晶闸管模拟移相触发配套芯片KC41KC42(补发、脉冲串(精)
锯齿波同步移相触发电路实验

锯齿波同步移相触发电路实验一、实验实训目的1.加深理解锯齿波同步移相触发电路的工作原理和各元件的作用。
2.掌握锯齿波同步移相触发电路的调试步骤和方法。
二、实验实训设备DJK01电源控制屏 1块DJK03 晶闸管触发电路 1块双踪示波器 1台万用表 1块三、实验实训线路及原理实验原理如图5-56所示。
其原理参看教材相关的内容。
图5-56 锯齿波同步移相触发电路原理图四、实验实训内容及步骤1.按图接好线后,接通电源,用示波器观察各观察孔的电压波形,并与理论波形比较。
1)同时观察1、2孔的电压波形,了解锯齿波宽度和1孔电压波形的关系。
2)观察3~5孔电压波形和输出电压U g的波形,记下各波形的幅值与宽度,并比较3孔电压U3与5孔电压U5的对应关系。
2.调节触发脉冲的移相范围。
将控制电压U ct调至零(调电位器RP1 ),用示波器观察1孔电压U1和U5的波形,调节偏移电压U b(即调节RP2)使α=180º,其波形如图5-57 所示。
3.调节U ct(调节RP1),使α=60º,观察并记录面板上观察孔1~5及输出脉冲电压波形,标出其副值与宽度并记录在表5-2中(可在示波器上直接读出,读数时应将示波器的“V/cm”和“t/cm”的旋钮放置在校准位置,以防读数误差)。
表5-2U1U2U3U4U5U g 幅值(V)宽度(ms)图5-57 锯齿波同步触发电路移相范围五、实验实训注意事项1.观察输出脉冲电压U g时,应将输出端G、K分别接到晶闸管的门极和阴极,否则,无法观察到U g波形。
2.第3点没有波形时,请调节RP2、RP3。
六、实验实训报告1.画出α=60º时,观察孔1~5及输出脉冲电压波形。
2.指出U ct增加时,α应如何变化?移相范围大约等于多少度?指出同步电压的哪一段为脉冲移相范围。
3.分析RP3对输出脉冲宽度的影响。
4.写出本次实验实训的心得与体会。
实验实训二锯齿波同步移相触发电路实训(实验实训一、实验实训二选做一个)一、实训目的1.加深理解锯齿波同步移相触发电路的工作原理和各元件的作用。
同步电机励磁电源电路

任务一 三相集成触发电路调试
与TCA785及KJ(或KC)系列集成电路相比,具有功耗小、功能强、 输入阻抗高、抗干扰性能好、移相范围宽、外接元件少等优点,而 且装调简便、使用可靠,只需一块集成电路,就可完成3只TCA785 与1只KJ041、1只KJ042或5只KJ(3只KJ004、1只KJ041、1只 KJ042)(或KC)系列器件组合才能具有的三相移相功能。因此, TC787/TC788可广泛应用于三相半控、三相全控、三相过零等电力 电子、机电一体化产品的移相触发系统,从而取代TCA785、KJ004、 KJ009、KJ041、KJ042等同类电路,为提高整机寿命、缩小体积、 降低成本提供了一种新的、更加有效的途径。
任务一 三相集成触发电路调试
了解KC04、KC41C组成的三相集成触发电路的工作 原理。 掌握集成触发电路的接线和调试方法。 熟悉集成触发电路各点的波形。 会根据电路要求选择合适的触发电路,初步具备成本 核算意识。 在项目实施过程中,培养团队合作精神、强化安全意 识和职业行为规范。
任务一 三相集成触发电路调试
任务一 三相集成触发电路调试
(2)脉冲输出端。在半控单脉冲工作模式下,引脚8 (C)、引脚10(B)、引脚12(A)分别为与三相同步 电压正半周对应的同相触发脉冲输出端,而引脚7(-B)、 引脚9(-A)、引脚11(-C)分别为与三相同步电压负半 周对应的反相触发脉冲输出端。当TC787或TC788被设置 为全控双窄脉冲工作方式时,引脚8为与三相同步电压中 C相正半周及B相负半周对应的两个脉冲输出端;引脚12 为与三相同步电压中A相正半周及C相负半周对应的两个 脉冲输出端;
任务一 三相集成触发电路调试
引脚11为与三相同步电压中C相负半周及B相正半周对 应的两个脉冲输出端;引脚9为与三相同步电压中A相 同步电压负半周及C相电压正半周对应的两个脉冲输出 端;引脚7为与三相同步电压中B相电压负半周及A相电 压正半周对应的两个脉冲输出端;引脚10为与三相同 步电压中B相正半周及A相负半周对应的两个脉冲输出 端。应用中,均接脉冲功率放大环节的输入或脉冲变 压器所驱动开关管的控制极。
优秀的国产集成触发器KC04

国产集成触发器KC04的原理与应用国产集成触发器KC04是KC系列触发器中的一个典型代表,适用单相、三相供电装置中作晶闸管双路脉冲移相触发,其两路相位间隔180º的移相脉冲可方便的构成半控、全控桥式触发线路。
该集成电路具有负载能力大、移相性能好、正负半周脉冲相位值均衡性好、移相范围宽、对同步电压要求不严、有脉冲列调制输入及脉冲封锁控制等优点,在实际线路中有着十分广泛的应用。
一、工作原理KC04的内电路见图1,与分立器件的锯齿波移相电路相似,由同步、锯齿波形产生、移相控制、脉冲形成、功率放大等部分组成。
图中VT1~VT3等组成同步检测电路,VT5与外接电容C2构成自举式(密勒)积分器为锯齿波产生电路。
同步正弦电压U T由⑧脚引入,在U T的正负半周内VT 1和VT 2、VT 3交替导通,使VT 1、VT 3的集电极在对应的半周内输出低电位使VT 4截止,电源经电阻R 6、R 14为外接电容C 2充电,形成线性增大的锯齿波电压。
在U T 电压的过零点绝对值小于0.7V 范围内,VT 1~VT 3均截止导至VT 4饱和,C 2迅速放电,使每半周期的锯齿波电压起点一致。
VT 6及外接元件组成脉冲移相环节,⑨脚输入的移相控制电压U K 、偏移电压U P 和C 2上的锯齿波电压并联迭加,当VT 6的基极电压达到0.7时,VT 6导通其集电极输出低电平,经○11、○12脚外接电容C 1微分耦合到VT 7的基极使其由饱和转为截止,一个电源周期内,在VT 7的集电极得到间隔180º的两组由R 12、C 1时间常数决定其宽度的高电平脉冲,经VT 8、VT 12分别封锁其正负半周,由两组功率放大级VT 9~VT 11和VT 13~VT 15分别放大后从①、○15输出。
○13、○14脚为脉冲列调制和脉冲封锁控制端用于三相控制。
KC04的主要技术参数如下:⏹电源电压 ±15V (±5%) ⏹电源电流 正电流≤15mA 负电流≤8mA ⏹同步电压 任意值(一般交流30V ) ⏹同步输入端允许最大同步电流 6mA ⏹移相范围 ≥170º(同步30V ,输入电阻15K Ω) ⏹锯齿波幅度 ≥10V ⏹输出脉宽度 400μs ~2 ms ⏹输出脉冲幅度 ≥13V ⏹最大输出能力 100mA(输出脉冲电流) ⏹输出管反压 ≥18V (Ie=100μA ) ⏹正负半周脉冲相位不均衡度 ≤±3º ⏹使用环境温度 -10~+70℃ ⏹ 封装方式 16脚陶瓷双列直插式二、KC04的典型应用KC04触发器特别适合单相电路,用于三相电路时需用三片进行组合,电路相对复杂不如其它专用的三相集成触发器方便。
(整理)电力电子实验指导书完全版

电力电子技术实验指导书目录实验一单相半波可控整流电路实验 (1)实验二三相桥式全控整流电路实验 (4)实验三单相交流调压电路实验 (7)实验四三相交流调压电路实验 (9)实验装置及控制组件介绍 (11)实验一单相半波可控整流电路实验一、实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用;2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析;3.了解续流二极管的作用;二、实验线路及原理熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。
将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。
图1-1 单结晶体管触发的单相半波可控整流电路三、实验内容1.单结晶体管触发电路的调试;2.单结晶体管触发电路各点电压波形的观察;=f(α)特性的测定;3.单相半波整流电路带电阻性负载时Ud/U24.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;四、实验设备1.电力电子实验台2.RTDL09实验箱3.RTDL08实验箱4.RTDL11实验箱5.RTDJ37实验箱6.示波器;7.万用表;五、预习要求1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱;2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,电路各部分的电压和电流波形;3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。
六、思考题1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决?七、实验方法1.单相半波可控整流电路接纯阻性负载调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形U VT,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、U VT,记录于下表1-1中。
波形,并测定直流输出电压Ud和电源电压U22.单结晶体管触发电路的调试RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。
电力电子技术实验报告 (2)

电力电子技术实验报告学院:专业:班级:姓名:实验一锯齿波同步移相触发电路实验一、实验目的(1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。
(2)掌握锯齿波同步移相触发电路的调试方法。
二、实验所需挂件及附件三、实验线路及原理锯齿波同步移相触发电路的原理图见DJK03-1挂件介绍中锯齿波同步移相触发电路原理图。
锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见DJK03-1挂件介绍部分和电力电子技术教材中的相关内容。
四、实验内容(1)锯齿波同步移相触发电路的调试。
(2)锯齿波同步移相触发电路各点波形的观察和分析。
五、实验方法(1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V±10%,而“交流调速”侧输出的线电压为240V。
如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。
在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。
①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。
②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。
③调节电位器RP1,观测“2”点锯齿波斜率的变化。
④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。
(2)调节触发脉冲的移相范围将控制电压Uct调至零(将电位器RP2顺时针旋到底),用示波器观察同步电压信号和“6”点U6的波形,调节偏移电压Ub(即调RP3电位器),使α=170°,其波形如下图所示。
三相桥式半控整流电路

绪论整流电路技术在工业生产上应用极广。
如调压调速直流电源、电解及电镀的直流电源等。
整流电路就是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。
整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。
把交流电变换成大小可调的单一方向直流电的过程称为可控整流。
整流器的输入端一般接在交流电网上。
为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压U2。
由晶闸管等组成的全控整流主电路,其输出端的负载,我们研究是电阻性负载、电阻电感负载(如直流电动机的励磁绕组,滑差电动机的电枢线圈等)。
以上负载往往要求整流能输出在一定范围内变化的直流电压。
为此,只要改变触发电路所提供的触发脉冲送出的早晚,就能改变晶闸管在交流电压U2一周期内导通的时间,这样负载上直流平均值就可以得到控制。
目录绪论第一章设计任务书1.1设计任务内容 (3)1.2设计任务要求 (3)第二章方案选择2.1 整流电路的选择 (4)2.2触发电路的选择 (4)2.3保护电路的选择 (5)2.4选择合适电路 (6)第三章主电路的设计3.1主电路工作原理 (6)3.2电路原理图 (8)3.3参数计算 (8)第四章触发电路4.1触发电路原理图 (10)4.2触发电路的设计 (10)4.3触发电路与主电路同步 (11)4.4电路保护设计 (12)第五章总电路图设计 (15)第六章课程设计小结 (17)第七章参考文献 (18)第一章设计任务1.1设计任务内容在本次课程设计当中我们以三相桥式半控整流电路--------电感性负载作为研究对象。
三相半波整流

电力电子课程设计说明书三相半波整流电路的设计系、部:电气与信息工程系学生姓名:曹海滔指导教师:王翠职称博士专业:自动化班级:自本0802完成时间:6月2日摘要三相整流电路是交流测由三相电源供电,负载容量较大,或要求直流电压脉动较小,容易滤波。
三相可控整流电路有三相半波可控整流电路,三相半控桥式整流电路,三相全控桥式整流电路。
因为三相整流装置三相是平衡的,输出的直流电压和电流脉动小,对电网影响小,且控制滞后时间短。
半波整流电路是一种最简单的整流电路。
它由电源变压器B 、整流二极管D和负载电阻Rfz ,组成。
变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。
本次课程设计主要研究三相半波整流电路在电阻性负载和阻-感性负载下的工作情况。
关键词:三相半波整流电路;电阻性负载;阻-感性负载目录第1章设计任务、指标内容 (4)1.1 设计任务 (4)1.2 指标内容 (4)第2章设计方案 (5)2.1 设计框图 (5)2.2 设计电路原理图 (5)第3章主电路设计及原理分析 (7)3.1 主电路设计 (7)3.2 主电路原理分析 (7)第4章触发电路设计 (11)第5章主要参数计算 (13)5.1 输出值的计算 (13)5.2 变压器参数 (13)5.3 晶闸管参数 (13)5.4 变压器容量 (14)5.5 晶闸管额定电压 (14)5.6 晶闸管额定电流 (14)第6章计算机仿真 (15)6.1 设计仿真电路 (15)6.2 仿真结果 (16)参考文献致谢附录1设计任务、指标内容1.1 设计任务(1)电源变压器设计,计算变压器容量、二次侧电压有效值;(2)晶闸管选择,计算晶闸管额定电压、额定电流;(3)主电路图设计。
1.2 指标内容(1)电网:三相交流380V,50Hz;(2)用集成电路组成触发电路;(3)负载性质:电阻、电阻电感;(4)对电路进行设计、计算与说明;(5)计算所用元器件型号参数。
KC系列集成块

KC05、KC06 KC04 KC11 KC785 KC08 KC09 KC41 KC422007-11-22 14:57:06| 分类:电子资料| 标签:|字号大中小订阅KC05、06可控硅移相触发器KC41 辅助电路;为六路双脉冲形成器及脉冲列调制形成器KC42 辅助电路;为六路双脉冲形成器及脉冲列调制形成器KC08 过零型触发器;并具有自生直流电源KC09 应用于单相、三相全控桥式供电装置中作双路脉冲移相触发,二路相位差180度的移相脉冲可以方便地构成全控桥式触发线路。
KC785可以与西德TCA785直接互换KC05 应用于双向或二只反向并联可控硅线路的交流相位控制;半控或全控桥式线路的相位控制。
KC06具有自生直流电源KC06 应用于双向或二只反向并联可控硅线路的交流相位控制;半控或全控桥式线路的相位控制。
KC06具有自生直流电源KC11 应用于单路半控脉冲移相触发;应用于单相、三相半控桥式供电装置KC04 应用于单相、三相全控桥式供电装置中作双路脉冲移相触发,二路相位差180度的移相脉冲可以方便地构成全控桥式触发线路。
KC785可以与西德TCA785直接互换KC785 应用于单相、三相全控桥式供电装置中作双路脉冲移相触发,二路相位差180度的移相脉冲可以方便地构成全控桥式触发线路。
KC785可以与西德TCA785直接互换KC05:适用于双向可控硅或二只反向并联可控硅线路的交流相位控制;移相范围宽,控制方式简单,易于集中控制,有失交保护,输出电流大等优点。
是交流调光、调压的理想电路。
KC05电路应用实例主要技术数据:1、电源电压:直流+15V 波动±5%(±10%时有功能)2、电源电流:≤12mA3、同步电压:≥10V(有效值)4、移相范围:≥170°5、移相输入端偏置电流:≤10μA6、输出脉冲宽度:100µS——2mS(改变脉宽电容)7、输出脉冲幅度:≥13V(1KΩ负载)8、最大输出能力:200mA(吸入脉冲电流)9、输出管反压:BVceo ≥18V10、正负半周脉冲相位不均衡度:≤±3°11、使用环境温度:-10℃——+70℃KC06:适用于双向可控硅或二只反向并联可控硅线路的交流相位控制;移相范围宽,控制方式简单,易于集中控制,有失交保护,输出电流大等优点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
KC41六路双脉冲形成器
一、功能与特点
KC41六路双脉冲形成器是三相全控桥式触发线路中必备的电路, 具有双脉冲形成和电子开关控制封锁双脉冲形成二种功能。
使用 2块有电子开关控制的
KC41电路能组成逻辑控制适用于正反组可逆系统。
二、概述
KC41电路是脉冲逻辑电路。
当把移相触发器的触发胲冲输入到 KC41电路的1~6端时,由输入二极管完成了补脉冲, 再由 T 1~T6电流放大分六路输出。
补脉冲按+A→ -C , -C → +B, +B→ -A , -A → +C,
+C→ -B , -B → +A顺序排列组合。
T 7是电子开关,当控制 7#端接逻辑“ 0”电平时 T 7截止,各路有
输出触发脉冲。
当控制 7#端接逻辑“ 1”电平(+15V时, T 7导通 ,各种无输出触发脉冲。
KC41
内部原理图见图 (1。
KC41应用实例见图 (2,各点波形分别见图 (3。
图中输出端如果接 3DK4作功率放大可得到 800mA 的触发脉冲电流。
使用 2块KC41电路相应的输入端并联 ,二个控制端分别作为正反组控制输入端,输出接12个功率放大管。
这样就可组成一个 12脉冲正反组控制可逆系统,控制端逻辑“ 0”电平有效。
图 (1 KC41电路内部原理图
三、主要技术数据
1、电源电压:直流 +15V, 允许波动±5%(±10%时功能正常
2、电源电流:≤ 20mA
3、输出脉冲 :
3. 1.最大输出能力:20mA (流出脉冲电流
3. 2.幅度:≥ 13V
4、输入端二极管反压:≥ 18V
5、控制端正向电流:≤ 8mA
6、封装:KC41电路采用 16脚陶瓷双列直插式封装
7.允许使用环境温度:-10℃— +70
℃
图 (4 外接线路接线
图
图 (2 KC41电路应用实例图 (3 KC41电路各点波形KC42脉冲列调制形成器
一、功能与特点
KC42脉冲列调制形成器主要适用于作可控硅三相桥式全控整流电路的脉冲列调制源。
同样也适用于三相半控, 单相全控, 单相半控线路中作脉冲列调制源。
电路具有脉冲占空比可调性好 , 频率调节范围宽 ,触发脉冲上升沿可与调制信号同步等优点。
KC42电路也可作为可控制的方波发生器用于其它的电子线路中。
二、概述
KC42电路内部原理图见图 (1, 应用实例图见图 (2。
以三相全控桥式电路为例 , 来自三块触发器(KC04或 KC09 13#端的触发脉冲信号分别送入 KC42电路的 2#, 4#, 12#端,由 T 1、 T 2、 T 3进行节点逻辑或组合。
T 5、 T 6、 T 8组成一个环形振荡器,由 T 4的集电极输出来控制环形振荡器的起
振和停振 ,当没有输入脉冲时, T 4导通振荡器停振。
反之 T 4截止振荡器起振。
T 6集电极输出是一
系列与来自三相六个触发脉冲的前沿同步间隙 60°的脉冲。
经 T 7倒相放大分别输入三块触发器
(KC04或 KC09 的 14#端。
此时从 KC04或 KC09电路的 1#和 15#端输出是调制后的脉冲列触发脉冲。
调制脉冲的频率由外接电容 C 2和 R 1、 R 2决定见下式
:
式中 f —频率 , T 1、 T 2—导通半周和截止半周的时间
改变 R 1、 R 2的比例可以得到满意的调制脉冲占空比。
各点波形见图 (3。
如将 KC42电路用于单
相整流电路中则 2#、 4#、 12#三个输入端只需用一个 , 其它二个接低电位 (0V。
图 (1 KC42电路内部原理图
三、主要技术数据
1、电源电压:直流 +15V, 允许波动±5%(±10%时功能正常
2、电源电流:≤ 20mA
3、输入端二极管反压:≥ 18V
4、输入端正向电流:≤ 2mA
5、输出脉冲 :
5. 1幅度≥ 13V
5. 2最大输出能力:≤ 12mA
6、调制脉冲频率:5— 10KH
Z
(通过调节外接 RC 达到
7、封装:KC42电路采用 14脚陶瓷双列直插式封装
8、允许使用环境温度:-10℃— +70
℃
图 (2 KC42电路应用实例图 (3 KC42电路各点波形。