经典行程问题的应用题(含详细参考答案)

合集下载

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)我们在研究一般行程问题时,都不考虑运动物体的长度,但是当研究火车过桥过隧道问题时,有一火车的长度太长,所以不能忽略不计。

火车过桥问题主要有以下几个类型:1、最简单的过桥问题,火车过桥。

例:一列长120米的火车,通过长400米的桥,火车的速度是10米/秒,求火车通过桥需多长时间?解题思路:火车行的路程是一个车长+桥长,然后利用公式时间=路程÷速度即可求出通过桥的时间。

答案:(120+400)÷10=52(秒)答:火车通过桥需要52秒。

2、两列火车错车问题。

例(1):两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,当两车错车时,甲车一乘客,看到乙车火车头从她的窗前经过,到乙车车尾离开他的窗户,共用时8秒,求乙车的长度。

解题思路:这类问题类似于相遇问题,路程是乙车车长,然后利用公式路程=速度和x时间算出乙车车长。

答案:(20+25)x8=360(米)答:乙车长360米。

例(2):两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从两车车头到两车车尾离开,需要多少时间?解题思路:这类问题类似于相遇问题,路程是两车车长,然后利用公式时间=路程÷速度和算出错时间。

答案:(200+250)÷(25+20)=10(秒)答:需要10秒。

3、两列火车超车问题。

例:两列火车同向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从乙车车头追上甲车车尾到乙车车尾离开甲车头需多少时间?解题思路;此类问题相当于追及问题。

追及路程是两车的车长和,然后利用追及问题公式追及时间=追及路程÷速度差求出时间。

答案: (250+200)十(25-20)=90(秒)答:需要90秒。

小学奥数行程问题应用题100题及答案

小学奥数行程问题应用题100题及答案

小学奥数行程问题应用题100题及答案(1) 亮亮从家到学校需要走960米,他平时早晨7:00出发去上学,每分钟走40米,可以准时到校,亮亮今天起床晚了,他7:08才出发,为了准时到校,他每分钟需要走多少米?(2) 丹丹从家去学校,每分钟走60米,走了10分钟到达学校,问丹丹家到学校的距离有多远?(3) 王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了19,结果提前一个半小时到达;返回时,按原计划的速度行驶 280 千米后,将车速提高16,于是提前1 小时 40 分到达北京.北京、上海两市间的路程是多少千米? (4) 有一个圆形人工湖的周长是450米,小胖在雷雷前面50米处,两人同时沿顺时针方向跑。

已知小胖速度为200米/分,雷雷速度为150米/分,问:几分钟后小胖追上雷雷?(5) 甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东西两村相距多少千米?(6) 田田和牛牛两人分别从甲、乙两地同时出发,如果两个人同向而行,田田26分钟可以赶上牛牛;如果两个人相向而行的话,6分钟就可以相遇。

已知牛牛每分钟走50米,求甲、乙两地之间的路程。

(7)上学路上当当发现田田在他前面,于是就开始追田田。

当当每分钟走70米,田田每分钟走45米,当当一共经过了30分钟才追上田田,请问:两人开始相距多远?(8)飞飞和薇薇在操场上比赛跑步,飞飞每分钟跑60米,薇薇每分钟跑40米,一圈跑道长400米,他们同时从起跑点背向出发,那么第一次相遇需要多少分钟?第二次相遇需要多少分钟?第三次相遇需要多少分钟?有什么规律呢?(9)小明在420米长的环形跑道上跑了一圈,前一半时间的速度为8米/秒,后一半时间的速度为6米/秒。

问:他后一半路程用了多少时间?(10)六年级同学从学校出发到公园春游,每分钟走72米。

15分钟以后,学校有急事要通知学生,派乐乐骑自行车从学校出发用9分钟追上同学们,乐乐每分钟要行多少米才可以准时追上同学们?(11)甲、乙两人在周长为400米的环形跑道上同时同地同向而行,甲每分钟走60米,乙每分钟走40米,甲每追上乙一次,两人就会击一次掌,当两人击了第3次掌时,甲掉头往回走,每相遇一次仍击一次掌,两人又击了5次掌,此时甲走了多少米?乙走了多少米?(12)有一个周长为100米的圆形花圃,小张和小王同时从边上同一点出发,沿着同一方向跑步,已知小张的速度是5米/秒,小王的速度是3米/秒,小张跑多少圈后才能第一次追上小王?(13)小王和小李两人分别从甲、乙两地同时出发同向而行,小李在前,小王在后面。

行程问题应用题大全

行程问题应用题大全

行程问题应用题大全1. 题目:火车行程假设小明乘坐火车旅行,从A地出发到B地,全程需要3小时。

在途中,火车经过C地,小明在C地停留了20分钟。

请问小明在C地停留的时刻是多少?解析:假设小明在A地出发的时刻为t0,则到达B地的时刻是t0+3小时。

因此,在途中经过C地的时刻是(t0+3小时)/2,再加上停留的20分钟,则小明在C地停留的时刻为(t0+3小时)/2 + 20分钟。

2. 题目:飞机行程小红乘坐飞机旅行,从A地飞往B地,全程需要5小时。

飞机在途中经过C地,小红在C地停留了1小时20分钟,然后继续飞往B地。

请问小红在B地的时刻是多少?解析:假设小红在A地起飞的时刻为t0,则到达C地的时刻是t0+5小时。

在C地停留1小时20分钟后,小红再次起飞,需要飞行的时间是5小时。

因此,小红在B地的时刻是(t0+5小时)+1小时20分钟+5小时。

3. 题目:汽车行程假设小李乘坐汽车旅行,从A地出发到B地,全程需要6小时。

汽车在途中经过C地,小李在C地停留了45分钟。

请问小李在A地出发的时刻是多少?解析:假设小李在A地出发的时刻为t0,则到达C地的时刻是t0+6小时。

因此,小李在C地停留的时刻是(t0+6小时)+45分钟。

根据题目要求,我们需要求得小李在A地出发的时刻,即t0。

可以通过逆推的方法得到t0,即t0 = (t0+6小时)+45分钟-6小时。

4. 题目:步行行程小张步行旅行,从A地出发到B地,全程需要2小时。

在途中,小张在C地停留了30分钟。

请问小张在C地停留的时刻是多少?解析:假设小张在A地出发的时刻为t0,则到达B地的时刻是t0+2小时。

因此,在途中经过C地的时刻是(t0+2小时)/2,再加上停留的30分钟,则小张在C地停留的时刻为(t0+2小时)/2 + 30分钟。

5. 题目:骑行行程假设小王骑自行车旅行,从A地出发到B地,全程需要1小时30分钟。

自行车在途中经过C地,小王在C地停留了15分钟。

四年级的行程问题应用题

四年级的行程问题应用题

小学四年级应用题练习题(附答案版)
1.小明骑自行车去公园,他以每小时10公里的速度骑行了2小时。

请问小明骑了多少公里?(答案:20公里)
2.小华步行去书店,她走了30分钟,速度是每小时4公里。

书店离家有多远?(答案:2公里)
3.一辆公交车从A地开往B地,全程150公里。

如果公交车的速度是每小时50公里,它需要多久才能到达B地?(答案:3小时)
4.小丽和她的家人开车去海边度假。

如果他们开车的速度是每小时60公里,而海边距离他们家200公里,他们需要多长时间才能到达?(答案:3小时20分钟)
5.一列火车以每小时80公里的速度行驶,它在4小时内能行驶多远?(答案:320公里)
6.小刚用滑板从家滑到学校,全程1.5公里,他用了15分钟。

他的平均速度是多少?(答案:每小时6公里)
7.一辆卡车以每小时90公里的速度行驶,它在半小时内能行驶多远?(答案:45公里)
8.小杰从家里骑自行车去图书馆,去程他以每小时12公里的速度骑了45分钟,回程他以每小时15公里的速度骑了30分钟。

图书馆离家多远?答案:(9公里)
9.一个邮递员以每小时5公里的速度步行分发邮件,他连续工作了4小时。

他总共走了多少公里?(答案:20公里)
10.小芳乘坐地铁去参加音乐会,地铁的速度是每小时40公里,她乘坐了45分钟。

音乐会的地点离她家有多远?(答案:30公里)。

行程问题应用题50道配套习题及详解

行程问题应用题50道配套习题及详解

50道行程配套习题及详解1.甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷()=36分钟,所以路程=36×(60+75)=4860米。

3.A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。

初中数学行程问题类题目及答案(完美版)

初中数学行程问题类题目及答案(完美版)

行程问题归纳1 •小刚从家出发匀速步行去学校上学.几分钟后发现忘带数学作业,于是掉头原速返回并立即打电话给爸爸,挂断电话后爸爸立即匀速跑步去追小刚,同时小刚以原速的两倍匀速跑步回家,爸爸追上小刚后以原速的丄倍原路步行回家.由于时间关系小明拿到作业后同样以之2前跑步的速度赶往学校,并在从家岀发后23分钟到校(小刚被爸爸追上时交流时间忽略不计)・两人之间相距的路程y (米)与小刚从家出发到学榜的减柠射问r (0轴)问的函豹i A米关系如图所示,则小刚家到学校的路程为2960 X,【解答】解:由图可知,小刚和爸爸相遇后,到小刚爸爸回到家用时17- 15=2 (分钟),•••爸爸追上小刚后以原速的丄倍原路步行回家,2•••小刚打完电话到与爸爸相遇用的时间为1分钟,Y由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,•••小刚和爸爸相遇之后跑步的1分和爸爸2分钟上的路程是720米,•••小刚后来的速度为:1040 - 720=320 (米份钟)则小刚家到学校的路程为:1040+(23 - 17)×320=l040+6X320= 1040+1920=2960(•米), 故答案为:2960.2•已知A.B.C三地顺次在同一直线上,甲、乙两人均骑车从A地岀发,向C地匀速行驶.甲比乙早出发5分钟,甲到达B地并休息了2分钟后,乙追上了甲.甲.乙同时从B地以各自原速继续向C地行驶•当乙到达C地后,乙立即掉头并提速为原速的色倍按原路返回A4地,而甲也立即提速为原速的号■倍继续向C地行驶,到达C地就停止.若甲、乙间的距离y3(米)与甲出发的时间/(分)之间的函数关系如图所示,则下列说法①甲、乙提速前的速度分别为300米/分、400米/分;C两地相距7200米:③甲从A地到C地共用时2614 H甲乙两人刚开始的速度之差为:9∞÷ (23-14) =IOO (米/分),设甲刚开始的速度为X米/分,乙刚开始的速度为(x+100)米/分,IZV= (14-5)× (x+100),解得,X= 300,则丹IOo=400,即甲、乙提速前的速度分别为300米/分、400米/分.故①正确;A> B两地之间的距离为:300X12 = 3600 (米),A. (7两地之间的距离为:400× (23 - 5) =7200 (米),故②正确:•••当乙到达C地后,乙立即掉头并提速为原速的色倍按原路返回A地,而甲也立即提速4为原速的垒倍继续向C地行驶,3.•・后来乙的速度为:400×-∣-=5∞ (米/分),甲的速度为300×-⅛-=400 (米/分),•••甲从A地到C地共用时:23+(7200 - (23 - 2) X300)÷400=25^ (分钟),故③错误;4.∙.当甲到达C地时,乙距A地:7200- (25丄-23)×500=6075 (米),故④正确.4综上所述,正确的有①②④.3.尊老助老是中华民族的传统美徳,我校的小艾同学在今年元旦节前往家附近的敬老院,为老人们表演节目送上新年的祝福.当小艾同学到达敬老院时,发现拷音乐的U盘没有带,于是边打电话给爸爸边往家走,请爸爸能帮忙送来.3分钟后,爸爸在家找到了(/盘并立即前往敬老院,相遇后爸爸将U盘交给小艾,小艾立即耙速度提髙到之前的1.5倍跑回敬老院, 这时爸爸遇到了朋友,停下与朋友交谈了2分钟后,爸爸以原来的速度前往敬老院观看小艾的表演.爸爸与小艾的距离y (米)与小艾从敬老院出发的时间X (分)之间的关系如图所小艾的原来的速度为:180÷ (11-9)÷ 1.5=60 (米/分钟),爸爸的速度为:(990- 60×3)÷ (9 - 3) - 60=75 (米/分钟),9分钟的时候,小艾离敬老院的距离为:60X9=540 (米),小艾最后回到敬老院的时间为:9+540÷ (60X1.5) =15 (分钟),当小艾回到敬老院时,爸爸离敬老院还有:540- (15 - 11)×75=240 (米),故答案为:240.4•甲、乙分別骑摩托车同时沿同一条路线从A地岀发B地,已知爪B两地相距280亦,他们出发2小时的时候乙的摩托车坏了,乙立即开始修车,甲车继续行驶,当甲第一次与乙相遇时,乙还在修车,乙修好车继续按原速前往B地.乙到达B地5小时后,甲车到达B地.整4个过程中,两人均保持各自的速度匀速行驶,甲、乙两人相距的路程y(千米)与甲出发的时间X(小时)之间的关系如图所示,则当乙车修好时,甲车距B地的路程为130千米.【解答】解:Y甲车速度=—=40千米/时,T•••甲车走完全程时间=型=7小时,40•••乙车速度=40+ 5严! =70千米耐,7—4 4设乙车修了兀小时,由题意可得:70 ・40X丄殳=20, ∙∙∙x=工,4 4 4•••当乙车修好时,甲车距B地的路程=280-40× (2+2.) =I30千米,45.十一黄金周,小明和小亮乘甲车从沙坪坝出发,以一泄的速度匀速前往铁山坪体验“飞越丛林”・出发15分钟后,小明发现忘带身份证和钱包,便下车换乘乙车匀速回家去取(小明换车.取身份证和钱包的时间忽略不计),小亮仍乘甲车并以原速继续前行,小明回家取了身份证和钱包后,为节约时间,又立即乘乙车以原来速度的仝倍匀速按原路赶往铁山坪,由3于国庆期间车流量较大,在小明乘乙车以加速后的速度匀速赶往铁山坪期间,甲车恰好因故在途中持续堵塞了5分钟,结果乙车先到达目的地.甲、乙两车之间的距离y (千米)与乙车行驶时间X (小时)之间的部分图象如图所示,则乙车岀发—郑小时到达目的地.【解答】解:设甲车的速度为“千米/小时,乙车回家时即加=5, ∙'∙α=40, b=45, 设/小时两车相距3千米,(4)×45X∣=⅞÷3÷ (-∣-⅛) ×40,尸舒,6.小亮和妈妈从家岀发到长嘉汇观看国庆灯光秀,妈妈先出发,2分钟后小亮沿同一路线岀发去追妈妈,当小亮追上妈妈时发现相机落在途中了,妈妈立即返回找相机,小亮继续 前往长嘉汇,当小亮到达长嘉汇时,妈妈刚好找到了相机并立即前往长嘉汇(妈妈找相 所以家到长嘉汇的距离为:60X (18 - 2) =960 (米), 由(18・12=6分钟)可知妈妈返回找到相机行走路程为6X50=300 (米),此时设小亮在长嘉汇等妈妈的时间为f 分钟,由图象知小亮与妈妈会合所用时间为27 -18=9分钟可建立方程如下:60X (9 -/) +50X9—960- (600- 300),解得 /=5.5(分钟),•••小亮开始返回时,妈妈离家的距离为:50X (18+5.5 - 6X2) =575 (米)・设 a=Sm f b=9m (m>0),由图象得乙车行畔小时两边相碍千米, ×8ι机的时间不计),小亮在长嘉汇等了一会,没有等到妈妈,就沿同一路线返回接妈妈,最可知是小亮到达长嘉汇所经历的时间, (分)7•甲、乙两人开车分别从A、B两地同时岀发到AB之间的C地办事(A、B、C三地在一条直线上)已知甲出发0.5小时时发现忘给乙带重要文件,于是立刻返回A地,拿文件后马上向C地赶去(中间拿文件的时间忽略不计).乙得知情况后决泄先见到甲拿到文件再返回C 地办事.两人分别在C地用了10分钟办完事后各自回出发地.已知甲、乙的速度始终保持不变,两人之间的距离y (单位:千米)与甲出发的时间X (单位:小时)的部分数关系如图所示,则当甲办完事再次返回到A地时乙距B地50千米.【解答】解:乙的速度为:460- 360=100 (千米耐),甲的速度为:(460-370- 100X0.5)÷O.5=8O (千米/时),甲从出发到两人相遇所用时间为:(460-100)÷ (8O+146°4J(千米)•••A、C两地距离为:80× (3- D + (100 - 80)÷(^370360甲从A地到C地的时间为:220÷80=2.75 (小时),甲从出发到返回所需时间为十.75+⅛=护小时),当甲办完事再次返回到A地时,乙与B地的距离为「00X (f- 护=5° (米故答案为:50.&某周末,大海和大成两家人同时开车从国奥村岀发,以一泄的速度匀速前往渝北统景镇风景区参加蹦极勇敢者挑战.出发15分钟后,大海发现忘带身份证,便掉头以另一速度匀速回国奥村去取(大海掉头.取身份证的时间忽略不计),大成仍以原速继续前行.大海回家取了身份证后,立即以返回速度畤倍匀速按原路赶往统景镇,在大海以加速后的速度匀速赶往统景镇期间,大成在途中TB伽司的距离【解答】解:设两家出发时,速度是“千米/小时,大海返回国奥村时速度是b 千米/小时, 由图象得:~~y t=("~~609"=8b, — z>^∙∙b 9(∕n>0)>设X 小时,两车的距离是辿千米,9根据题意得:45X 空任丄)=込40 (厂丄)Q, f=53,312 ; 3 12 9 36则国奥村与统景镇相距:(⅛-⅛) × 45X4=60 (千米),36 3639•暑假假期,小明和小亮两家相约自驾车从重庆出发前往相距172千米的景区游玩两家人同时同地出发,以各自的速度匀速行驶,出发一段时间后,小明家因故停下来休息了 15分钟, 为了尽快追上小亮家,小明家提高速度后仍保持匀速行驶(加速的时间忽略不讣),小明家小亮的速度为:-^^=80 (千米/小时),^60^•••小明家的速度是90千米/小时,设小明加速后的速度为m 千米/小时, 根据题意得: —36 ^ 6O )⅛-⅛- ⅛⅛ 4,9Ir=V追上小亮家后以提髙后的速度直到景区,小亮家保持原速,如图是小明家、小亮家两车之间×8O= (-51- 1.05)加+0.8X90,20 20加=IoO, lf,2-0. 8×90 , k05f =O l(小时),=6 (分),80 100即小明家比小亮家早到景区6分钟.10•华师大一附中是各地中学生游学的向往之地,现有一组游学小分队从武汉站下车,计划骑自行车从武汉站到华中师大一附中,出发一段时间后,发现有贵重物品落在了武汉站,于是安排小李骑自行车以原速返回,剩下的成员速度不变向华中师大一附中前进.小李取回物后,改乘出租车追赶车队(取物品、等车时间忽略不计),小李在追赶上自行车队后仍乘坐出租车•再行驶10分钟后遭遇堵车,在此期间,自行车队反超出租车・拥堵30分钟后交通恢复正常,出租车以原速开往华中师大一附中,最终出租车和自行车队同时到达设自行车队和小李行驶时间为t分钟,与武汉站距禽5千米,S与/ AX kt m相遇到出租车堵车结朿,经过了22.5分钟.【解答】解:自行车速度8÷30=^ (千米/分钟), 15自行车到达终点用时为:20÷县=75 (分钟),15出租车到达洪崖洞用时75 - 3O- 30=15 (分钟);出租车速度20÷15=寻(千米/分钟),设自行车出发X分钟第一次相遇,根据题意得寻∙2Z∙∣∙(∕-30)'解得= 37.5’设第二次相遇时间为y,则(37. 5+10-30),15 3解得y=52.5, 75 - 52 - 5=22.5 (分钟)・所以第二次相遇后,出租车还经过了22.5分钟到达.。

小学奥数行程应用题200道及答案(完整版)

小学奥数行程应用题200道及答案(完整版)

小学奥数行程应用题200道及答案(完整版)1. 甲、乙两地相距200 千米,一辆汽车从甲地开往乙地,每小时行50 千米,几小时可以到达?答案:200÷50 = 4(小时)2. 小明步行去学校,每分钟走60 米,15 分钟可以到达。

如果要10 分钟到达,每分钟需要走多少米?答案:60×15÷10 = 90(米/分钟)3. 一辆汽车4 小时行驶了320 千米,照这样的速度,7 小时能行驶多少千米?答案:320÷4×7 = 560(千米)4. 甲、乙两人同时从相距360 米的两地相向而行,甲每分钟走40 米,乙每分钟走50 米,几分钟后两人相遇?答案:360÷(40 + 50)= 4(分钟)5. 一辆汽车从A 地开往B 地,平均每小时行80 千米,5 小时到达。

如果要4 小时到达,平均每小时要行多少千米?答案:80×5÷4 = 100(千米/小时)6. 小明和小红同时从学校出发去图书馆,小明每分钟走75 米,小红每分钟走65 米,12 分钟后两人相距多少米?答案:(75 - 65)×12 = 120(米)7. 甲、乙两车分别从A、B 两地同时出发,相向而行,甲车每小时行60 千米,乙车每小时行80 千米,3 小时后两车相遇,A、B 两地相距多少千米?答案:(60 + 80)×3 = 420(千米)8. 一艘轮船从甲地到乙地,顺水每小时行30 千米,4 小时到达。

逆水返回时用了6 小时,逆水时平均每小时行多少千米?答案:30×4÷6 = 20(千米/小时)9. 甲、乙两人同时从相距480 千米的两地相向而行,6 小时后相遇,甲每小时比乙多行8 千米,乙每小时行多少千米?答案:(480÷6 - 8)÷2 = 36(千米/小时)10. 一辆汽车从甲地开往乙地,前2 小时行驶了120 千米,照这样的速度,再行驶3 小时到达乙地,甲乙两地相距多少千米?答案:120÷2×(2 + 3)= 300(千米)11. 小明从家到学校,如果每分钟走50 米,会迟到2 分钟,如果每分钟走60 米,会提前1 分钟到校,小明家到学校的距离是多少米?答案:设按时到校需要x 分钟,50×(x + 2)= 60×(x - 1),x = 16,距离:50×(16 + 2)= 900(米)12. 甲、乙两车同时从A、B 两地相对开出,甲车每小时行45 千米,乙车每小时行55 千米,经过4 小时两车相遇,A、B 两地相距多少千米?答案:(45 + 55)×4 = 400(千米)13. 一辆汽车从甲地开往乙地,去时的速度是70 千米/小时,返回时的速度是80 千米/小时,往返共用了15 小时,甲乙两地相距多少千米?答案:设去时用了x 小时,70x = 80×(15 - x),x = 8,距离:70×8 = 560(千米)14. 甲、乙两人分别从相距300 千米的A、B 两地同时出发,相向而行,甲每小时行20 千米,乙每小时行30 千米,几小时后两人相遇?答案:300÷(20 + 30)= 6(小时)15. 一辆客车和一辆货车同时从相距450 千米的两地相向而行,客车每小时行80 千米,货车每小时行70 千米,几小时后两车相遇?答案:450÷(80 + 70)= 3(小时)16. 小明从甲地到乙地,去时每小时走90 千米,用了4 小时,回来时每小时走60 千米,需要多少小时?答案:90×4÷60 = 6(小时)17. 甲、乙两人同时从A、B 两地骑自行车相向而行,甲的速度是22 千米/小时,乙的速度是18 千米/小时,两人相遇时距离中点4 千米,A、B 两地相距多少千米?答案:相遇时间:4×2÷(22 - 18)= 2(小时),距离:(22 + 18)×2 = 80(千米)18. 一辆汽车以每小时65 千米的速度从甲地开往乙地,4 小时后超过中点30 千米,甲乙两地相距多少千米?答案:(65×4 - 30)×2 = 460(千米)19. 甲、乙两车同时从相距320 千米的A、B 两地相对开出,甲车每小时行42 千米,乙车每小时行38 千米,几小时后两车相遇?答案:320÷(42 + 38)= 4(小时)20. 小明和小军分别从学校和少年宫同时出发,相向而行,小明每分钟走70 米,小军每分钟走80 米,10 分钟后相遇,学校和少年宫相距多少米?答案:(70 + 80)×10 = 1500(米)21. 一辆汽车从甲地开往乙地,第一小时行了全程的1/5,第二小时行了全程的1/4,还剩180 千米,甲乙两地相距多少千米?答案:180÷(1 - 1/5 - 1/4)= 3600/11(千米)22. 甲、乙两人分别从A、B 两地同时出发,相向而行,甲每小时行7 千米,乙每小时行5千米,在距离中点3 千米处相遇,A、B 两地相距多少千米?答案:相遇时间:3×2÷(7 - 5)= 3(小时),距离:(7 + 5)×3 = 36(千米)23. 一辆汽车从甲地到乙地,去时的速度是50 千米/小时,返回时的速度是75 千米/小时,往返共用了6 小时,甲乙两地相距多少千米?答案:设去时用了x 小时,50x = 75×(6 - x),x = 3.6,距离:50×3.6 = 180(千米)24. 甲、乙两车同时从相距270 千米的A、B 两地相向而行,甲车每小时行60 千米,乙车每小时行30 千米,几小时后两车相遇?答案:270÷(60 + 30)= 3(小时)25. 小明从家到学校,如果每分钟走45 米,会迟到3 分钟,如果每分钟走60 米,会提前2 分钟到校,小明家到学校的距离是多少米?答案:设按时到校需要x 分钟,45×(x + 3)= 60×(x - 2),x = 17,距离:45×(17 + 3)= 900(米)26. 一辆汽车从甲地开往乙地,前3 小时行了180 千米,照这样的速度,到达乙地还需要2 小时,甲乙两地相距多少千米?答案:180÷3×(3 + 2)= 300(千米)27. 甲、乙两人同时从相距400 米的两地相向而行,甲每分钟走55 米,乙每分钟走45 米,几分钟后两人相遇?答案:400÷(55 + 45)= 4(分钟)28. 一辆汽车从A 地到B 地,平均速度是60 千米/小时,从B 地返回A 地,平均速度是50 千米/小时,这辆汽车往返的平均速度是多少?答案:设A、B 两地的距离为x 千米,往返总路程为2x 千米,总时间为(x÷60 + x÷50)小时,平均速度= 2x÷(x÷60 + x÷50)= 600/11(千米/小时)29. 甲、乙两车分别从A、B 两地同时出发,相向而行,3 小时后相遇,相遇后甲车继续行驶2 小时到达B 地,乙车每小时行36 千米,A、B 两地相距多少千米?答案:甲的速度:36×3÷2 = 54(千米/小时),距离:(54 + 36)×3 = 270(千米)30. 小明和小红同时从学校出发去公园,小明每分钟走80 米,小红每分钟走70 米,小明到达公园后立即返回,在距离公园100 米处与小红相遇,学校到公园的距离是多少米?答案:相遇时间:100×2÷(80 - 70)= 20(分钟),距离:80×20 - 100 = 1500(米)31. 一辆汽车从甲地开往乙地,去时每小时行85 千米,返回时每小时行75 千米,往返共用了9 小时,甲乙两地相距多少千米?答案:设去时用了x 小时,85x = 75×(9 - x),x = 5,距离:85×5 = 425(千米)32. 甲、乙两人分别从相距240 千米的A、B 两地同时出发,相向而行,4 小时后相遇,甲每小时比乙多行10 千米,乙每小时行多少千米?答案:(240÷4 - 10)÷2 = 25(千米/小时)33. 一辆客车和一辆货车同时从A、B 两地相对开出,客车每小时行60 千米,货车每小时行50 千米,两车相遇后又以原速继续前进,客车到达 B 地后立即返回,货车到达 A 地后也立即返回,两车在距离中点90 千米处再次相遇,A、B 两地相距多少千米?答案:第二次相遇时客车比货车多行:90×2 = 180(千米),相遇时间:180÷(60 - 50)= 18(小时),A、B 两地距离:(60 + 50)×18÷3 = 780(千米)34. 小明从家到学校,如果每分钟走35 米,要迟到5 分钟,如果每分钟走50 米,会提前7 分钟到校,小明家到学校的距离是多少米?答案:设按时到校需要x 分钟,35×(x + 5)= 50×(x - 7),x = 35,距离:35×(35 + 5)= 1400(米)35. 甲、乙两车同时从A、B 两地相向而行,5 小时后相遇,相遇后甲车又行了4 小时到达B 地,已知乙车每小时行48 千米,A、B 两地相距多少千米?答案:甲的速度:48×5÷4 = 60(千米/小时),距离:(60 + 48)×5 = 540(千米)36. 一辆汽车从甲地开往乙地,去时每小时行90 千米,返回时每小时行60 千米,往返的平均速度是多少?答案:设甲地到乙地的距离为x 千米,往返总路程为2x 千米,总时间为(x÷90 + x÷60)小时,平均速度= 2x÷(x÷90 + x÷60)= 72(千米/小时)37. 甲、乙两人分别从相距360 千米的A、B 两地同时出发,相向而行,6 小时后相遇,甲每小时比乙多行6 千米,乙每小时行多少千米?答案:(360÷6 - 6)÷2 = 27(千米/小时)38. 一辆汽车从甲地到乙地,去时的速度是72 千米/小时,回来时的速度是90 千米/小时,往返的平均速度是多少?答案:设甲地到乙地的距离为x 千米,往返总路程为2x 千米,总时间为(x÷72 + x÷90)小时,平均速度= 2x÷(x÷72 + x÷90)= 400/7(千米/小时)39. 甲、乙两车同时从A、B 两地相对开出,甲车每小时行75 千米,乙车每小时行65 千米,4 小时后两车还相距70 千米,A、B 两地相距多少千米?答案:(75 + 65)×4 + 70 = 610(千米)40. 小明从家到学校,如果每分钟走60 米,要迟到4 分钟,如果每分钟走70 米,会提前3 分钟到校,小明家到学校的距离是多少米?答案:设按时到校需要x 分钟,60×(x + 4)= 70×(x - 3),x = 37,距离:60×(37 + 4)= 2460(米)41. 甲、乙两地相距450 千米,一辆汽车从甲地开往乙地,每小时行75 千米,几小时能到达乙地?答案:450÷75 = 6(小时)42. 小明和小刚同时从相距540 米的两地相向而行,小明每分钟走50 米,小刚每分钟走40 米,几分钟后两人相遇?答案:540÷(50 + 40)= 6(分钟)43. 一辆汽车5 小时行驶了400 千米,照这样的速度,8 小时能行驶多少千米?答案:400÷5×8 = 640(千米)44. 甲、乙两人同时从相距280 米的两地相向而行,甲每分钟走35 米,乙每分钟走45 米,几分钟后两人相遇?答案:280÷(35 + 45)= 3.5(分钟)45. 一辆汽车从A 地开往B 地,平均每小时行90 千米,4 小时到达。

小学数学应用题综合训练(行程问题大全含解析)

小学数学应用题综合训练(行程问题大全含解析)

行程问题篇及答案1.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?解答:爸爸骑车和小明步行的速度比是(1-3/10):(1/2-3/10)=7:2,骑车和步行的时间比就是2:7,所以小明步行3/10需要5÷(7-2)×7=7分钟,所以,小明步行完全程需要7÷3/10=70/3分钟。

2. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.解答:乙车比甲车多行11-7+4=8分钟。

说明乙车行完全程需要8÷(1-80%)=40分钟,甲车行完全程需要40×80%=32分钟,当乙车行到B地并停留完毕需要40÷2+7=27分钟。

甲车在乙车出发后32÷2+11=27分钟到达B地。

即在B地甲车追上乙车。

3. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?解法一:甲车和乙车的速度比是15:10=3:2,相遇时甲车和乙车的路程比也是3:2,所以,两城相距12÷(3-2)×(3+2)=60千米解法二:甲车工效是1/10,乙车工效是1/15,两车相遇要1÷(1/10+1/15)=6小时,相遇时甲车比乙多清扫12千米,则多清扫全程的6/10-6/15=1/5,东西两城相距12÷(1/5)=60千米4. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.解答:大轿车行完全程比小轿车多17-5+4=16分钟,所以大轿车行完全程需要的时间是16÷(1-80%)=80分钟,小轿车行完全程需要80×80%=64分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典行程问题的应用题(含详细参考答案)2020年7月1、有一客船从甲港开往乙港,货船从乙港开往甲港,两船同时出发,10小时相遇,相遇后继续行驶2小时,此时客船离乙港420千米,货船离甲港580千米。

甲、乙两港相距几千米?2、.如图,A、C两地相距3千米,C、B两地相距8千米.甲、乙两人同时从C地出发,甲向A地走,乙向B地走,并且到达这两地又都立即返回.如果乙的速度是甲的速度的2倍,那么当甲到达D地时,还未能与乙相遇,他们相距1千米,这时乙距C地______千米.3、甲乙两人分别驾车从A、B两地同时相向而行,第一次相遇时甲行了全程的5分之3,相遇后两人继续前进,甲和乙分别到达A、B两地后又立即返回,第2次相遇地点和第一次相距120千米,A、B两地相距多少千米?4、甲乙两车分别从A.B两地同时相向出发,已知甲车速度与乙车的速度比为4:3,C在A.B之间,甲乙两车到达C地时间分别是上午8:00和下午3:00,问:甲乙两辆车相遇时间是什么时间?5、有一个200米的环形跑道,甲、乙两人同时从同一地点同方向出发.甲以每秒0.8米的速度步行,乙以每秒2.4米的速度跑步,乙在第2次追上甲时用了多少秒?6、甲乙丙3人都要从A地到B地,A,B 2地相距42千米,甲骑摩拖车,一次只能带一个人,摩拖车每小时行36千米,人步行每小时行4千米。

如果采用摩拖车和步行相结和的办法,3人同时从A地出发,全部到达B地,最快要多长时间?7、已知一条船从甲码头到乙码头往返一次需要2小时,由于返回时间是顺水,比去时每小时可多行驶8千米,因此第2小时比第1小时多行驶6千米.那么,甲乙两码头相距多少千米?8、小明从甲地到乙地,去时每时走5千米,回来是每时走7千米,来回共用了4时。

小明去时用了多长时间?9、货车和客车同时从甲乙两地相对开出,客车行完全程要10小时,货车行完全程要12小时,两车在离中点35千米处相遇,甲,乙两地相距多少千米?10、甲乙两个学生放学回家,甲比乙多走1/5的路,而乙走的时间比甲少1/11,甲乙两个学生回家速度的比是多少?11、甲乙两车同时从两地相向而行,甲车每小时行80千米,乙车8小时可以行完全程。

两车相遇时甲车行了全程的4/9,两地相距多少千米?12、甲乙两人进行骑车比赛,两人同时出发,当甲骑到全程的7/8时,乙骑到全程的6/7,这时两人相距距140米,如果继续按各自的速度骑下去。

当甲到达终点时,两人最大距离是()米。

13、甲乙两人从A 、B两地相向而行,已知他们的速度比是4:5,在距中点30处两人相遇,求A、B两地间距离是多少?14、一个人爬山,上山每小时行走3千米,沿原路下山每小时行走4.2千米。

上山比下山多用了两小时。

上山用了多少小时?15、甲乙丙三人行走速度分别是每分钟30米,40米,50米。

甲乙在A地,丙在B地,同时相向而行,丙遇乙后10分钟和甲相遇。

求AB两地相距多少米?16、甲乙两车分别从AB两地同时相对开出,经过5小时相遇,相遇后各自继续前进,又经过3小时,甲车到达B地,这是乙车距A地还有120千米。

甲乙两车的速度是多少?17、甲乙两车分别从A.B两地同时相向出发,已知甲车速度与乙车的速度比为4:3,C在A.B之间,甲乙两车到达C地时间分别是上午8:00和下午3:00,问:甲乙两辆车相遇时间是什么时间?18、A、B两地相距6千米,甲、乙两人分别从A、B两地同时出发在两地间往返行走(到达另一地后就马上返回),在出发40分钟后两人第一次相遇。

乙到达A地后马上返回,在离A地2千米的地方两人地二次相遇。

求甲、乙两人的速度。

19、甲乙两人分别驾车从A、B两地同时相向而行,第一次相遇时甲行了全程的5分之3,相遇后两人继续前进,甲和乙分别到达A、B两地后又立即返回,第2次相遇地点和第一次相距120千米,A、B两地相距多少千米?20、客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米。

两车相遇后又以原速继续前进,客车到达乙地后立即返回,货车到甲地后也立即返回,两车在距中点108千米处再次相遇。

甲、乙两地相距多少千米?21、客船从甲港开往乙港,货船从乙港开往甲港,两船同时出发,10小时相遇,相遇后继续行驶2小时,此时客船离乙港420千米,货船离甲港580千米。

甲、乙两港相距几千米?22、小明去郊游,去时,一半路程步行,一半路程乘车;回时,一半时间乘车,一半时间步行,步行速度是5千米/小时,行车速度是15/小时,结果返回时所用时间比去时少用40分钟,求全程及去时用时?23、甲乙两人沿铁路相向而行,两人速度相等.一列火车从甲身边过去(直至车尾离开甲)用了6秒。

过了5分钟,火车遇到乙,从乙身边过去用了5秒。

问,从火车彻底离开甲那时起,到乙和甲相遇,共用多长时间?24、有A、B两港,水从A港流向B港,水速4千米/小时。

甲、乙两船从A港同时开出。

甲、乙两船在静水中的速度分别是28千米/小时,20千米/小时。

如果两船第二次迎面相遇的地点距甲船第二次从后面追上乙船的地点(不包括出发时)40千米,那么A、B 两港相距多远?25、李林骑车从甲村到乙村,同时张华由乙村步行到甲村,经过18分钟两人在中途相遇后,分别继续往前走.;李林到乙村休息20分钟后,沿原路返回甲村时,张华还距甲村280米.已知李林的速度是张华速度的3倍.求两村之间的距离26、某人要到60千米外的农场去,开始他以每小时5千米的速度步行,后来有辆时速为18千米的拖拉机把他送到了农场,总共用了5.5小时,他步行了多远?27、一列客车和一列货车同时从两地相向开出,经过18小时两车在某处相遇,已知客车每小时行50千米,货车每小时比客车少行8千米,货车每行驶3小时要停驶1小时.两地之间的铁路长多少千米?28、有甲、乙、丙三辆汽车各以一定的速度从地开往地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发20分钟,出发后1小时40分追上丙.那么甲出发后需用____分钟才能追上乙.29、甲、乙两人同时从A地出发前往B地,甲每分钟走80米,乙每分钟走60米。

甲到达B地后,休息了半个小时,然后返回A地,甲离开B地15分钟后与正向B地行走的乙相遇。

A、B两地相距____________米。

参考答案1、客船从甲港开往乙港,货船从乙港开往甲港,两船同时出发,10小时相遇,相遇后继续行驶2小时,此时客船离乙港420千米,货船离甲港580千米。

甲、乙两港相距几千米?客船和货船每小时行全程的1÷10=1/10相遇后继续行驶2小时,行了全程的1/10×2=1/5剩下全程的1-1/5=4/5甲、乙两港相距(420+580)÷4/5=1250千米2、.如图,A、C两地相距3千米,C、B两地相距8千米.甲、乙两人同时从C地出发,甲向A地走,乙向B地走,并且到达这两地又都立即返回.如果乙的速度是甲的速度的2倍,那么当甲到达D地时,还未能与乙相遇,他们相距1千米,这时乙距C地______千米.3、甲乙两人分别驾车从A、B两地同时相向而行,第一次相遇时甲行了全程的5分之3,相遇后两人继续前进,甲和乙分别到达A、B两地后又立即返回,第2次相遇地点和第一次相距120千米,A、B两地相距多少千米?解:两人的速度比是5:3,距A 地是全程的多少?第二次相遇时位于距A地是全程的多少?300千米。

4、甲乙两车分别从A.B两地同时相向出发,已知甲车速度与乙车的速度比为4:3,C在A.B之间,甲乙两车到达C地时间分别是上午8:00和下午3:00,问:甲乙两辆车相遇时间是什么时间?由题义得知甲的速度是4,则乙的速度是3。

到达C地时乙比甲多用了7个小时,(上午8:00和下午3:00当中的差),7个小时甲又走出了4*7=28的距离。

甲和乙是在这段距离当中想遇的,在这段距离中甲走了16,乙走了12的距离,倒回乙这12的距离让甲走是用3个小时,所以8:00加上3就是11:00点相遇了。

5、有一个200米的环形跑道,甲、乙两人同时从同一地点同方向出发.甲以每秒0.8米的速度步行,乙以每秒2.4米的速度跑步,乙在第2次追上甲时用了多少秒?乙第2次追上甲用了250秒.因为甲、乙两人是沿环形跑道同时同地同方向出发,所以当乙第2次追上甲时,乙比甲多跑了2圈,即他们的距离差200×2=400米,又知他俩速度差2.4-0.8=1.6,所以乙第2次追上甲所用时间为:200×2÷(2.4-0.8)=250(秒)6、甲乙丙3人都要从A地到B地,A,B 2地相距42千米,甲骑摩拖车,一次只能带一个人,摩拖车每小时行36千米,人步行每小时行4千米。

如果采用摩拖车和步行相结和的办法,3人同时从A地出发,全部到达B地,最快要多长时间?分析:假定摩托车由丙来骑,丙先带乙一段距离,乙开始步行,丙再返回来带已步行了一段距离的甲一起乘车到B地;可以知道,只有甲、乙两人步行时间相等,乘车时间相等时,摩托车使用效率最高,也最节省时间。

设甲行了X千米后,开始乘车;因为车与人行的速度比是36:4=9:1,所以,甲行X千米的话,车则在相同的时间内行了9X 千米;在车行的9X千米中,有4X是向A地方向行,有5X 是向B地方向行。

又知乙的步行距离也应是X千米,由此可知,5X+X=42千米。

X=7千米,即甲和乙分别步行了7千米,乘车行了35米。

所以,甲、乙、丙三人全部到达B地的时间是:7/4+35/36=(2+13/18)小时。

7、已知一条船从甲码头到乙码头往返一次需要2小时,由于返回时间是顺水,比去时每小时可多行驶8千米,因此第2小时比第1小时多行驶6千米.那么,甲乙两码头相距多少千米?设逆水速度为X千米/小时,则顺水速度为(X+8)千米/小时.往返一次需要2小时,第2小时比第1小时多行驶6千米,即第1小时在离乙码头6/2=3千米处.1*X+3=(1-3/X)*(X+8)X(X+3)=(X-3)(X+8)X=12则甲乙两码头相距12+3=15千米8、小明从甲地到乙地,去时每时走5千米,回来是每时走7千米,来回共用了4时。

小明去时用了多长时间?时间与速度成反比去的时间:回来的时间=7:5去的时间是4÷(7+5)×7=7/3小时9、货车和客车同时从甲乙两地相对开出,客车行完全程要10小时,货车行完全程要12小时,两车在离中点35千米处相遇,甲,乙两地相距多少千米?相遇时间是1÷(1/10+1/12)=60/11小时相遇时,客车行了全程的1/10×60/11=6/11甲,乙两地相距35÷(6/11-1/2)=770千米10、甲乙两个学生放学回家,甲比乙多走1/5的路,而乙走的时间比甲少1/11,甲乙两个学生回家速度的比是多少?①甲、乙路程的比:(1+1/5):1=6:5②甲、乙时间的比:1:(1-1/11)=11:10③甲、乙速度的比:6/11:5/10=12:11答:甲、乙速度的比是12:11。

相关文档
最新文档