大学微积分l知识点总结(一)
微积分知识点简单总结

微积分知识点简单总结1. 函数的导数函数的导数描述了函数在某一点处的变化率,可以简单理解为函数的斜率。
导数的定义为函数在某一点处的极限,即$f'(x_0)=\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$。
导数的计算可以使用求导法则,包括常数倍法则、幂函数法则、和差法则、乘积法则、商法则等。
2. 高阶导数函数的导数可以进行多次求导,得到的导数称为高阶导数。
高阶导数可以描述函数更加详细的变化情况,例如速度、加速度等概念。
3. 函数的微分微分是导数的一种形式,描述了函数在某一点附近的线性近似。
微分的定义为$dy=f'(x)dx$,可以理解为函数在某一点处的微小改变量。
微分可以用于估计函数的变化,以及在计算积分时的一些技巧和方法中。
4. 不定积分不定积分是积分的一种形式,用于求解函数的原函数。
不定积分的记号为$\intf(x)dx=F(x)+C$,其中$F(x)$为$f(x)$的一个原函数,$C$为积分常数。
不定积分的计算可以使用换元法、分部积分法、有理函数的积分等一系列的积分法则。
5. 定积分定积分是积分的一种形式,用于计算函数在一个区间上的累积变化。
定积分的计算可以使用牛顿-莱布尼茨公式,也可以使用定积分的近似计算法,如矩形法、梯形法、辛普森法等。
6. 微积分基本定理微积分基本定理是微积分的核心定理之一,描述了导数和积分的关系。
第一部分定理称为牛顿-莱布尼茨公式,表明了函数的不定积分可以表示为函数的定积分。
第二部分定理描述了定积分的求导运算,即若函数$f(x)$在区间$[a,b]$上连续,则$\int_{a}^{b}f(x)dx=F(b)-F(a)$,其中$F(x)$为$f(x)$的一个原函数。
7. 微分方程微分方程是微积分的一个重要应用,描述了含有未知函数及其导数的方程。
微分方程可以是常微分方程或偏微分方程,按照阶数、线性性质、系数等分类。
微分方程在物理、工程、经济等领域有着广泛的应用,例如描述物体的运动、电路的动态行为、人口增长等问题。
微积分知识点1

常量:y=c (无穷)
幂函数:(0到正无穷)
指数函数:
对数函数:
三角函数:
反三角函数:
21:初等函数:有基本初等函数经过有限次的四则运算和有限次的复合所构成,并可以一个式子表示的函数。
周期性
单调性:单调递增,单调递减
有界性:存在正数m,对于所有的(a,b)恒有f(x)的绝对值小于等于m,则称函数在内有界,否则无界。
注意:有界与讨论的区间有关
函数的界不唯一
函数有界是既有上界又有下界
17:闭区间上连续函数的性质:
狄利克雷函数: 1 x&有理数
D(x)={0 x&无理数
15:取整函数:x为任意实数,不超过x的最大整数成为x的整数部分记为[x],函数y=[x]即为取整函数.
16:函数的性质:
奇偶性:奇函数,偶函数(奇奇偶偶同性相加减仍为奇或偶,异性为非奇非偶,同性相乘为偶,异性相乘为奇)
数列有极限,称数列收敛,否则为发散;
极限不存在有两种无穷大和没有确定的趋向。
25:函数极限:对任意给定的正数e,总存在一个正整数N,当时n>N有y-A的绝对值<e恒成立,则称当n趋于无穷大时,函数是以常数A为极限。
26:函数在某点的极限:对任意给定的正数e,总存在一个正数n,使当0<x-m的绝对值<n时,f-A的绝对值<e恒成立,则称当x趋于m时,函数f以常数A为极限。
48:微分形式的不变性
49:偏增量,全增量,偏导数(其他的看成常量)
50:罗尔定理:连续可导且有两点相等,则至少有一点导数为0.
大学微分知识点总结

大学微分知识点总结一、导数与微分的概念1. 导数的定义函数y=f(x)在点x0处的导数,定义为:f'(x0) = lim Δx→0 (f(x0+Δx)-f(x0))/Δx如果这个极限存在,就称函数在点x0处可导,导数的值就是这个极限值。
2. 导数的几何意义函数y=f(x)在点x0处的导数f'(x0),表示函数在这一点的切线的斜率,也就是函数在这一点上的瞬时变化率。
3. 微分的定义函数y=f(x)在点x0处的微分,定义为:dy = f'(x0)dx这个式子表示函数在某一点上微小的变化量dy与自变量的微小变化量dx之间的关系。
4. 微分的几何意义函数y=f(x)在点x0处的微分dy,是函数在这一点处的切线上的微小变化量,它与自变量的微小变化量dx之间存在着近似的线性关系,这个关系即为切线的斜率。
二、导数与微分的运算法则1. 基本导数常数函数的导数为0,幂函数的导数为nx^(n-1),指数函数的导数为e^x,对数函数的导数为1/x,三角函数和反三角函数的导数等等都是微分学中比较基础的内容。
2. 导数的四则运算函数的和、差、积、商的导数与原函数的导数之间也有着一定的关系。
比如(f+g)' = f' + g',(f-g)' = f' - g', (fg)' = f'g + fg', (f/g)' = (f'g - fg')/g^2。
3. 链式法则如果函数y=u(x)和v(x)都可导,那么复合函数y=u(v(x))的导数可以用链式法则表示:dy/dx = dy/du * du/dx4. 隐函数的求导当一个函数y=f(x)在方程F(x,y)=0中不能显式表示y时,此时的求导需要用到隐函数的求导方法。
5. 参数方程的求导当函数y=f(x)由参数方程x=x(t),y=y(t)确定时,此时的求导需要用到参数方程的求导方法。
大一微积分复习总结

微积分期中复习第一章 函数与极限一、函数1、数轴、区间、领域2、函数的概念:设有两个变量x 和y ,如果当某非空集合D 内任取一个数值时, 变量y 按照一定的法则(对应规律)f ,都有唯一确定的值y 与之对应,则称y 是x 的函数。
记作()y f x =,其中变量x 称为自变量,它的取值范围D 称为函数的定义域;变量y 称为因变量,它的取值范围是函数的值域,记作()Z f ,即(){|(),}Z f y y f x x D ==∈。
函数的表示:函数的表示有三种。
公式法、表格法和图示法。
3、函数的几种特性函数的有界性、奇偶性、单调性和周期性。
4、初等函数(1) 基本初等函数① 幂函数:y x μ=(μ为任意实数), y kx b =+, 2y ax bx c =++ ② 指数函数:x y a =(0a >且1a ≠) ③ 对数函数:log a y x =(0a >且1a ≠)。
恒等式: log (0,1)a N a N a a =>≠ 换底公式: log log log c a c bb a=运算的性质:log log log a a a xy x y =+,log log log aa a yy x x=-。
④ 三角函数:sin ,cos ,tan ,cot ,sec ,csc y x y x y x y x y x y x ======。
⑤ 反三角函数:arcsin ,arccos ,arctan ,cot y x y x y x y arc x ====。
(2) 反函数: (3) 复合函数: 5、常见的经济函数(1) 成本函数、收益函数和利润函数01()()C x C C x =+, ()()R x p x x =⋅,()()()L x R x C x =-。
(2) 需求函数与供给函数 (),()d d s s Q f p Q f p ==二、极限的概念与性质1、数列的极限 (1) 数列(2) 数列极限的定义 (3) 数列极限的几何意义 2、函数的极限(1) 当自变量x →∞时函数()f x 的极限 (2) 当自变量0x x →时函数()f x 的极限 (3) 左右极限3、函数极限的主要性质极限的唯一性、局部有界性、局部保号性。
大一微积分知识点总结

大一微积分知识点总结微积分是高等数学的重要组成部分,对于大一的同学来说,是一门具有挑战性但又十分重要的课程。
以下是对大一微积分主要知识点的总结。
一、函数与极限函数是微积分的基础概念之一。
我们需要理解函数的定义、定义域、值域、单调性、奇偶性、周期性等性质。
比如,单调递增函数指的是当自变量增大时,函数值也随之增大;偶函数满足 f(x) = f(x) ,奇函数满足 f(x) = f(x) 。
极限是微积分中一个极其重要的概念。
极限的计算方法有很多,例如直接代入法、化简法、等价无穷小替换法、洛必达法则等。
等价无穷小在求极限时经常用到,比如当 x 趋近于 0 时,sin x 与 x 是等价无穷小。
洛必达法则则适用于“0/0”或“∞/∞”型的极限。
二、导数与微分导数反映了函数在某一点处的变化率。
对于常见的基本初等函数,如幂函数、指数函数、对数函数、三角函数等,要熟练掌握它们的求导公式。
导数的四则运算法则包括加法法则、减法法则、乘法法则和除法法则。
复合函数的求导法则是一个重点也是难点,需要通过链式法则来求解。
微分是函数增量的线性主部。
函数在某一点的微分等于函数在该点的导数乘以自变量的增量。
三、中值定理与导数的应用中值定理包括罗尔定理、拉格朗日中值定理和柯西中值定理。
这些定理在证明一些等式和不等式时非常有用。
利用导数可以研究函数的单调性、极值和最值。
当导数大于 0 时,函数单调递增;当导数小于 0 时,函数单调递减。
导数为 0 的点可能是极值点,但还需要通过二阶导数来判断是极大值还是极小值。
在实际问题中,经常需要通过求导数来找到最优解,比如求成本最小、利润最大等问题。
四、不定积分不定积分是求导的逆运算。
要熟练掌握基本积分公式,如幂函数的积分、指数函数的积分、三角函数的积分等。
积分的方法有换元积分法和分部积分法。
换元积分法包括第一类换元法(凑微分法)和第二类换元法。
分部积分法通常适用于被积函数是两个函数乘积的形式,比如 xe^x 。
大学微积分的知识点汇总

大学微积分的知识点汇总微积分是数学中的一门重要学科,也是大学数学课程中的一部分。
它主要包括微分学和积分学两个方面。
微分学研究函数的变化率和曲线的切线问题,而积分学研究函数与曲线的面积、体积以及累积等问题。
本文将从微分学和积分学两个方面对大学微积分的知识点进行汇总。
一、微分学1.函数的极限函数的极限是微积分的基本概念之一。
它描述了函数在某一点或正无穷、负无穷处的变化趋势。
例如,当自变量趋近于某一值时,函数的取值是否趋近于一个确定的值。
2.导数导数是函数在某一点的变化率。
它表示了函数在该点的切线的斜率。
导数可以用来解释函数的变化趋势,并且可以通过导数的性质求得函数的极值点和拐点等重要信息。
3.微分微分是导数的另一种形式。
它可以用来表示函数在某一点附近的变化情况。
微分可以用来近似计算函数的值,例如在物理学中的位移和速度之间的关系。
4.高阶导数高阶导数是导数的再次求导。
它描述了函数变化率的变化率。
高阶导数可以用来研究函数的凹凸性和函数曲线上的拐点。
二、积分学1.定积分定积分是对函数在一定区间上的面积进行求解。
它可以用来解决曲线下面积、体积、平均值等问题。
定积分可以通过定义求解,也可以通过积分的性质和定理进行计算。
2.不定积分不定积分是定积分的逆运算。
它可以用来求解函数的原函数。
不定积分可以通过积分表、基本积分公式和换元积分法等方法进行计算。
3.反常积分反常积分是对无界区间上的函数进行积分。
由于函数在无穷远处可能趋于无穷或趋于零,因此需要对反常积分进行特殊处理。
常见的反常积分有瑕积分和无穷积分。
4.积分应用积分的应用非常广泛。
它可以用来计算曲线的弧长、质心和转动惯量等物理量。
在经济学中,积分可以用来计算总收益、总成本和总利润等经济指标。
以上是大学微积分的知识点汇总。
微分学和积分学是微积分的两个重要方面,它们在数学和其他学科中有着广泛的应用。
掌握微积分的知识将有助于解决实际问题和深入理解数学的本质。
希望本文对你在学习微积分过程中有所帮助。
大学微积分总复习提纲

2
微积分(一) calculus
第二章 极限与连续
极限的描述性定义与左右极限
极限四则运算
未定式求极限(因式分解/有理化/同除最高次项)
求极限
夹逼定理 两个重要极限
无穷小量X有界函数(注意无穷小量性质)
等价代换(加减不能代换,乘除可以代换)
洛必达法则(注意运用条件,与上述方法结合)
必考:先分清极限类型,选择相应方法
微积分(一) calculus
第一章 函数
初等函数 分段函数
定义域、值域 奇偶性 周期性 有界性 反函数
选择题或填空题:与换元法结合考察上述知识点
1
微积分(一) calculus
第一章 函数
经济学函数
需求与供给函数 成本函数 收益函数 利润函数 库存函数
边际与弹性 最优化问题
应用题必考:与求导、求极值、最值知识点结合
5
微积分(一) calculus
第三章 导数与微分
导数的定义与左右导数 (求分段点导数,判断可导性与连续性,求极限)
必考:判断分段函数分段点可导性,与连续性、可微 结合考察;与求极限及无穷小量基本性质结合考察。
6
微积分(一) calculus
第三章 导数与微分
基本公式
求导数
四则运算 链式法则 反函数求导
9
微积分(一) calculus
第五章 多元函数微分学
ห้องสมุดไป่ตู้
求极限
极限定义与不同方向的极限 极限四则运算 未定式求极限(因式分解/有理化) 夹逼定理 无穷小量X有界函数(注意无穷小量性质) 等价代换(加减不能代换,乘除可以代换) 换元法后,使用洛必达法则
必考:先分清极限类型,选择相应方法
微积分大一重要知识点

微积分大一重要知识点微积分是数学的一门重要分支,深受大一学生的关注和学习。
在大一学习微积分时,有一些重要的知识点需要掌握。
本文将介绍微积分大一重要知识点,希望能帮助大家更好地理解和应用微积分。
1. 导数与函数导数是微积分中的重要概念之一,是描述函数变化率的工具。
在大一学习微积分时,我们需要掌握导数的定义和求导法则,包括常用函数(如多项式函数、指数函数、对数函数、三角函数等)的导数计算方法,以及导数的几何意义和应用(如切线、法线方程等)。
2. 不定积分与定积分不定积分是求解函数原函数的过程,也叫做不定积分。
定积分是函数在某一区间上的积分值,也叫做定积分。
在大一学习微积分时,我们需要学习不定积分的基本法则(如幂函数、三角函数、指数函数等的积分法则),以及定积分的计算方法(如换元积分法、分部积分法等),并理解积分的几何意义和应用。
3. 泰勒展开与级数泰勒展开是将函数表示为幂级数的形式,是微积分中的重要工具之一。
在大一学习微积分时,我们需要学习如何根据函数的某一点展开泰勒级数,并掌握泰勒级数在函数逼近和计算中的应用。
4. 极限与连续极限是微积分中的核心概念,是函数性质研究的基础。
在大一学习微积分时,我们需要理解极限的定义,掌握常用函数的极限计算方法,以及极限的性质和应用。
连续是极限的重要应用之一,我们需要学习函数连续的概念,了解连续函数的性质和判定方法。
5. 偏导数与多元函数偏导数是多元函数中的导数推广,用于描述函数关于某一变量的变化率。
在大一学习微积分时,我们需要学习多元函数的偏导数计算方法,包括一阶偏导数和高阶偏导数,并理解偏导数在函数的切平面方程和近似计算中的应用。
6. 曲线积分与曲面积分曲线积分用于计算曲线上的一些物理量,如质量、电荷等。
曲面积分用于计算曲面上的一些物理量,如流量、电通量等。
在大一学习微积分时,我们需要学习曲线积分和曲面积分的计算方法,包括第一类曲线积分和第二类曲线积分,以及曲面积分和高斯积分、斯托克斯积分等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学微积分l 知识点总结【第一部分】大学阶段准备知识 1、不等式:ab 2ba ≥+ab2b a 22≥+3abc 3c b a ≥++ ()n n21n 21...a a a n a ...a a ≥+++abc 3c b a 333≥++2b a 2b a ab b1a 1222+≤+≤≤+b a b a b -a +≤±≤()nn 21n 21n 21n x ...x x y p p x ...x x x ...x x y ⎪⎭⎫⎝⎛+++=+++•••=的最大值为:则为常数,且扩展:若有柯西不等式:设a 1、a 2、...a n ,b 1、b 2、...b n 均是实数,则有:()()()()()()()()()22221222212n n 2211......a a b a ...b a b a n n b b b a +++++≤+++()时取等号为常数,当且仅当,n ...3,2,1i b a i i ==λλ2、函数周期性和对称性的常用结论1、若f (x+a )=±f (x+b ),则f (x )具有周期性;若f (a+x )=±f (b-x ),则f (x )具有对称性。
口诀:“内同表示周期性,内反表示对称性” 2、周期性(1)若f (x+a )=f (b+x ),则T=|b-a| (2)若f (x+a )=-f (b+x ),则T=2|b-a|引申双向不等式: 两侧均在ab ≥0或ab ≤0时取等号(3)若f (x+a )=±1/f (x ),则T=2a(4)若f (x+a )=【1-f (x )】/【1+f (x )】,则T=2a (5)若f (x+a )=【1+f (x )】/【1-f (x )】,则T=4a 3、对称性(1)若f (a+x )=f (b-x ),则f (x )的对称轴为x=(a+b )/2(2)若f (a+x )=-f (b-x )+c ,则f (x )的图像关于((a+b )/2,c/2)对称 4、函数图象同时具备两种对称性,即两条对称轴,两个对称中心,一条对称轴和一个对称中心,则函数必定为周期函数,反之亦然。
(1)若f (x )的图像有两条对称轴x=a 和x=b ,则f (x )必定为周期函数,其中一个周期为2|b-a|。
(2)若f (x )的图像有两个对称中心(a ,0)和(b ,0),(a ≠b ),则f (x )必定为周期函数,其中一个周期为2|b-a|。
(3)若f (x )的图像有一个对称轴x=a 和一个对称中心(b ,0),(a ≠b ),则f (x )必定为周期函数,其中一个周期为4|b-a|。
3、三角函数l n sin =∂正弦 l m cos =∂余弦 m ntan =∂正切n m cot =∂余切 m l sec =∂正割 n lcsc =∂余割 倒数关系:∂=∂cot 1tan ∂=∂csc 1sin ∂=∂sec 1cosL mnα商的关系:∂∂=∂=∂∂csc sec tan cos sin ∂∂=∂=∂∂sec csc cot sin cos 平方关系:1cot 11tan 11cos sin 2222=∂+=∂+=∂+∂平常针对不同条件的两个常用公式:1cot tan 1cos sin 22=∂•∂=∂+∂一个特殊公式:()()()()θθθθ-sin sin sin -sin sin sin ∂+∂=∂+∂二倍角公式:A AA A A A A AA A 2222tan -1tan 22tan sin 2-1sin -cos 2cos cos sin 22sin ===•=半角公式:()()sina cosa 1cosa -1sina 2a cot sina cosa -1cosa 1sina 2a tan cosa 1212a cos cosa -1212a sin 22+==⎪⎭⎫⎝⎛=+=⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛ 三倍角公式:⎪⎭⎫⎝⎛•⎪⎭⎫ ⎝⎛+•=⎪⎭⎫⎝⎛•⎪⎭⎫ ⎝⎛+•=⎪⎭⎫⎝⎛•⎪⎭⎫ ⎝⎛+•=a -3tan a 3tan tana a 3tan a -3cos a 3cos cosa 4a 3cos a -3sin a 3sin sina 4a 3sin ππππππ 万能公式:⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=2a tan -12a tan 2tana 2a tan 12a tan -1cosa 2a tan 12a tan 2sina 2222两角和公式:()()()()()()ββββββββββββββββββtan tan 1tan -tan -tan tan tan -1tan tan tan sin sin cos cos -cos sin sin -cos cos cos sin cos -cos sin -sin sin cos cos sin sin •∂+∂=∂•∂+∂=+∂•∂+•∂=∂•∂•∂=+∂•∂•∂=∂•∂+•∂=+∂ 和差化积公式:()()⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=+21-cos 21sin 2sin sin ϕθϕθϕθ ()()⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=21-sin 21cos 2sin -sin ϕθϕθϕθ()()⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=+21-cos 21cos 2cos cos ϕθϕθϕθ ()()()⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=21-sin 21sin 2-cos -cos ϕθϕθϕθ ()()B A B A B A B A B A tan tan 1tan cos cos sin tan tan •-+=•+=+ ()()tanB tanA 1B -A tan cos cosA -sin tan -tan •+=•=B B A B A积化和差公式:()()[]()()[]()()[]21-sin sin cos sin 21-cos cos cos cos 21-cos -cos -sin sin βαβαβαβαβαβαβαβαβα++=•++=•+=• 口诀:奇变偶不变,符号看象限()()原式得证,,由题,证:设,其中证明:222222b a x x b cos x a sin 1x b x a sin x b cos x a x bsin acos sin x bsin acos batan sin b a bsin acoa +=∴===⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛+=+∴+•=+=++=+M M A A A A M A A A M M A A A4、数学归纳法数学上证明与自然数N 有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。
例如:前n 个奇数的总和是n 2,那么前n 个偶数的总和是:n 2+n最简单和最常见的数学归纳法证明方法是证明当n 属于所有正整数时一个表达式成立,这种方法由下面两步组成:①递推的基础:证明当n=1时表达式成立②递推的依据:证明如果当n=m时成立,那么当n=m+1时同样成立(1)第一数学归纳法①证明当n取第一个值n0时命题成立,n0对于一般数列取值为0或1,但也有特殊情况②假设n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立(2)第二数学归纳法对于某个与自然数有关的命题P(n)①验证n=n0时P(n)成立②假设n0≤n<k时P(n)成立,并在此基础上,推出P(k+1)成立(3)倒推归纳法①验证对于无穷多个自然数n命题P(n)成立②假设P(k+1)成立,并在此基础上,推出P(n)成立(4)螺旋式归纳法对两个与自然数有关的命题①验证n=n0时P(n)成立②假设P(k)(k>n0)成立,能推出Q(k)成立,假设Q(k)成立,能推出P(k)成立。
5、初等函数的含义概念:初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算以及有限次数函数复合所产生,并且能用一个解析式表示的函数。
【有理运算:加、减、乘、除、有理数次乘方、有理数次开方】【基本初等函数:对数函数、指数函数、幂函数、三角函数、反三角函数】6、二项式定理:即二项展开式,即(a+b )n 的展开式()nn n k k -n k n 1-n 1n n 0n n b ...b a ...b a a C b a C C C ++•++•+=+称为二次项系数其中kn C表示项,用项,它是第叫做二次项展开式的通1k k k -n kn 1k b a ++•T C()()[]()k 1k -n k 1-k 1-k -n ...1-n n 1-k n kn +•=•••=C C !其中,7、高等数学中代换法运用技巧①倒代换把原式中的一个变元或原式中的一部分用另一个变元的倒数来代替,此种方法被称为“倒代换”法 ②增量代换若题目中已知x >m ,则引入辅助元x=m+a (a >0),再将辅助元代入题中解题。
此种代换方法称为“增量代换法” ③三角代换222222a x x a a x +--、、④双代换n nn yx ∞→lim8、其他一些知识点(1)0不是正数,不是负数。
是自然数。
0是偶数,偶数分为:正偶数、负偶数:引入两个辅助元进行代换和0(2)正偶数称为“双数” (3)正常数:常数中的正数(4)质数:又称“素数”。
一个大于1的自然数,如果除了1和它自身以外,不能被其他自然数整除的数,否则称为“合数”。
最小的质(素)数是2。
1既不是素数,也不是合数。
(5)exp :高等数学中,以自然对数e 为底的指数函数 (6)在数学符号中,sup 表示上界;inf 表示下界 (7)≡:表示恒等于(8)0的阶乘是1.阶乘是一个递推定义,递推公式为:n !=n (n-1)!因为1的阶乘为1,即1!=1×0!,故0!=1【第二部分】函数与极限常用结论(等价无穷小很重要)()nx1x 1n +≥+()x n 11x 1n1+≤+x1e x +≥()时成立<1x x 1e x -11x +≥≥ ()x ln x 1xx 1≤≤++e n 11n <⎪⎭⎫ ⎝⎛+ e 1n 1-1n<⎪⎭⎫ ⎝⎛其中,en 11n→⎪⎭⎫⎝⎛+,e 为初等函数,又称“幂指函数”,e 即根据此公式得到,e ≈2.7181n 1-1n2→⎪⎭⎫⎝⎛ ()()61n 21n n n ...21222++=+++()233321n n n ...21⎥⎦⎤⎢⎣⎡+=+++ ()1-a a-a s a ...a a s 1n n 2+=+++=()()()()()1-n 2-n 1-n n n b ...b a a b -a b -a +++=1-m 2-m 1-m m1m 1b ...b a a b-a b-a ++•+=()()()()()bx v x x x x x x a x u lim b a b x v lim 0a x u lim 0===→→→,则为常数、,>若()[]()e xf 1x f 1→+一些重要数列的极限:()x ln x 1→+ x 1-e x → xlna 1-a x →()x 1-x 1∂→+∂x arcsinx → x arctanx →另一些重要的数列极限:()0k 0n 1limk n >=∞→ ()为常数<1q 0q lim nn =∞→ ()1a 1a lim n n >=∞→ ()为常数!a 0n a lim nn =∞→ 1n lim n n =∞→ x sinx 0x →→时, x tanx → 2x 21cosx -1→列举一些趋向于0的函数:()0lnn 10n a 1a 0c -n b0b 0a 0q 1q b nan →→→→④,>③,>,>②,<①柯西极限存在准则:柯西极限存在准则又叫柯西收敛原理。