电磁场第三章作业解答
电磁场与电磁波第三章作业题解答

第三章 恒定电流与恒定电场 作业习题解答3-1.半径为a 和b 的同心球,内球的电位为0u U =,外球的电位为0u =,两球之间介质的电导率为σ,试求这个球形电阻器的电阻。
解 设内球与外球之间的总电流为I ,而体电流密度矢量J V 在半径为r 的球面上大小相等,沿e r 方向,由此可写出电流密度矢量为24V r Ir =p J e 根据欧姆定律V =s J E 得到两球间的电场强度矢量24r Ir =ps E e由电场强度矢量,可计算两球间的电压,有2201444bbbrr aaa I IU d dr dr rr Ib aU ab πσπσπσ=⋅=⋅=-==⎰⎰⎰E l e e由此可得两球间的电阻为 014U b a R I ab-==ps 3-2.已知电流密度矢量22221022(A/m )V x y z y z x y x z J e e e =-+,试求:(1)穿过面积3x =,23y ≤≤,3.8 5.2z ≤≤,沿e x 方向的总电流;(2)在上述面积中心处电流密度的大小;(3)在上述面积上电流密度X 方向的分量J x 的平均值。
解 (1)根据电流I 与电流密度矢量J V 之间的通量关系()VS I d =⋅⎰⎰JS则穿过面积3x =,23y ≤≤,3.8 5.2z ≤≤,沿e x 方向的总电流为()33522222381022..x xy z x .I y z x y x z dydz =-+⋅⎰⎰ee e e()352223810399A ..y zdydz ==⎰⎰(2)面3x =,23y ≤≤,3.8 5.2z ≤≤中心处的坐标为3x =, 2.5y =, 4.5z = 代入J V 的表达式,得到2222222102210 2.5 4.523 2.523 4.5281.254581(A/m )V x y zx y z x y z y z x y x z J e e e e e e e e e =-+=⨯⨯-⨯⨯+⨯⨯=-+ 电流密度矢量的大小为2296.12(A/m )V V J J ==≈(3)面3x =,23y ≤≤,3.8 5.2z ≤≤上电流密度的平均值为()()()2399285A/m 325238x x I J S ..===-- 由此可以看出,由于电流密度矢量非均匀,X 方向平均电流密度的大小与该面中心处的电流密度大小不相等。
电磁场与电磁波:第三章作业答案

3.1 长度为L 的细导线带有均匀电荷,其电荷线密度为0l ρ。
(1)计算线电荷平分面上任意点的电位ϕ;(2)利用直接积分法计算线电荷平分面上任意点的电场E ,并用ϕ=-∇E 核对。
解 (1)建立如题3.1图所示坐标系。
根据电位的积分表达式,线电荷平分面上任意点P 的电位为2(,0,0)L L ϕρ-==⎰2ln(4L l L z ρπε-'+=04l ρπε=02l ρπε (2)根据对称性,可得两个对称线电荷元z l 'd 0ρ在点P 的电场为d d E ρρρθ'===Ee e 022320d 2()l z z ρρρπερ''+e故长为L 的线电荷在点P 的电场为2022320d d 2()L l z z ρρρπερ'==='+⎰⎰E E e20002L l ρρπερ'=e ρe 由ϕ=-∇E 求E ,有002l ρϕπε⎡⎢=-∇=-∇=⎢⎥⎣⎦E(00d ln 2ln 2d l L ρρρπερ⎡⎤-+-=⎢⎥⎣⎦e0012l ρρπερ⎧⎫⎪--=⎬⎪⎭e ρe可见得到的结果相同。
3.3 电场中有一半径为a 的圆柱体,已知柱内外的电位函数分别为2()0()()cos a a A aϕρρϕρρφρρ=≤⎧⎪⎨=-≥⎪⎩(1)求圆柱内、外的电场强度;L L -ρρ题3.1图(2)这个圆柱是什么材料制成的?表面有电荷分布吗?试求之。
解 (1)由ϕ=-∇E ,可得到a ρ<时, 0ϕ=-∇=Ea ρ>时, ϕ=-∇=E 22[()cos ][()cos ]a a A A ρφρφρφρρρφρ∂∂----=∂∂e e 2222(1)cos (1)sin a a A A ρφφφρρ-++-e e(2)该圆柱体为等位体,所以是由导体制成的,其表面有电荷分布,电荷面密度为0002cos S n a a A ρρρρεεεφ=====-e E e E3.4 已知0>y的空间中没有电荷,下列几个函数中哪些是可能的电位的解? (1)cosh y e x -; (2)x e y cos -;(3)cos sin e x x (4)z y x sin sin sin 。
电磁场与电磁波课后习题答案第3章(杨儒贵编着)

第三章 静电场3-1 已知在直角坐标系中四个点电荷分布如习题图3-1所示,试求电位为零的平面。
解 已知点电荷q 的电位为rq 4πεϕ=,令)0,1,0(1q q -=,)0,1,3(2q q +=,)0,0,1(3q q -=,)0,0,0(4q q +=,那么,图中4个点电荷共同产生的电位应为∑=414ii r q πεϕ令0=ϕ,得 0 4 4 4 44321=+-+-r qr q r q r q πεπεπεπε 由4个点电荷的分布位置可见,对于x =1.5cm 的平面上任一点,4321 ,r r r r ==,因此合成电位为零。
同理,对于x =0.5cm 的平面上任一点,3241 ,r r r r ==,因此合成电位也为零。
所以,x =1.5cm 及x =0.5cm 两个平面的电位为零。
3-2 试证当点电荷q 位于无限大的导体平面附近时,导体表面上总感应电荷等于)(q -。
证明 建立圆柱坐标,令导体表面位于xy 平面,点电荷距离导体表面的高度为h ,如图3-2所示。
那么,根据镜像法,上半空间的电场强度为32023101 4 4r q r q πεπεr r E -=X 习题图3-1(r , z )习题图3-2电通密度为)(43223110r r q r r E D -==πε 式中 232231])([h z r r -+=; 232232])([h z r r ++=那么,⎥⎥⎥⎦⎤⎪⎪⎪⎭⎫ ⎝⎛+++-++-+⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛++--+=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++--+-+=z z zh z r hz h z r h z h z r r h z r r q h z r h z r h z r h z r q e e e e e e D r r r 232223222322232223222322])([])([ ])([])([4 ])([)(])([)(4ππ 已知导体表面上电荷的面密度n s D =ρ,所以导体表面的感应电荷为2322232223220)(2][][4h r qh h r h h r h q D z zs +-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+-===ππρ 则总的感应电荷为q h r r r qh r r S q s ss -=+-===⎰⎰⎰∞∞2322)(d d 2d 'πρρ3-3 根据镜像法,说明为什么只有当劈形导体的夹角为π的整数分之一时,镜像法才是有效的?当点电荷位于两块无限大平行导体板之间时,是否也可采用镜像法求解。
电磁场三章习题解答

而
故 (2)在圆柱坐标系中
而
故 (3)
故 (4)在球坐标系中
而
故 (5)
故 3.14 已知 的空间中没有电荷,下列几个函数中哪些是可能的电位的解? (1) ; (2) ; (3) (4) 。 解 (1)
所以函数 不是 空间中的电位的解;
(2)
所以函数 是 空间中可能的电位的解;
(3)
所以函数 不是 空间中的电位的解;
3.28 半径为 和
的两个同心的理想导体球面间充满了介电常数为 、电导率为 的导电媒质( 为常数)。若内导体球面的电位为 ,外导体球面接地。试求:(1)媒质中的电荷分布;(2)两个理 想导体球面间的电阻。
解 设由内导体流向外导体的电流为 ,由于电流密度成球对称分布,所以 电场强度 由两导体间的电压
(3)小球形空腔(见第四章4.14题)。 解 (1)对于平行于 的针形空腔,根据边界条件,在空腔的侧面上,有 。故在针形空腔中 , (2)对于底面垂直于 的薄盘形空腔,根据边界条件,在空腔的底面上,有 。故在薄盘形空腔中 , 3.24 在面积为 的平行板电容器内填充介电常数作线性变化的介质,从一极板 处的 一直变化到另一极板 处的 ,试求电容量。 解 由题意可知,介质的介电常数为 设平行板电容器的极板上带电量分别为
解 (1) 由高斯定律的微分形式可求得球内的电荷体密度为
(2)球体内的总电量 为
球内电荷不仅在球壳内表面上感应电荷 ,而且在球壳外表面上还要感应电荷 ,所以球壳外表面上的总电荷为2
,故球壳外表面上的电荷面密度为 3.6 两个无限长的同轴圆柱半径分别为
和
,圆柱表面分别带有密度为 和 的面电荷。(1)计算各处的电位移 ;(2)欲使 区域内 ,则 和 应具有什么关系?
电磁学第三章课后习题答案

电磁学第三章课后习题答案电磁学第三章课后习题答案电磁学是物理学中的重要分支,研究电荷和电流之间相互作用的规律。
在电磁学的学习过程中,习题是巩固知识和提高能力的重要途径。
本文将为大家提供电磁学第三章的课后习题答案,希望能对大家的学习有所帮助。
1. 一个导线的长度为l,电流为I,如图所示。
求导线两端的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
而导线的电阻可以通过电阻率乘以长度除以横截面积来计算。
所以,导线两端的电势差为V = I × (ρl/A)。
2. 一个导线的电阻为R,电流为I,如图所示。
求导线两端的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
所以,导线两端的电势差为V = I × R。
3. 一个导线的电阻为R,电流为I,导线的长度为l,电阻率为ρ,横截面积为A。
求导线两端的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
而导线的电阻可以通过电阻率乘以长度除以横截面积来计算。
所以,导线两端的电势差为V = I × R = I × (ρl/A)。
4. 在一个电路中,有一个电阻为R1的电阻器和一个电阻为R2的电阻器连接在一起,电流为I。
求两个电阻器上的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
所以,第一个电阻器上的电势差为V1 = I × R1,第二个电阻器上的电势差为V2 = I × R2。
5. 在一个电路中,有一个电阻为R1的电阻器和一个电阻为R2的电阻器连接在一起,电阻器之间的电势差为V。
求电流的大小。
答案:根据欧姆定律,电势差等于电流乘以电阻。
所以,V = I × (R1 + R2)。
解方程可得电流的大小为I = V / (R1 + R2)。
6. 一个电路中有两个电阻器,电阻分别为R1和R2,电流为I。
求电路中的总电阻。
答案:电路中的总电阻可以通过电阻器的并联和串联来计算。
如果电阻器是串联的,总电阻等于各个电阻器的电阻之和,即R = R1 + R2。
大学电磁场课后答案第三章

(2)
I 水 =0 , I 铁=20 A
3-4 流过细导线的电流 I 沿 z 轴向下流到中心在 z = 0 与 z 轴垂直的导体薄片上。求薄片 上的电流密度矢量 J S ,并求在平面的 600 扇形区域内的电流。
z
r
60o
题 3-4 图 解:由前面的分析可知, z = 0 时,电流密度矢量为
uu v uv I J s = er 2π r
S 2 3.8 2
(2)容易得到该面积中心点的坐标为: x = 3 , y = 2.5 , z = 4.5 ,代入 J 的表达式后可 得到该点的电流密度矢量为
u v
u v uu v uu v uv J = 281.25ex − 45ey + 81ez (A/m 2 ) u v 2 2 2 其大小为 J = (281.5) + ( −45) + (81) =296.121 (A/m 2 ) 。
(3) J x 的平均值 J x 为
5.2
z
y
3 3.8 2
Jx =
Ix 399 = = 285(A/m 2 ) S 1× 1.4
3
x
图 3-2
1
PDF 文件使用 "pdfFactory Pro" 试用版本创建
由于 J 的分布是非均匀的, 所以穿过该面积沿 x 方向的电流密度平均值和面积的中心点 处电流密度大小不相等。 3-3 铁制水管内、外直径分别为 2.0 cm 和 2.5 cm,常用水管来使电器设备接地。如果从电 器设备流入到水管中的电流是 20A,那么电流在管壁和水中各占多少?假设电阻率是 0.01 Ω ⋅ m。 解:单位长度的铁管电阻为
2 2
uu v
u v
电磁场与电磁波课后答案第三章习题
s i n x s i n y s i n z s i n x s i n y s i n z s i n x s i n y s i n z 0
函数 sinxsinysinz 不是 y 0 空间中电位的解。
3.7无限大导体平板分别置于x=0 和 x=d处,板间充满电荷,其体
电荷密度为
函数 e 2ysinxcosx不是 y 0 空间中电位的解。
(4)
2
2
2 2
( s i n x s i n y s i n z ) ( s i n x s i n y s i n z ) ( s i n x s i n y s i n z )
x 2
y 2
x 2 z 2
M
ez
1
d
d
M
ez
0
20
I
1
d
d
1
0
由
B2
H
e
I 2
看出 0
处有奇异性,所以在磁介质中
0 处存在磁化线电流 I m 以z轴为中心、 为半径做一个圆形
回路C,由安培环路定律有
IIm10
BdlI
2eychx0
函数 e ychx 不是 y 0 空间中电位的解。
(2) x 2 2(e yc o sx) y 2 2(e yc o sx) z 2 2(e yc o sx) e yc o sx e yc o sx 0
函数 ey cos x 是 y 0 空间中电位的解。
(3)
x 2 2 ( e 2 y s in x c o s x ) y 2 2 ( e 2 y s in x c o s x ) z 2 2 ( e 2 y s in x c o s x )
电磁场与电磁波第三章习题及参考答案
第3章习题3-1 半径为的薄圆盘上电荷面密度为s ρ,绕其圆弧轴线以角频率旋转形成电流,求电流面密度。
解:圆盘以角频率旋转,圆盘上半径为r 处的速度为r ω,因此电流面密度为ϕωρρˆr v J s s s ==3-2 在铜中,每立方米体积中大约有28105.8⨯个自由电子。
如果铜线的横截面为210cm ,电流为A 1500。
计算 1) 电流密度;2) 电子的平均漂移速度; 解:1)电流密度m A S I J /105.11010150064⨯=⨯==- 2) 电子的平均漂移速度 v J ρ=,3102819/1036.1105.8106.1m C eN ⨯=⨯⨯⨯==-ρs m J v /101.11036.1105.14106-⨯=⨯⨯==ρ 3-3 一宽度为cm 30传输带上电荷均匀分布,以速度s m /20匀速运动,形成的电流,对应的电流强度为A μ50,计算传输带上的电荷面密度。
解:电流面密度为m A L I J S /7.1663.050μ===因为 v J S S ρ= 所以 2/33.8207.166m C v J S S μρ=== 3-4 如果ρ是运动电荷密度,U是运动电荷的平均运动速度,证明:0=∂∂+∇⋅+⋅∇tU U ρρρ证:如果ρ是运动电荷密度,U是运动电荷的平均运动速度,则电流密度为U J ρ=代入电荷守恒定律tJ ∂∂-=⋅∇ρ得0=∂∂+∇⋅+⋅∇t U U ρρρ3-5 由m S /1012.17⨯=σ的铁制作的圆锥台,高为m 2,两端面的半径分别为cm 10和cm 12。
求两端面之间的电阻。
解:用两种方法(1)如题图3.5所示⎰⎰==2122)(tan zz lz dzS dl R ασπσ)11()(tan 1212z z -=ασπ 01.0202.0tan ==α题3.5图m r z .1001.0/1.0tan /11===α,m r z 1201.0/12.0tan /22===αΩ⨯=-⨯⨯⨯=-=--647212107.4)121101(101012.11)11()(tan 1πασπz z R (2)设流过的电流为I ,电流密度为2rI S I J π==电场强度为 2r IJ E πσσ== 电压为 dz z IEdz V z z z z ⎰⎰==21212)tan (σαπ ⎰==2122)(tan zz zdz I V R απσΩ⨯=-6107.4 3-6 在两种媒质分界面上,媒质1的参数为2,/10011==r m S εσ,电流密度的大小为2/50m A ,方向和界面法向的夹角为030;媒质2的参数为4,/1022==r m S εσ。
电磁场与电磁兼容习题答案与详解_第3章
电磁场与电磁兼容习题答案与详解第三章3.2 已知自由空间传播的均匀平面电磁波,电场强度为: 22042041010πππj z j zj e e +----+=y x a a E )/(m V试求:①该电磁波向何方向传播;②该电磁波的频率f ;③该电磁波的极化方式;④该电磁波的磁场强度H ;⑤与该波传播方向垂直的单位面积流过的的平均功率。
解: ①z k a a=即是+z 方向②π20=k rad/m m k 1.02==∴πλ 9103v ⨯==∴λf Hz③zj y x e a j a E π2044)1010(---+=()z 20t cos 10E 4x πϖ-=- ⎪⎭⎫⎝⎛+-=-2z 20t cos 10E 4y ππϖ1E E 2y 2x =+∴ ()z 20-t tg E E xyπϖ-=由上可知,该波为左旋圆极化波。
④zj x y z j y x z z e a j a e a j a a E a H ππππη2052040)(1210)(120101-----=+⨯=⨯= A/m ⑤[]ππ1210)()(121010Re 21Re 21954---*=⎥⎦⎤⎢⎣⎡+⨯+⨯=⨯=z x y y x a a j a a j a H E S 平均 W/m23.5 已知真空中传播的平面电磁波的电场强度为: )]23(30.05-t 10)cos[635(),(7z y x t +-⨯+=ππy x a a r E V/m 试求:①电场强度的振幅、波矢量及波长;②磁场强度矢量),(t r H ;③平均坡印亭矢量平均S 。
解:①m v E m /10315=+=m rad a a a k z y x /)233(05.0 +-=πππ2.043905.0=++=km k102==πλ ②)233(41z y x k a a a k k a +-== ⋅+⨯+-=⨯=)3(5)233(4801),(1),(0y x z y x k a a a a a t r E a t H πηγ [])233(05.0106cos 7z y x t +--⨯ππ =[])233(05.0106cos )323(4817z y x t a a a z y x +--⨯++-πππ③m V e a a E z y x j y x /)3(5)233(05.0+--+=π m A e a a a H z y x j z y x /)323(481)233(05.0+--++-=ππ[]ππηπ48524010021/)233(485Re 21202*===+-=⨯=E m W a a a H E S z y x 平均3.6 在1=r μ,4=r ε,0=σ的媒质中有一均匀平面波,其电场强度为: )3sin(),z (0πω+-=kz t t E E 。
电磁场与电磁波第三版-郭辉萍-第三章习题答案
电磁场与电磁波第三版-郭辉萍-第三章习题答案第一题问题一个磁感应强度为B的均匀磁场,在其中有一个长为l、电阻为R的长直导线。
导线与磁感应强度方向成夹角θ。
若导线被引出的两个端头A、B相距d,则导线两个端头的电势差是多大?解答根据电磁感应定律,导线两个端头的电势差可以通过导线所受的磁场力与电阻的乘积来计算。
设电流的方向与磁场方向成夹角α,则磁场力的大小为F = BIL sinα,其中I为电流的大小。
电流可以通过欧姆定律来计算,即I = U / R,其中U为电阻两端的电势差。
将电流的表达式代入磁场力的表达式中,得到F = B(U / R)l sinα。
根据电势差的定义,有U = Fd = B(U / R)l sinα * d. 移项整理得到U(1 - Bld sinα / R) = 0,解得U = 0 或者 1 - Bld sinα / R = 0。
如果U = 0,则代表导线两个端头的电势差为0,即没有电势差。
这种情况下,导线两个端头之间的电势相等。
如果1 - Bld sinα / R = 0,则导线两个端头的电势差为U = Bld sinα / R。
综上所述,导线两个端头的电势差为U = Bld sinα / R。
第二题问题一个半径为R的导线圈,通过其中的电流为I,产生的磁感应强度为B。
若导线圈的匝数为N,导线圈中心处的磁感应强度是多少?解答根据长直导线的磁场公式,通过导线圈中心点的磁感应强度的大小可以通过长直导线的磁场公式来计算。
长直导线的磁场公式为B = μ0I / (2πd),其中B为磁感应强度,μ0为真空中的磁导率,I为电流的大小,d为测量点到导线的距离。
对于导线圈来说,可以将导线分成无数个长直导线,然后将它们对应的磁场强度相加。
考虑到导线圈的几何形状,可以得到导线圈中心处的磁感应强度的大小为Bm = N * B,其中Bm为导线圈中心处的磁感应强度,N为导线圈的匝数,B为单根导线产生的磁感应强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章作业解答
3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。
求空间各部分的电场。
解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。
但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。
空间任一点的电场是这两种电荷所产生的电场的叠加。
在b r >区域中,由高斯定律0
d S
q
ε=
⎰
E S ,可求得大、小圆柱
中的正、负电荷在点P 产生的电场分别为
220012
0022r b b r r πρρπεε==r E e 220012
0022r a a r r πρρπεε'-''==-''r E e 点P 处总的电场为 2211220
()2b a r r ρε'
'=+=-'r r E E E
在b r <且a r >'区域中,同理可求得大、小圆柱中的正、负电
荷在点P 产生的电场分别为
2200
22r r r πρρπεε==r
E e 2222
0022r a a r r πρρπεε'-''==-''r E e 点P 处总的电场为
202220()2a r ρε'
'=+=-'
r E E E r 在a r <'的空腔区域中,大、小圆柱中的正、负电荷在点P 产
生的电场分别为
200300
22r r r πρρπεε==r E e 200300
22r r r πρρπεε''-''==-'r E e 点P 处总的电场为
0033
00
()22ρρ
εε''=+=-=E E E r r c
3.5 一个半径为a 薄导体球壳内表面涂覆了一薄层绝缘膜,球内充满总电荷量为Q 为的体电荷,球壳上又另充有电荷量Q 。
已知球内部的电场为4()r r a =E e ,设球内介质为真空。
计算:(1)
球内的电荷分布;(2)球壳外表面的电荷面密度。
解 (1) 由高斯定律的微分形式可求得球内的电荷体密度为
2
002
1d [
()]d r E r r ρεε=∇==E 43200244
1d [()]6d r r r r r a a
εε=
(2)球体内的总电量Q 为
3
220040
d 64d 4a
r Q r r a a τρτεππε===⎰⎰
球内电荷不仅在球壳内表面上感应电荷Q -,而且在球壳外
表面上还要感应电荷Q ,所以球壳外表面上的总电荷为2Q ,故球壳外表面上的电荷面密度为
02
224Q
a σεπ=
=
3.17 一个半径为R 的介质球,介电常数为ε,球内的极化强度r K r =P e ,其中K 为一常数。
(1) 计算束缚电荷体密度和面密度;(2) 计算自由电荷密度;(3)计算球内、外的电场和电位分布。
解 (1) 介质球内的束缚电荷体密度为
222
1d ()d p K K
r r r r r ρ=-∇=-
=-P
在r R =的球面上,束缚电荷面密度为
p r r R r R K
R
σ=====
n P e P
(2)由于0ε=+D E P ,所以
0εεε
∇=∇+∇=
∇+∇D E P D P 即
(1)εε
-
∇=∇D P 由此可得到介质球内的自由电荷体密度为
2
0()p K r εεερρεεεεεε=∇=
∇=-
=
---D P
总的自由电荷量
2
200014d 4d R K RK q r r r τ
επερτπεεεε===--⎰⎰ (3)介质球内、外的电场强度分别为
100()r K
r εεεε=
=--P E e
()r R < 2220004()r r
q RK
r r επεεεε==-E e e ()r R > 介质球内、外的电位分别为
112d d d R
r
r
R E r E r ϕ∞
∞
==+=⎰⎰⎰E l
200
0d d ()()R
r R K RK
r r r r εεεεεε∞
+=--⎰⎰ 000ln ()()K R K
r εεεεεε+
--
()r R ≤
222
0d d ()r
r RK
E r r r εϕεεε∞
∞
===-⎰⎰
00()RK r εεεε- ()r R ≥
3.33 如题3.33图所示,一半径为a 、带电量a 的导体球,其球心位于两种介质的分界面上,此两种介质的电容率分别为1ε和2ε,分界面为无限大平面。
求:(1)导体球的电容;(2) 总的静电能量。
解 (1)由于电场沿径向分布,根据边界条件,在两种介质的分界面上12t t E E =,故有12E E E ==。
由于111D E ε=、222D E ε=。
由高斯定理,
得到
11222212
22D S D S q
r E r E q πεπε+=⇒+=
题 3.33图
3. 7)两块无限大导体平板分别置于x=0和x=d 处,板间充满电荷,其体电荷密度为
0()x x d
ρρ=
,极板的电位分别为0和U 0,如图所示。
求两导体板之间的电位和电场强度。
解:
3
002
0000
00
300000
200000
()60,00,66()()66()26x x
x x cx d
d x d d x d U U cd
U d c d x U d
x x
d d x U d E
e e x d d ρϕεϕρϕερερρϕεερρϕ
εε=-++==∴===∴=-+=+=-++∂=-=--∂
22
0200()x x x d
ρρϕ
ϕεε∂∇=-⇒=-
∂。