教学重点:1.掌握并理解任意角的三角函数的定义; 2.会运用任意角的三角函数的定义求函数值。

教学难点:理解角的三角函数值与角终边上点的位置无关; 教学方法:1.情境教学法;2.问题驱动教学法及小组讨论法。

教学用具:教学课件.多媒体、实物投影仪、教案、三角板等 教学过程: 一、复习引入(情境1)前面我们学习了角的概念的推广,通过推广,使角动了起来,同时把角的范围也突破了0度和360度的界限,角可为任意大小。

这节课我们要研究的问题是任意角的三角函数。

初中阶段我们学习了锐角的三角函数。

【问题1】在Rt △ABC 中,sin α=斜边的对边角α= 、cos α=斜边的邻边角α= 、tan α=的邻边角的对边角αα= .【问题2】如图,在Rt △ABC 中,求sin α,cos α,tan α。

(学生口答)sin α= cos α=tan α=4535443AB Ca bcB二、动脑思考,探索新知(情境2)我们已经把锐角推广到任意角,锐角三角函数的概念也能推广到任意角。

那么我们应如何来给任意角的三角函数下定义呢将Rt△ABC放在直角坐标系中,使得点A与__________重合,AC边在_______上.设点P(即顶点)的坐标为(x,y),r为角终边上的点P到_______的距离,则r=________.于是,上面的三角函数的定义可以写作:sinα=、cosα=、tanα=.设α是任意大小的角,点(,)P x y为角α的终边上的任意一点(不与原点重合),点P到原点的距离为r=,那么角α的正弦、余弦、正切分别定义为sinyrα=;cosxrα=;tanyxα=.提问:1、当角大小发生变化时,比值会改变吗2、比值会随着点P在终边上的位置改变而改变吗一般地,在比值存在的情况下,对角α的每一个确定的值,按照相应的对应关系,角α的正弦、余弦、正切、都分别有唯一的比值与之对应,它们都是以角α为自变量的函数,分别叫做正弦函数、余弦函数、正切函数,统称为三角函数.由定义可以看出:当角α的终边在y轴上时,ππ()2k kα=+∈Z,终边上任意一点的横坐标x的值都等于0,此时tan yxα=无意义.除此以外,对于每一个确定的角α,三个函数都有意义.正弦函数、余弦函数和正切函数的定义域如下表所示:三、例题分析例1 已知角α的终边经过点(2,3)P -,求角α的正弦、余弦、正切值. 分析 已知角α终边上一点P 的坐标,求角α的某个三角函数值时,首先要根据关系式r =P 到坐标原点的距离r ,然后根据三角函数定义进行计算.解 因为2x =,3y =-,所以r ,因此siny r α==, cos x r α=== 3tan 2y x α==-. 例2求角2π的正弦、余弦和正切值; 解:由三角函数定义得: 当α=2π时sin y r α==1 cos x r α==0; tan yxα=不存在. 四、运用知识 强化练习1.已知角α的终边上的点P 的坐标如下,分别求出角α的正弦、余弦、正切值: ⑴ ()3,4P -; ⑵ ()1,2P -;2.求下列各角的正弦、余弦和正切值; (1)π (2)32π五、课堂小结:通过本课学习,你有哪些收获1.任意角的三角函数的定义;2.知道角的弧度制,并会求该角的三角函数;3.任意角的三角函数值与终边上点的位置无关,只与角的大小和终边的位置有关;4.正弦函数,余弦函数,正切函数的定义域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r x 2 y 2 ,求出点 P 到坐标原点的距离 r ,然后根据三角函数定义进行计算.
*运用知识 强化练习 : 1.已知角 的终边上的点 P 的坐标如下,分别求出角 的正弦、余弦、正切值: ⑴ P 3, 4 ; ⑵ P 1, 2 ;
1 3. ⑶ P 2 , 2
cos x ; r tan y . x
提问:1、当角大小发生变化时,比值会改变吗? 2、比值会随着点 P 在终边上的位置改变而改变吗? 说明 在比值存在的情况下,对角 的每一个确定的值,按照相应的对应关系,角 的正 弦、余弦、正切、都分别有唯一的比值与之对应,它们都是以角 为自变量的函数, 分别叫做正弦函数、余弦函数、正切函数,统称为三角函数. 由定义可以看出:当角 的终边在 y 轴上时, kπ (k Z) ,终边上任意一点的 横坐标 x 的值都等于 0,此时 tan 个函数都有意义. 三角函数的定义域: 正弦函数、余弦函数和正切函数的定义域如下表所示: 三角函数 定义域 R R { ︱ kπ , k Z }
sin
;(三角形内角和定理) (勾股定理) ,sin = , cos = , tan = ; ; .
P(x,y) (B)
角的对边 = 斜边 角的邻边 = 斜边 角的对边 = 角的邻边 B
c
cos
tan
y
r a
y
x M(C) c 2.在直角三角形中,求 30°、45°、60°角的正弦、余弦、正切值。 o 角的度数 30° 45° 60°s A b C O (A) x
作业: 1、已知角 的终边上的点 P 的座标如下,分别求出角 的正弦、余弦、正切值: ⑴P(0.5,-0.4);
1 2 ); ⑵( P( , 2 2
2 1 ,) ,则 tan 的值是多少? 2 2
2、已知角 的终边经过点(
3
4
π 2 y 无意义.除此以外,对于每一个确定的角 ,三 x π 2
sin
cos
tan
2
当角 采用弧度制时,角 的取值集合与实数集 R 之间具有一一对应的关系,所 以三角函数是以实数 为自变量的函数. *巩固知识 典型例题 例 1 已知角 的终边经过点 P(2, 3) ,求角 的正弦、余弦、正切值. 分析 已知角 终边上一点 P 的坐标,求角 的某个三角函数值时,首先要根据关系式
sin

cos

tan

y P(x,y) r M O
*动脑思考 探索新知 概念 设 是任意大小的角,点 P( x, y) 为角 的终边 上的任意一点(不与原点重合) ,点 P 到原点的距 离为 r=
sin y ; r

x
,那么角 的正弦、余弦、正切分别定义为
5.3.1 任意 角的三角函 课题 主备人 梁瑞红 修改人 赵志慧 时间 3.19 数的概念 (一) 学习目标: 1.复习直角三角形中的三角函数的定义,熟记 30°、45°、60°角的正弦、余弦、正 切值。 2. 学习任意角的三角函数的概念,会用三角函数定义求任意角的三角函数值; 3..培养学生的观察能力和培养学生的计算能力. 学习重点:任意角的三角函数的概念 学习过程: *构建问题 探寻解决 问题 1.复习初中知识:在 Rt△ABC 中,∠C=90°, 三内角关系:A+B+C= 三边关系:



角的弧度数 sin cos) ( a )
1
拓展:我们已经把锐角推广到任意角,锐角三角函数的概念也能推广到任意角吗? 如何将上述的三角形放入直角坐标系中?(请同学们自学教材 P102) 将 Rt△ABC 放在直角坐标系中,使得点 A 与__________重合,AC 边在_______上. 设点 P (即顶点) 的坐标为 (x,y) ,r 为角终边上的点 P 到_______的距离, 则 r=________. 于是,上面的三角函数的定义可以写作:
相关文档
最新文档