最新七年级上数学期末模拟试题含答案(人教版)2018秋
2018年秋人教版七年级数学上册期末复习专题:解答题(含答案)

2018年七年级数学上册期末复习专题解答题1.已知|a﹣1|=9,|b+2|=6,且a+b<0,求a﹣b的值.2.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A.(2)若|a+1|+(b﹣2)2=0,计算A的值.3.自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划星期一二三四五六日增减+5 -2 -4 +13 -10 +16 -9(1)根据记录的数据可知该厂星期四生产自行车辆;(2)产量最多的一天比产量最少的一天多生产自行车辆;(3)根据记录的数据可知该厂本周实际生产自行车辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?4.我们定义一种新运算:a*b=a2﹣b+ab.例如:1*3=12﹣2+1×2=1(1)求2*(﹣3)的值.(2)求(﹣2)*[2*(﹣3)]的值.5.规定一种新的运算:A★B=A×B﹣A﹣B+1,如3★4=3×4﹣3﹣4+1=6.(1)计算(-2)★3的值;(2)比较(﹣3)★4与2★(﹣5)的大小.6.我们把分子为1的分数叫做单位分数.如,,…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如=+, =+, =+,…(1)根据对上述式子的观察,你会发现=+.请写出□,○所表示的数;(2)进一步思考,单位分数(n是不小于2的正整数)=+,请写出X、Y所表示的式子.7.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t大于0)秒.(1)点C表示的数是.(2)求当t等于多少秒时,点P到达点A处?(3)点P表示的数是(用含字母t的式子表示)(4)求当t等于多少秒时,P、C之间的距离为2个单位长度.8.已知A、B在数轴上分别表示数a,b.a 2 ﹣2 0 ﹣2b 3 3 3 ﹣3A、B两点间的距离(3)你能说明|3+6|在数轴上表示的意义吗?(4)若点P表示的数为x,当点P在数轴上什么位置时,|x+3|+|x﹣4|的值最小?最小值是多少?9.动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度。
人教版七年级上学期数学《期末测试题》含答案解析

A. 1,﹣3,0B. 0,﹣3,1C. ﹣3,0,1D. ﹣3,1,0
[答案]A
[解析]
使得它们折成正方体后相对的面上两个数互为相反数,则A与-1,B与3;C与0互为相反数.
17.计算:
(1)﹣8﹣3×(﹣12)+8;
(2)﹣6× ﹣|(﹣8)÷2|
18.(1)化简:
(2)先化简,再求值: ,其中 , .
19.解方程
(1)
(2)
20.为了某校七年级学生对 《最强大脑》、 《朗读者》、 《中国诗词大会》、 《极限挑战》四个电视节目的喜爱情况,随机抽取了 位学生进行调查统计(要求每位学生选出并且只能选一个自己最喜爱的节目),并将调查结果绘制成如下两幅不完整的统计图(图1,图2)
7.若 的和是单项式,则 的值是()
A.1B.-1C.2D.0
[答案]A
[解析]
[分析]
和是单项式说明两式可以合并,从而可以判断两式为同类项,根据同类项 相同字母的指数相等可得出x、y的值.
[详解]解:由 的和是单项式,
则x+2=1,y=2,
解得x=−1,y=2,
则xy=(−1)2=1,
故选A.
[点睛]本题考查同类项的知识,属于基础题,注意同类项的相同字母的指数相同.
(2)当 _________秒时, ;
(3)若点 、 与线段 同时移动,点 以每秒2个单位长度的速度向数轴的正方向移动,点 以每秒1个单位长度的速度向数轴的负方向移动.在移动过程中,当 时, 的值为__________.
2018年秋人教版七年级数学上册期末复习专题:数轴类压轴题(含答案)

2018年七年级数学上册期末复习专题数轴类压轴题1.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣,﹣3观察数轴,与点A的距离为3的点表示的数是__________,B,C两点之间的距离为__________;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是__________;若此数轴上M,N两点之间的距离为2015(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M__________,N__________;(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P__________,Q__________(用含m,n 的式子表示这两个数).2.如图,在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足:|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A.B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.3.已知数轴上有A.B、C三个点,分别表示有理数-24,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA= ,PC=(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.4.如图:在数轴上A点表示数,B点示数,C点表示数c,b是最小的正整数,且a、b满足|a+2|+ (c -7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A.B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC-2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.5.已知数轴上有A.B、C三个点,分别表示有理数-24,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA= ,PC= ;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.6.如图,点P、Q在数轴上表示的数分别是-8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为_______,点P、Q之间的距离是______个单位;(2)经过__________秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.7.已知数轴上有A,B,C三点,分别代表-24,-10,10,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒.⑴问多少秒后,甲到A,B,C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,问甲,乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A.B、C的距离和为40个单位时,甲调头返回.问甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.8.已知数轴上有A.B、C三个点,分别表示有理数﹣24,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA= ,PC= ;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.9.已知b是最小的正整数,且a,b,c满足.(1)请求出a,b,c的值;(2)a,b,c所对应的点分别为A.B、C,点P为动点,其对应的数为x,点P在0到2之间运动时(即时),请化简式子:;(写出化简过程)(3)在(1)、(2)的条件下,点A.B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.10.阅读材料:我们知道|x|的几何意义是在数轴上的数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说|x|表示在数轴上数x与数0对应的点之间的距离.这个结论可以推广为|x1﹣x2|表示在数轴上x1与x2对应的点之间的距离.例1.已知|x|=2,求x的值.解:容易看出,在数轴上与原点距离为2点的对应数为﹣2和2,即x的值为﹣2和2.例2.已知|x﹣1|=2,求x的值.解:在数轴上与1的距离为2点的对应数为3和﹣1,即x的值为3和﹣1.仿照阅读材料的解法,求下列各式中x的值.(1)|x|=3(2)|x+2|=4.(3)由以上探索猜想:对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有写出最小值,如果没有说明理由.(1)填空:AB= ,BC= ;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.设运动时间为t,用含t的代数式表示BC和AB的长,试探索:BC-AB的值是否随着时间t的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P到达C点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时P、Q两点相距6个单位长度?12.如图,直线l上有A.B两点,AB=12cm,点O是线段AB上的一点,OA=2OB.(1)OA= cm,OB= cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P、Q分别从A.B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为ts.当点P与点Q重合时,P、Q两点停止运动.①当t为何值时,2OP-OQ=4;②当点P经过点O时,动点M从点0出发,以3c m/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?13.已知数轴上有A,B,C三点,分别表示数﹣24,﹣10,10.两只电子蚂蚁甲、乙分别从A,C两(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁、Q表示乙蚂蚁)分别从A,C两点同时相向而行,甲的速度变为原来的3倍,乙的速度不变,直接写出多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.14.已知点A在数轴上对应的数为a,点B对应的数为b,且,A.B之间的距离记作,定义︰=.(1)求线段AB的长;(2)设点P在数轴上对应的数为x,当=2时,求x的值;(3)若点P在A的左侧,M、N分别是PA.PB的中点,当P在A的左侧移动时,下列两个结论:①的值不变;②的值不变,其中只有一个结论正确,请判断出正确结论,并求其值.参考答案1.解:(1)点A的距离为3的点表示的数是1+3=4或1﹣3=﹣2;B,C两点之间的距离为﹣2.5﹣(﹣3)=0.5;(2)B点重合的点表示的数是:﹣1+[﹣1﹣(﹣0.5)]= 0.5;M=﹣1﹣=﹣1008.5,n=﹣1+=1006.5;(3)P=n﹣,Q=n+.故答案为:4或﹣2,0.5;0.5,﹣1008.5,1006.5;n﹣,n+.2.解:(1)∵|a+2|+(c-7)2=0,∴a+2=0,c-7=0,解得a=-2,c=7,∵b是最小的正整数,∴b=1;故答案为:-2,1,7.(2)(7+2)÷2=4.5,对称点为7-4.5=2.5,2.5+(2.5-1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变. 3BC-2AB=3(2t+6)-2(3t+3)=12.3.解:⑴PA=t,PC=34-t,⑵P从A到B需要时间:14秒,QA=3(t-14),①Q从A到C过程:PQ=|t-3(t-14)|=|42-2t|=2, 42-2t=2得,t=20,42-2t=-2得,t=21,②Q从C往回,Q到达C需要时间:34/3, CQ=3(t-14-34/3)=3t-76,PQ=|34-t-(3t-76)|=|110-4t|=2, 110-4t=±2,t=27或t=28.答:t为20、21、27、28时,PQ=2.4.(1)a=-2,b=1,c=7(2) 4(3)AB=,AC=,BC=(4)不变值为125.6.解:(1)4,10;(2)4,12 ;(3)①2t+t+12=14 t=.②2t=26+t t=26;③2t+12=14+t t=2.:经过、26、2秒时,P、Q相距14个单位.7.解:⑴设x秒后,甲到A,B,C的距离和为40个单位.B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A.B的距离为34+20=54>40,故甲应位于AB或BC之间.①AB之间时:4x+(14-4x)+(14-4x+20)=40,x=2s;②BC之间时:4x+(4x-14)+(34-4x)=40,x=5s,⑵设xs后甲与乙相遇 4x+6x=34 解得:x=3.4s,4×3.4=13.6,-24+13.6=-10.4答案:甲,乙在数轴上表示-10.4的点处相遇.8.解:(1)∵动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,∴P到点A的距离为:PA=t,P到点C的距离为:PC=(24+10)﹣t=34﹣t;故答案为:t,34﹣t;(2)当P点在Q点右侧,且Q点还没有追上P点时,3t+2=14+t解得:t=6,∴此时点P表示的数为﹣4,当P点在Q点左侧,且Q点追上P点后,相距2个单位,3t﹣2=14+t解得:t=8,∴此时点P表示的数为﹣2,当Q点到达C点后,当P点在Q点左侧时,14+t+2+3t﹣34=34解得:t=13,∴此时点P表示的数为3,当Q点到达C点后,当P点在Q点右侧时,14+t﹣2+3t﹣34=34解得:t=14,∴此时点P表示的数为4,综上所述:点P表示的数为﹣4,﹣2,3,4.9.(1)根据题意得:c-5=0,a+b=0,b=1,∴a=-1,b=1,c=5;(2)当0≤x≤1时,x+1>0,x-1≤0,x+3>0,∴|x+1|-|x-1|+2|x+3|=x+1-(1-x)+2(x+3)=x+1-1+x+2x+6=4x+6;)当1<x≤2时,x+1>0,x-1>0,x+3>0.∴|x+1|-|x-1|+2|x+3|=x+1-(x-1)+2(x+3)=x+1-x+1+2x+6=2x+8;(3)不变.∵点A以每秒1个单位长度的速度向左运动,点B每秒2个单位长度向右运动,∴A,B每秒钟增加3个单位长度;)∵点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴B,C每秒钟增加3个单位长度.∴BC-AB=2,BC-AB的值不随着时间t的变化而改变.10.解:(1)|x|=3,在数轴上与原点距离为3点的对应数为﹣3和3,即x的值为﹣3和3.(2)|x+2|=4,在数轴上与﹣2的距离为4的店对应数为﹣6和2,即x的值为2和﹣﹣6.(3)有最小值.最小值为3,理由是:∵丨x﹣3丨+丨x﹣6丨理解为:在数轴上表示x到3和6的距离之和,∴当x在3与6之间的线段上(即3≤x≤6)时:即丨x﹣3丨+丨x﹣6丨的值有最小值,最小值为6﹣3=3.11.12.13.解:14.(1)(2)当P在点A左侧时,,当P在点B右侧时,,∴上述两种情况的点P不存在.当P在A.B之间时,,∵,∴x+4-(1-x)=2 ∴x=即x的值为.(3)②的值不变,值为.∵∴.。
人教版2018-2019学年第一学期七年级数学期末测试题(含答案)

2018-2019学年七年级(上)期末数学试卷一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是,﹣的倒数是.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为平方千米.10.计算:15°37′+42°51′=.11.根据图提供的信息,可知一个杯子的价格是元.12.用6根火柴最多组成个一样大的三角形,所得几何体的名称是.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=cm.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.52018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【考点】数轴.【分析】根据数轴的相关概念解题.【解答】解:因为a是一个负数,则﹣a是一个正数,二者互为相反数,﹣a在原点的右边.故选B.【点评】解答此题要用到以下概念:数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴;(1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零.(2)在数轴上表示的两个数,正方向的数大于负方向的数.(3)正数都大于0,负数都小于0,正数大于一切负数.(4)若从点A向右移动|a|个单位,得到B,则B点坐标为A的坐标加|a|,反之B点坐标为A的坐标减|a|.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据所看位置,找出此几何体的三视图即可.【解答】解:从上面看得到的平面图形是两个同心圆,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是要把所看到的棱都表示到图中.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.【考点】点、线、面、体.【专题】常规题型.【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【解答】解:A、是直角梯形绕底边旋转形成的圆台,故A错误;B、是直角梯形绕垂直于底的腰旋转形成的圆台,故B正确;C、是梯形底边在上形成的圆台,故C错误;D、是梯形绕斜边形成的圆台,故D错误.故选:B.【点评】本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29【考点】一元一次方程的应用.【分析】设该商品的标价为x,则商品的售价为0.9x元,根据售价﹣进价=利润为等量关系建立方程求出其解即可.【解答】解:设该商品的标价为x,则商品的售价为0.9x元,由题意,得0.9x﹣21=21×20%,解得:x=28故选C.【点评】本题考查了销售问题的数量关系在生活实际问题的中的运用,一元一次方程的解法的运用,解答时运用售价﹣进价=进价×利润率建立方程是关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是5,﹣的倒数是﹣2.【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的相反数是5,﹣的倒数是﹣2,故答案为:5,﹣2.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=1.【考点】同类项.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得答案.【解答】解:a3﹣2n b2与5a3n﹣2b2是同类项,3﹣2n=3n﹣2,n=1,故答案为:1.【点评】本题考查了同类项,相同的字母的指数也相同是解题关键.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为 2.5×106平方千米.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:2 500 000=2.5×106平方千米.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.10.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.11.根据图提供的信息,可知一个杯子的价格是8元.【考点】二元一次方程组的应用.【分析】仔细观察图形,可知本题存在两个等量关系,即一个水壶的价格+一个杯子的价格=43,两个水壶的价格+三个杯子的价格=94.根据这两个等量关系可列出方程组.【解答】解:设水壶单价为x元,杯子单价为y元,则有,解得.答:一个杯子的价格是8元.故答案为:8.【点评】解题关键是弄清题意,找到合适的等量关系,列出方程组.12.用6根火柴最多组成4个一样大的三角形,所得几何体的名称是三棱锥或四面体.【考点】认识立体图形.【分析】用6根火柴,要使搭的个数最多,就要搭成立体图形,即三棱锥.【解答】解:要使搭的个数最多,就要搭成三棱锥,这时最多可以搭4个一样的三角形.图形如下:故答案为:4,三棱锥或四面体.【点评】此题主要考查了认识立体图形,本题要打破思维定势,不要只从平面去考虑,要考虑到立体图形的拼组.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=11或5cm.【考点】比较线段的长短.【专题】分类讨论.【分析】分点B在点A、C之间和点C在点A、B之间两种情况讨论.【解答】解:(1)点B在点A、C之间时,AC=AB+BC=8+3=11cm;(2)点C在点A、B之间时,AC=AB﹣BC=8﹣3﹣5cm.∴AC的长度为11cm或5cm.【点评】分两种情况讨论是解本题的难点,也是解本题的关键.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是158.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是14.【解答】解:分析可得图中阴影部分的两个数分别是左下是12,右上是14,则m=12×14﹣10=158.故答案为:158.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).【考点】有理数的加法;整式的加减.【分析】(1)根据有理数的加法法则,即可解答.(2)先去括号,再合并同类项,即可解答.【解答】解:(1)(﹣76)+(+26)+(﹣31)+(+17)=﹣76﹣31+26+17=﹣107+43=﹣64.(2)2(2b﹣3a)﹣3(2a﹣3b)=4b﹣6a﹣6a+9b=13b﹣12a.【点评】本题考查了有理数的加法法则,解决本题的关键是熟记有理数的加法法则.16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:x﹣7=10﹣4x﹣2,移项合并得:5x=15,解得:x=3;(2)去分母得:3x﹣3﹣6﹣4x=6,移项合并得:x=﹣15.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).【考点】作图—应用与设计作图.【分析】连接AB,与l的交点就是P点.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握两点之间线段最短.18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.【考点】余角和补角.【分析】设这个角的度数为x,根据互余的两角的和等于90°表示出它的余角,然后列出方程求解即可.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),由题意得:x﹣(90°﹣x)=30°,解得:x=80°.答:这个角的度数是80°.【点评】本题考查了余角的定义,熟记概念并列出方程是解题的关键.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.【考点】整式的加减—化简求值;合并同类项;去括号与添括号.【专题】计算题.【分析】本题先将括号去掉,进行同类项合并,然后化简后,将值代入,即可求得结果.【解答】解:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.当x=1,y=2,z=﹣3时,原式=﹣3×1×2×(﹣3)=18.…(10分)【点评】本题考查整式的加减及化简求值,将式子进行同类项合并后,然后化简后即可求得结果.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.【考点】角平分线的定义.【专题】计算题.【分析】由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.【点评】解决本题的关键利用角平分线定义得到所求角的两边的角的度数.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为|m﹣n|.【考点】比较线段的长短.【专题】计算题.【分析】(1)点M是线段AC中点,则MC=AC,点N的线段BC中点,所以CN=CB,AC+BC=AB,AB已知,从而可求出MN长度.(2)根据以上分析可得MN=AB,线段MN的长度是线段AB的一半.(3)当点C在线段AB的延长线上时,MN等于MC减去BC=n,而MC=AC=m,从而可求出MN长度;当点C在线段BA的延长线上时,MN等于NC减去MC,NC=BC=n,MC=AC=m,从而可求出MN的长度.【解答】解:(1)MN=MC+CN=AC CB=7cm;(2)MN=MC+CN=AC=;(3)当点C在线段AB的延长线上时,MN=(m﹣n);当点C在线段BA的延长线上时,MN=(n﹣m);综合以上情况得:MN=.【点评】本题前两问主要根据题中图形得到各线段之间的关系,求出MN的长度,而第三问要分情况讨论,M在AB不同侧时有不同的情况,分析各情况得到MN的表达式.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.【考点】余角和补角.【分析】(1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD和∠COB表示出∠BOD,列出方程整理即可得解;(2)根据周角等于360°列式整理即可得解.【解答】解:(1)∠AOD与∠COB互补.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOD﹣90°=90°﹣∠COB,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补;(2)成立.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补.【点评】本题考查了余角和补角的定义,比较简单,用两种方法表示出∠BOD是解题的关键.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.5【考点】二元一次方程组的应用.【专题】图表型.【分析】通过理解题意可知本题的两个等量关系,西红柿的重量+豆角的重量=40,1.2×西红柿的重量+1.6×豆角的重量=60,根据这两个等量关系可列出方程组.【解答】解:设西红柿的重量是xkg,豆角的重量是ykg,依题意有解得10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些西红柿和豆角能赚33元.【点评】注意要先求出西红柿和豆角的重量,再计算利润.。
【名校习题】最新人教版七年级(上)期末模拟数学试卷(含答案)

新七年级上册数学期末考试试题(含答案)(1)一、选择题(每小題3分,共30分)1.京剧和民间剪纸是我国的两大国粹,这两者的结合无疑是最能代表中国特色的艺术形式之一.下列四个京剧脸谱的剪纸中,是轴对称图形的是()A.B.C.D.2.下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3 3.若分式的值为0,则x的值等于()A.0 B.±3 C.3 D.﹣34.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy5.若一个等腰三角形的两边长分别为2和4,则这个等腰三角形的周长是为()A.8 B.10 C.8或10 D.6或126.解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x (x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是()A.类比思想B.转化思想C.方程思想D.函数思想7.下列各式①,②,③,④中,是分式的有()A.①④B.①③④C.①③D.①②③④8.如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=()A.30°B.40°C.80°D.不存在9.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20°B.30°C.10°D.15°10.如图,在△ABC中,AB=AC,BC=4,面积是16,AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.10 D.12二、填空题(每小题3分,共18分)11.若a n=3,则a2n=.12.已知一个多边形的内角和是1080°,这个多边形的边数是.13.分解因式:x2y﹣4xy+4y=.14.等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的一个底角的度数为.15.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.16.如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD 全等,则点D坐标为.三、解答题(本大题有8个小题,共72分.解答应写出文字说明,证明过程或演算步骤)17.(8分)计算:(1)(x+4)(x﹣4)﹣x2;(2)(ab﹣1)2+a(2b﹣1).18.(6分)解方程﹣1=.19.(8分)将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形.20.(8分)先化简,再求值:,其中.21.(8分)有这样一道题:用四块如图甲所示的瓷砖拼成一个正方形,形成轴对称图案,和你的同伴比一比,看谁的拼法多.某同学设计了如图的两个图案,请你也用如图乙所示的瓷砖拼成一个正方形,形成轴对称图案.(至少设计四种图案)22.(10分)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?23.(10分)仔细阅读下面例题,解答问题例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n∴解得:n=﹣7,m=﹣21.∴另一个因式为(x﹣7),m的值为﹣21.问题:(1)若二次三项式x2﹣5x+6可分解为(x﹣2)(x+a),则a=;(2)若二次三项式2x2+bx﹣5可分解为(2x﹣1)(x+5),则b=;(3)仿照以上方法解答下面问题:若二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.24.(14分)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E 三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状并说明理由.参考答案一、选择题1.京剧和民间剪纸是我国的两大国粹,这两者的结合无疑是最能代表中国特色的艺术形式之一.下列四个京剧脸谱的剪纸中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.解:A、不是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、不是轴对称图形;故选:C.【点评】本题考查的是轴对称图形的概念.掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合是解题的关键.2.下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.若分式的值为0,则x的值等于()A.0 B.±3 C.3 D.﹣3【分析】根据分式值为0的条件:分子等于0,分母不为0求出x的值即可.解:∵分式的值为0,∴x2﹣9=0且x﹣3≠0,解得:x=﹣3,故选:D.【点评】此题考查了分式的值为零的条件,熟练掌握分式值为零的条件是解本题的关键.4.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.解:A、2a2﹣2a+1=2a(a﹣1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B、(x+y)(x﹣y)=x2﹣y2,这是整式的乘法,故此选项不符合题意;C、x2﹣6x+5=(x﹣5)(x﹣1),是因式分解,故此选项符合题意;D、x2+y2=(x﹣y)2+2xy,等号的右边不是整式的积的形式,故此选项不符合题意;故选C.【点评】本题主要考查因式分解的意义,解决此类问题的关键是看是否是由一个多项式化为几个整式的乘积的形式.5.若一个等腰三角形的两边长分别为2和4,则这个等腰三角形的周长是为()A.8 B.10 C.8或10 D.6或12【分析】因为等腰三角形的两边分别为2和4,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.解:当2为底时,其它两边都为4,2、4、4可以构成三角形,周长为10;当2为腰时,其它两边为2和4,因为2+2=4,所以不能构成三角形,故舍去.∴答案只有10.故选:B.【点评】本题主要考查了等腰三角形的性质和三角形的三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.6.解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x (x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是()A.类比思想B.转化思想C.方程思想D.函数思想【分析】分式方程去分母转化为整式方程,故利用的数学思想是转化思想.解:解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x (x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是转化思想,故选:B.【点评】此题考查了解分式方程,熟练掌握运算法则是解本题的关键.7.下列各式①,②,③,④中,是分式的有()A.①④B.①③④C.①③D.①②③④【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解:①是分式,②是整式,③是整式,④是分式,故选:A.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.8.如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=()A.30°B.40°C.80°D.不存在【分析】先求出多边形的边数,再利用多边形的外角和求出答案即可.解:∵108÷12=9,∴小林从P点出发又回到点P正好走了一个9边形,∴α=360°÷9=40°.故选:B.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.9.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20°B.30°C.10°D.15°【分析】首先根据三角形的内角和定理求得∠B,再根据角平分线的定义求得∠BAD,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC,最后根据直角三角形的两个锐角互余即可求解.解:∵∠BAC=60°,∠C=80°,∴∠B=40°.又∵AD是∠BAC的角平分线,∴∠BAD=∠BAC=30°,∴∠ADE=70°,又∵OE⊥BC,∴∠EOD=20°.故选:A.【点评】此类题要首先明确思路,考查了三角形的内角和定理及其推论、角平分线的定义.10.如图,在△ABC中,AB=AC,BC=4,面积是16,AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.10 D.12【分析】连接AD,AM,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.解:连接AD,AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴MA=MC,∵AD≤AM+MD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选:C.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.二、填空题(每小题3分,共18分)11.若a n=3,则a2n=9 .【分析】直接利用幂的乘方运算法则计算得出答案.解:∵a n=3,∴a2n=(a n)2=32=9.故答案为:9.【点评】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.12.已知一个多边形的内角和是1080°,这个多边形的边数是8 .【分析】根据多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数)可得方程180(x﹣2)=1080,再解方程即可.解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.【点评】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n≥3)且n为整数).13.分解因式:x2y﹣4xy+4y=y(x﹣2)2.【分析】先提取公因式y,再对余下的多项式利用完全平方公式继续分解.解:x2y﹣4xy+4y,=y(x2﹣4x+4),=y(x﹣2)2.【点评】本题考查了提公因式法,公式法分解因式,难点在于提取公因式后要进行二次分解因式,分解因式要彻底.14.等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的一个底角的度数为65°或25°.【分析】本题已知没有明确三角形的类型,所以应分这个等腰三角形是锐角三角形和钝角三角形两种情况讨论.解:当这个三角形是锐角三角形时:高与另一腰的夹角为40,则顶角是50°,因而底角是65°;如图所示:当这个三角形是钝角三角形时:∠ABD=40°,BD⊥CD,故∠BAD=50°,所以∠B=∠C=25°因此这个等腰三角形的一个底角的度数为25°或65°.故填25°或65°.【点评】本题考查了等腰三角形的性质及三角形内角和定理;等腰三角形的高线,可能在三角形的内部,边上、外部几种不同情况,因而,遇到与等腰三角形的高有关的计算时应分类讨论.15.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:AH=CB等(只要符合要求即可),使△AEH≌△CEB.【分析】开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.16.如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD 全等,则点D坐标为(1,﹣1),(5,3)或(5,﹣1).【分析】根据题意画出符合条件的图形,根据图形结合A、B、C的坐标即可得出答案.解:如图所示,共有3个符合条件的点,∵△ABD与△ABC全等,∴AB=AB,BC=AD或AC=AD,∵A(2,1)、B(4,1)、C(1,3).∴D1的坐标是(1,﹣1),D2的坐标是(5,3),D3的坐标是(5,﹣1),故答案为:(1,﹣1),(5,3)或(5,﹣1).【点评】本题考查了全等三角形的判定和坐标与图形性质,注意要进行分类讨论,能求出符合条件的所有情况是解此题的关键.三、解答题(本大题有8个小题,共72分.解答应写出文字说明,证明过程或演算步骤)17.(8分)计算:(1)(x+4)(x﹣4)﹣x2;(2)(ab﹣1)2+a(2b﹣1).【分析】(1)先根据平方差公式计算,再合并同类项即可得;(2)先利用完全平方公式和单项式乘多项式的运算法则计算,再合并同类项即可得.解:(1)原式=x2﹣16﹣x2=﹣16;(2)原式=a2b2﹣2ab+1+2ab﹣a=a2b2﹣a+1.【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式的混合运算顺序和运算法则及完全平方公式、平方差公式.18.(6分)解方程﹣1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:x(x﹣2)﹣(x+2)(x﹣2)=x+2,去括号得,x2﹣2x﹣x2+4=x+2,移项、合并同类项得,﹣3x=﹣2,解得x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(8分)将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形.【分析】根据BC=DE和∠DEF=30°可求得∠BDC和∠BCD的值,根据∠ACB=45°即可求得∠DOC的值,即可解题.证明:∵在△BDC中,BC=DB,∴∠BDC=∠BCD.∵∠DBE=30°,∴∠BDC=∠BCD=75°,∵∠ACB=45°,∴∠DOC=30°+45°=75°.∴∠DOC=∠BDC,∴△CDO是等腰三角形.【点评】本题考查了等腰三角形的判定,等腰直角三角形的性质,本题中求证∠DOC=∠BDC是解题的关键.20.(8分)先化简,再求值:,其中.【分析】根据约分的方法和二次根式的性质进行化简,最后代值计算.解:原式===.当时,原式===.【点评】本题主要考查了分式的混合运算,二次根式的化简求值.21.(8分)有这样一道题:用四块如图甲所示的瓷砖拼成一个正方形,形成轴对称图案,和你的同伴比一比,看谁的拼法多.某同学设计了如图的两个图案,请你也用如图乙所示的瓷砖拼成一个正方形,形成轴对称图案.(至少设计四种图案)【分析】根据轴对称定义及特点拼图即可.解:如图所示.【点评】本题考查了利用轴对称设计图案的知识,同时考查了学生的动手实践能力和逻辑思维能力.趣味性强,便于操作,是一道好题.22.(10分)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【分析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得+=,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000﹣1500)=105000(元);故甲公司的施工费较少.【点评】本题考查了分式方程的应用,解题的关键是从实际问题中整理出等量关系并利用等量关系求解.23.(10分)仔细阅读下面例题,解答问题例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n∴解得:n=﹣7,m=﹣21.∴另一个因式为(x﹣7),m的值为﹣21.问题:(1)若二次三项式x2﹣5x+6可分解为(x﹣2)(x+a),则a=﹣3 ;(2)若二次三项式2x2+bx﹣5可分解为(2x﹣1)(x+5),则b=9 ;(3)仿照以上方法解答下面问题:若二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.【分析】(1)将(x﹣2)(x+a)展开,根据所给出的二次三项式即可求出a的值;(2)(2x﹣1)(x+5)展开,可得出一次项的系数,继而即可求出b的值;(3)设另一个因式为(x+n),得2x2+3x﹣k=(2x﹣5)(x+n)=2x2+(2n﹣5)x﹣3n,可知2n﹣3=5,k=3n,继而求出n和k的值及另一个因式.解:(1)∵(x﹣2)(x+a)=x2+(a﹣2)x﹣2a=x2﹣5x+6,∴a﹣2=﹣5,解得:a=﹣3;(2)∵(2x﹣1)(x+5)=2x2+9x﹣5=2x2+bx﹣5,∴b=9;(3)设另一个因式为(x+n),得2x2+3x﹣k=(2x﹣5)(x+n)=2x2+(2n﹣5)x﹣5n,则2n﹣5=3,k=5n,解得:n=4,k=20,故另一个因式为(x+4),k的值为20.故答案为:(1)﹣3;(2)9;(3)另一个因式为(x+4),k的值为20.【点评】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.24.(14分)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BA C=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E 三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状并说明理由.【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)由∠BDA=∠AEC=∠BAC=120°,就可以求出∠BAD=∠ACE,进而由AAS就可以得出△BAD≌△ACE,就可以得出BD=AE,DA=CE,即可得出结论;(3)由等边三角形的性质,可以求出∠BAC=120°,就可以得出△BAD≌△ACE,就有BD=AE,进而得出△BDF≌△AEF,得出DF=EF,∠BFD=∠AFE,而得出∠DFE=60°,就有△DEF为等边三角形.解:(1)如图1,∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)如图2,∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠DBA=∠CAE,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)如图3,由(2)可知,△ADB≌△CEA,∴BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点评】本题属于三角形综合题,主要考查了全等三角形的判定与性质以及等边三角形的判定与性质的综合应用,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;解题时注意:全等三角形的对应边相等,对应角相等.最新七年级(上)数学期末考试题【答案】一、选择题(本大题共10小题,每小题3分,共30分).在每小题给出的四个选项中,只有一项是符合题目要求的请将正确选项前的字母代号填写在答题卷相应的位置上1.﹣的相反数是()A.B.3C.﹣D.﹣32.下列计算正确的是()A.3a+2b=5ab B.5a2﹣2a2=3C.7a+a=7a2D.2a2b﹣4a2b=﹣2a2b3.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣2 4.下列关于多项式2a2b+ab﹣1的说法中,正确的是()A.次数是5B.二次项系数是0C.最高次项是2a2b D.常数项是15.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.6.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3B.﹣3C.﹣4D.47.实数a、b在数轴上的位置如图,则化简|a|+|b|的结果为()A.a﹣b B.a+b C.﹣a+b D.﹣a﹣b8.如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A.B.C.D.9.下列说法中正确的是()A.过一点有且仅有一条直线与已知直线平行B.若AC=BC,则点C是线段AB的中点C.相等的角是对顶角D.两点之间的所有连线中,线段最短10.如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针沿正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针沿正方形运动,则第2019次相遇在()A.点A B.点B C.点C D.点D二、填空题(本大题共8小题,每小题3分,共24分),把答案直接填在答题卷相应的位置上11.比较大小:﹣﹣.12.单项式﹣7a3b2c的次数是.13.已知方程ax+by=10的两个解是,,则a=,b=.14.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为.15.已知x﹣3y=﹣3,则5﹣x+3y的值是.16.如图,已知∠AOB=64°36′,OC平分∠AOB,则∠AOC=°.17.下午3点30分时,钟面上时针与分针所成的角等于°.18.如图,填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,x的值为.三、解答题(本大题共10小题,共76分.)把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签字笔19.(9分)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)(﹣2)4+(﹣4)×()2﹣(﹣1)3(3)(﹣1)4﹣[(﹣2)3﹣32]20.(9分)解下列方程(组):(1)(2)21.(6分)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a、b满足|a﹣|+(b+3)2=0.22.(6分)已知:已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1.(1)求2A﹣3B;(2)若A+2B的值与a的取值无关,求b的值.23.(6分)在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点,已知点A、B、C都在格点上.(1)按下列要求画图:过点B和一格点D画AC的平行线BD,过点C和一格点E画BC 的垂线CE,并在图中标出格点D和E;(2)求三角形ABC的面积.24.(6分)已知,点C是线段AB的中点,AC=6.点D在直线AB上,且AD=BD.请画出相应的示意图,并求线段CD的长.25.(6分)整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?26.(8分)直线AB、CD相交于点O,OE平分∠BOD.OF⊥CD,垂足为O,若∠EOF =54°.(1)求∠AOC的度数;(2)作射线OG⊥OE,试求出∠AOG的度数.27.(10分)如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC 的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).28.(10分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米,甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.请解答下面问题:(1)B、C两点之间的距离是米.(2)求甲机器人前3分钟的速度为多少米/分?(3)若前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为与乙相同,求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后甲机器人的速度又恢复为原来出发时的速度,直接写出当t>6时,甲、乙两机器人之间的距离S.(用含t的代数式表示).2018-2019学年江苏省苏州市太仓市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分).在每小题给出的四个选项中,只有一项是符合题目要求的请将正确选项前的字母代号填写在答题卷相应的位置上1.﹣的相反数是()A.B.3C.﹣D.﹣3【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列计算正确的是()A.3a+2b=5ab B.5a2﹣2a2=3C.7a+a=7a2D.2a2b﹣4a2b=﹣2a2b【分析】直接利用合并同类项法则分别分析得出答案.【解答】解:A、3a+2b,无法计算,故此选项错误;B、5a2﹣2a2=3a2,故此选项错误;C、7a+a=8a,故此选项错误;D、2a2b﹣4a2b=﹣2a2b,正确.故选:D.【点评】此题主要考查了合并同类项,正确掌握运算法则是解题关键.3.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣2【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选:B.【点评】根据同类项的定义列出方程组,是解本题的关键.4.下列关于多项式2a2b+ab﹣1的说法中,正确的是()A.次数是5B.二次项系数是0C.最高次项是2a2b D.常数项是1【分析】直接利用多项式的相关定义进而分析得出答案.【解答】解:A、多项式2a2b+ab﹣1的次数是3,故此选项错误;B、多项式2a2b+ab﹣1的二次项系数是1,故此选项错误;C、多项式2a2b+ab﹣1的最高次项是2a2b,故此选项正确;D、多项式2a2b+ab﹣1的常数项是﹣1,故此选项错误.故选:C.【点评】此题主要考查了多项式,正确掌握多项式次数与系数的确定方法是解题关键.5.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.【分析】根据点到直线的距离是指垂线段的长度,即可解答.【解答】解:线段AD的长表示点A到直线BC距离的是图D,故选:D.【点评】本题考查了点到直线的距离的定义,注意是垂线段的长度,不是垂线段.6.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3B.﹣3C.﹣4D.4。
人教版2017~2018学年七年级上期末考试数学试题及答案

人教版2017~2018学年七年级上期末考试数学试题及答案2017-2018学年度(上)七年级期末质量监测数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.-3的相反数是()A。
3B。
-3C。
0D.无法确定2.下列各组数中,相等的是()A。
(-3)与-3B。
|-3|与-3C。
(-3)与-3D。
|3|与-33.下列说法中正确的个数是()①a一定是正数;②- a一定是负数;③- (- a)一定是正数;④a一定是分数。
A。
0个B。
1个C。
2个D。
3个4.下列图形不是正方体的展开图的是()A。
B。
C。
D。
5.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第7个图案中▲的个数为().A.28B.25C.22D.216.方程2x-1=-5的解是()A.3B.-3C.2D.-27.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心。
据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A。
5×1010千克B。
50×109千克C。
5×109千克D。
0.5×1011千克8.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A。
B。
C。
D。
9.下列结论正确的是()A。
直线比射线长B。
一条直线就是一个平角C。
过三点中的任两点一定能作三条直线D。
经过两点有且只有一条直线10.文具店老板以每个144元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A。
不赚不赔B。
亏12元C。
盈利8元D。
亏损8元二、填空题(本题有6小题,每小题3分,共18分)11.数轴上的点A、B位置如图所示,则线段AB的长度为3.12.单项式- ab的系数是-1;多项式xy+2x+5y-25是次项式2x。
人教版数学七年级上学期期末测试题 (4)含答案
人教版数学七年级上学期期末测试题一、选择题(共10小题,每小题3分,共30分)1.﹣(﹣3)的绝对值是()A.﹣3B.C.3D.﹣2.2017年5月12日,利用微软Windows漏洞爆发的wannaCry勒索病毒,目前已席卷全球150多个国家,至少30万台电脑中招,预计造成的经济损失将达到80亿美元,世人再次领教了黑客的厉害,将数据80亿用科学记数法表示为()A.8×108B.8×109C.0.8×109D.0.8×10103.下列式子计算正确的个数有()①a2+a2=a4;②3xy2﹣2xy2=1;③3ab﹣2ab=ab;④(﹣2)3﹣(﹣3)2=﹣17.A.1个B.2个C.3个D.0个4.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.5.某商店换季促销,将一件标价为240元的T恤打8折售出,获利20%,则这件T恤的成本为()A.144元B.160元C.192元D.200元6.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣17.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm8.若关于x的方程x m﹣1+2m+1=0是一元一次方程,则这个方程的解是()A.﹣5B.﹣3C.﹣1D.59.有理数a、b在数轴上的位置如图所示,下列各式成立的是()A.b>0B.|a|>一b C.a+b>0D.ab<010.下列等式变形正确的是()A.若a=b,则a﹣3=3﹣b B.若x=y,则=C.若a=b,则ac=bc D.若=,则b=d二、填空题(共6小题,每小题3分,共18分)11.如图,已知∠AOB=90°.若∠1=35°,则∠2的度数是.12.若∠α的补角为76°28′,则∠α=.13.若方程x+5=7﹣2(x﹣2)的解也是方程6x+3k=14的解,则常数k=.14.某学校实行小班化教学,若每间教室安排20名学生,则缺少3间教室;若每间教室安排24名学生,则空出一间教室,那么这所学校共有间教室.15.现定义某种运算“☆”,对给定的两个有理数a,b,有a☆b=2a﹣b.若||☆2=4,则x的值为.16.如图,已知线段AB=16cm,点M在AB上,AM:BM=1:3,P,Q分别为AM,AB的中点,则PQ的长为.三、解答题17.(10分)计算(1)(﹣1)2018×5+(﹣2)3÷4(2)()×24﹣÷(﹣)3﹣|﹣25|.18.(10分)解方程(1)=1.(2)x﹣(3x﹣5)=2(5+x)19.(6分)先化简,再求值:2m2﹣4m+1﹣2(m2+2m﹣),其中m=﹣1.20.(8分)已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.21.(6分)一个角的补角比它的余角的3倍小20°,求这个角的度数.22.(10分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC 和∠COB的度数.23.(10分)某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了9小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A、C两地之间的路程为10千米,求A、B两地之间的路程.24.(12分)某地区居民生活用电基本价格为每千瓦时0.40元,为了提倡节约用电,若每月用电量超过a千瓦时,则超过部分按基本电价提高20%收费.(1)某户八月份用电100千瓦时,共交电费43.20元,求a.(2)若该用户九月份的平均电费为0.42元,则九月份共用电多少千瓦时?应交电费是多少元?2018-2019学年内蒙古巴彦淖尔市临河区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】先根据相反数的定义化简,再根据正数的绝对值等于它本身解答.【解答】解:∵﹣(﹣3)=3,3的绝对值等于3,∴﹣(﹣3)的绝对值是3,即|﹣(﹣3)|=3.故选:C.【点评】本题考查了绝对值的性质,相反数的定义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80亿=8×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据合并同类项的法则和有理数的混合运算进行计算即可.【解答】解:①a2+a2=2a2,故①错误;②3xy2﹣2xy2=xy2,故②错误;③3ab﹣2ab=ab,故③正确;④(﹣2)3﹣(﹣3)2=﹣17,故④正确,故选:B.【点评】本题考查了合并同类项的法则和有理数的混合运算,掌握运算法则是解题的关键.4.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B.【点评】考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.5.【分析】先设成本为x元,则获利为20%x元,售价为0.8×240元,从而根据等量关系:售价=进价+利润列出方程,解出即可.【解答】解:设成本为x元,则获利为20%x元,售价为0.8×240元,由题意得:x+20%x=0.8×240,解得:x=160.即成本为160元.故选:B.【点评】本题考查一元一次方程的应用,是中考的热点,对于本题来说关键是设出未知数,表示出售价、进价、利润,然后根据等量关系售价=进价+利润列方程求解.6.【分析】直接利用同类项的概念得出n,m的值,再利用绝对值的性质求出答案.【解答】解:∵2x2m y3与﹣5xy2n是同类项,∴2m=1,2n=3,解得:m=,n=,∴|m﹣n|=|﹣|=1.故选:B.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.7.【分析】设较长的木条为AB,较短的木条为BC,根据中点定义求出BM、BN的长度,然后分①BC不在AB上时,MN=BM+BN,②BC在AB上时,MN=BM﹣BN,分别代入数据进行计算即可得解.【解答】解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.【点评】本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观.8.【分析】根据一元一次方程的定义求出m的值,代入后求出方程的解即可.【解答】解:∵x m﹣1+2m+1=0是一元一次方程,∴m﹣1=1,∴m=2,即方程为x+5=0,解得:x=﹣5,故选:A.【点评】本题考查了对一元一次方程的定义和解一元一次方程的应用,关键是求出m的值.9.【分析】根据数轴上点的位置判断出a与b的正负,比较即可.【解答】解:由数轴上点的位置得:b<0<a,且|a|<|b|,∴|a|<﹣b,a+b<0,ab<0,故选:D.【点评】此题考查了数轴,绝对值,以及有理数的加法与乘法,熟练掌握运算法则是解本题的关键.10.【分析】根据等式的性质,依次分析各个选项,选出变形正确的选项即可.【解答】解:A.若a=b,则a﹣3=b﹣3,A项错误,B.若x=y,当a=0时,和无意义,B项错误,C.若a=b,则ac=bc,C项正确,D.若=,如果a≠c,则b≠d,D项错误,故选:C.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.【分析】根据角的和差计算即可.【解答】解:∠2=∠AOB﹣∠1=90°﹣35°=55°.故答案为:55°【点评】本题主要考查了角的和差,属于基础题,比较简单.12.【分析】根据互为补角的概念可得出∠α=180°﹣76°28′.【解答】解:∵∠α的补角为76°28′,∴∠α=180°﹣76°28′=103°32′,故答案为:103°32′.【点评】本题考查了余角和补角以及度分秒的换算,是基础题,要熟练掌握.13.【分析】解方程x+5=7﹣2(x﹣2)得到x的值,代入6x+3k=14,得到关于k的一元一次方程,解之即可.【解答】解:解方程x+5=7﹣2(x﹣2)得:x=2,把x=2代入6x+3k=14得:12+3k=14,解得:k=,故答案为:【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.14.【分析】设有x间教室,根据若每间教室安排20名学生,则缺少3间教室,若每间教室安排24名学生,则空出一间教室,可列方程求解.【解答】解:设有x间教室.由题意,得:20(x+3)=24(x﹣1),解得x=21.故答案为:21.【点评】本题考查了列一元一次方程解实际问题的运用,解答时根据学生人数不变建立方程是关键.15.【分析】根据“a☆b=2a﹣b”,设||=m,得到关于m的一元一次方程,解之,根据不绝对值的定义,得到关于x的一元一次方程,解之即可.【解答】解:设||=m,则m☆2=4,根据题意得:2m﹣2=4,解得:m=3,则||=3,即=3或=﹣3,解得:x=﹣5或7,故答案为:﹣5或7.【点评】本题考查了解一元一次方程和有理数的混合运算,正确掌握一元一次方程的解法和有理数的混合运算是解题的关键.16.【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,于是得到结论.【解答】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=AM=2cm,AQ=AB=8cm,∴PQ=AQ﹣AP=6cm;故答案为:6cm.【点评】本题考查了两点间的距离.解题时,注意“数形结合”数学思想的应用.三、解答题17.【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.注意乘法分配律的灵活运用.【解答】解:(1)(﹣1)2018×5+(﹣2)3÷4=1×5+(﹣8)÷4=5﹣2=3;(2)()×24﹣÷(﹣)3﹣|﹣25|=15﹣16﹣÷(﹣)﹣25=15﹣16+2﹣25=﹣24.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.【分析】(1)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案.【解答】解:(1)去分母得:2(2x+1)﹣(2x﹣1)=6,去括号得:4x+2﹣2x+1=6,移项得:4x﹣2x=6﹣2﹣1,合并同类项得:2x=3,系数化为1得:x=,(2)去分母得:2x﹣(3x﹣5)=4(5+x),去括号得:2x﹣3x+5=20+4x,移项得:2x﹣3x﹣4x=20﹣5,合并同类项得:﹣5x=15,系数化为1得:x=﹣3.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.19.【分析】原式去括号合并得到最简结果,将m的值代入计算即可求出值.【解答】解:2m2﹣4m+1﹣2(m2+2m﹣)=2m2﹣4m+1﹣2m2﹣4m+1=﹣8m+2,当m=﹣1时,原式=8+2=10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.【点评】此题主要考查学生对比较线段的长短的掌握情况,比较简单.21.【分析】首先设这个角的度数为x°,则这个角的补角为(180﹣x)°,余角为(90﹣x)°,根据题意列出方程即可.【解答】解:设这个角的度数为x°,由题意得:180﹣x=3(90﹣x)﹣20,解得:x=35.答:这个角的度数为35°.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角22.【分析】根据角平分线的定义得到∠BOE=∠AOB=45°,∠COF=∠BOF=∠BOC,再计算出∠BOF=∠EOF﹣∠BOE=15°,然后根据∠BOC=2∠BOF,∠AOC=∠BOC+∠AOB进行计算.【解答】解:∵OE平分∠AOB,OF平分∠BOC,∴∠BOE=∠AOB=×90°=45°,∠COF=∠BOF=∠BOC,∵∠BOF=∠EOF﹣∠BOE=60°﹣45°=15°,∴∠BOC=2∠BOF=30°;∠AOC=∠BOC+∠AOB=30°+90°=120°.【点评】本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.23.【分析】设C、B两码头相距xkm,则A、B两码头之间的距离为(x+10)km,根据顺流航行的时间+逆流航行的时间=9h建立方程求出其解即可.【解答】解:设C、B两码头相距xkm,则A、B两码头之间的距离为(x+10)km,由题意,得解得:x=30,则A、B两码头间的距离为:30+10=40(km)答:A,B两地之间的路程是40km.【点评】本题考查了一元一次方程的应用,航行问题的数量关系的运用,顺水速度=静水速度+水速,逆水速度=静水速度﹣水速,列一元一次方程解实际问题的运用,解答时根据行程问题的数量关系建立方程是关键.24.【分析】(1)根据题中所给的关系,找到等量关系,共交电费是不变的,然后列出方程求出a;(2)先设九月份共用电x千瓦时,从中找到等量关系,共交电费是不变的,然后列出方程求出.【解答】解:(1)根据题意可得:0.4a+0.4(1+20%)(100﹣a)=43.20解得:a=60答:a为60(2)设九月份共用电x千瓦0.42x=0.4×60+0.48×(x﹣60)解得:x=80∴0.42×80=33.6元答:九月份共用电80千瓦时,应交电费是33.6元.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
人教版七年级上册数学期末检测卷(一)(含答案)
人教版数学七年级上册期末检测卷(一)时间:100分钟满分:120分一、选择题(每小题3分,共30分)1. |-2018|的相反数是( )A. 2018B. -2018C.12018D. -120182. A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是( )A BC D3. 已知-18x3y2n与2x3m y2是同类项,则mn的值是( )A. 1B. 3C. 6D. 94. 下列运算正确的是( )A. 8x-6x=2B. a+8b=9abC. -(x-y)=y+xD. 9ab-8ba=ab5. 下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )A B C D6. 某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A. 240元B. 250元C. 280元D. 300元7. 数x,y在数轴上对应点的位置如图所示,则化简|x+y|-|y-x|的结果是( )A. 0B. 2xC. 2yD. 2x-2y8.如图,下面几何体,从左边看得到的平面图形是( )9. 已知M ,N ,P ,Q 四点的位置如图所示,下列结论中,正确的是( )A. ∠NOQ =42°B. ∠NOP =132°C. ∠PON 比∠MOQ 大D. ∠MOQ 与∠MOP 互补10. 观察图和所给表格回答:当图形的周长为80时,梯形的个数为( )A. 25B. 26C. 27D. 28二、填空题(每小题3分,共24分)11. 上海中信大厦是中国第一、世界第二高的摩天大楼,它塔冠上的风力发电机每年可以产生1189000千瓦时的绿色电力,1189000这个数用科学记数法可表示为 .12. 已知x =23是方程3(m -34x )+32x =5m 的解,则m = .13. 式子5m +14与2(m -14)的值互为相反数,则m 的值等于 .14. 如图,点O 在直线AB 上,射线OC 平分∠DOB ,若∠COB =35°,则∠AOD = .第14题 第15题15. 如图,将长方形纸片ABCD 的∠C 沿GF 折叠(点F 在BC 上,不与点B ,C 重合),使点C落在长方形内部点E 处,若EH 平分∠BFE ,则∠GFH 的度数是 .16. 已知A =3x 2+3y 2-5xy ,B =4x 2-3y 2+2xy ,当x =-1,y =1时,则2A -3B = . 17. 某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件 元.18. 将正整数按如图方式进行有规律的排列,第2行最后一个数是4,第3行最后一个数是7,第4行最后一个数是10,…,依此类推,则2018在第 行.三、解答题(66分)19. (8分)计算:(1)-14-(-6)+2-3×(-13); (2)317×(317-713)×722÷1121.20. (8分)解下列方程:(1)2(3-x )=-4(x +5); (2)74x -582x =1.21. (8分)如图,在同一直线上有四点A ,B ,C ,D ,已知AD =59DB ,AC =95CB ,且CD =4 cm ,求AB 的长.22. (10分)先化简,再求值:5a 2+3ab +2(a -ab )-(5a 2+ab -b 2),其中a ,b 满足|a +1|+(b -12)2=0.23. (10分)一艘载重480吨的船,容积是1050立方米,现有甲种货物450立方米,乙种货物350吨,而甲种货物每吨体积2.5立方米,乙种货物每立方米0.5吨.问是否都能装上船?如果不能,请说明理由;并求出为了最大限度的利用船的载重量和容积,两种货物应各装多少吨?24. (10分)某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样? (2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?25. (12分)点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC =65°,将一直角三角板的直角顶点放在点O 处.(1)如图1,将三角板MON 的一边ON 与射线OB 重合时,求∠MOC 的度数;(2)如图2,将三角板MON 绕点O 逆时针旋转一定角度,此时OC 是∠MOB 的平分线,求∠BON 和∠CON 的度数;(3)将三角板MON 绕点O 逆时针旋转至图3时,∠NOC =14∠AOM ,求∠NOB 的度数.。
人教版数学七年级上学期期末测试题 (13)含答案
人教版数学七年级上学期期末测试题一、单项选择题(每小题3分,共18分)1.如果零上2℃记作+2℃,那么零下3℃记作()A.﹣3℃B.﹣2℃C.+3℃D.+2℃2.港珠澳大桥全长约为55000米,将数据55000科学记数法表示为()A.0.55×105B.5.5×104C.55×103D.550×1023.如图所示的几何体从上面看得到的图形是()A.B.C.D.4.若x﹣3=2y,则x﹣2y的值是()A.2B.﹣2C.3D.﹣35.下列计算中,正确的是()A.x+x2=x3B.2x2﹣x2=1C.x2y﹣xy2=0D.x2﹣2x2=﹣x26.商店对某种手机的售价作了调整,按原售价的8折出售,此时的利润率为14%,若此种手机的进价为1200元,设该手机的原售价为x元,则下列方程正确的是()A.0.8x﹣1200=1200×14%B.0.8x﹣1200=14%xC.x﹣0.8x=1200×14%D.0.8x﹣1200=14%×0.8x二、填空题(每小题3分,共30分)7.0的相反数是.8.已知|a+1|+(b﹣3)2=0,则a b=.9.种树时,只要定出两个树坑的位置,就能使同一行树坑在同一条直线上,其中的数学道理是:.10.若﹣4x a y+x2y b=﹣3x2y,则a+b=.11.如图,图中阴影部分的面积是.12.将一副三角尺的直角顶点重合并按如图所示摆放,当AD平分∠BAC时,∠CAE=.13.若当x=﹣2018时,式子ax3﹣bx﹣3的值为5,则当x=2018时,式子ax3﹣bx﹣3的值为.14.如图,点A在点O的北偏东60°的方向上,点B在点O的南偏东40°的方向上,则∠AOB的度数为°.15.如图,点C在线段AB上,点E、F分别是AB、AC的中点,若BC=4,则EF=.16.某糕点厂中秋节前要制作一批盒装月饼,每盒中2块大月饼和4块小月饼,制作1块大月饼要用0.05kg面粉,制作1块小月饼要用0.02kg面粉,若现共有面粉540kg,设可以生产x盒盒装月饼,则可列方程为.三、解答题(每小题5分,共15分)17.12﹣(﹣18)+(﹣7)﹣15.18.计算:.19.计算(﹣10)3+[(﹣4)2﹣(1﹣32)×2].四、解谷答题〔每小题7分,共21分)20.解下列方程:8x﹣3(3x+2)=6.21.22.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=,b=﹣.五、解答题(每小题8分,共16分)23.在某年全军足球甲级A组的前11场比赛中,某队保持连续不败,共积23分.按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?24.新定义:若∠α的度数是∠β的度数的n倍,则∠α叫做∠β的n倍角.(1)若∠M=10°21′,请直接写出∠M的3倍角的度数;(2)如图1,若∠AOB=∠BOC=∠COD,请直接写出图中∠AOB的所有2倍角;(3)如图2,若∠AOC是∠AOB的3倍角,∠COD是∠AOB的4倍角,且∠BOD=90°,求∠BOC的度数.六、解答题(每小题10分共20分)25.某玩具厂要生产500个芭比娃娃,此生产任务由甲、乙、丙三台机器承担,甲机器每小时生产12个,乙、丙两台机器的每小时生产个数之比为4:5.若甲、乙、丙三台机器同时生产,刚好在10小时25分钟完成任务.(1)求乙、丙两台机器每小时各生产多少个?(2)由于某种原因,三台机器只能按一定次序循环交替生产,且每台机器在每个循环中只能生产1小时,即每个循环需要3小时.①若生产次序为甲、乙、丙,则最后一个芭比娃娃由机器生产完成,整个生产过程共需小时;②若想使完成生产任务的时间最少,直接写出三台机器的生产次序及完成生产任务的最少时间.26.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.2018-2019学年吉林省吉林市七年级(上)期末数学试卷参考答案与试题解析一、单项选择题(每小题3分,共18分)1.【分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作﹣3℃,故选:A.【点评】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:55000=5.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个矩形,中间为圆,如图所示:故选:B.【点评】本题考查了简单组合体的三视图,注意从上边看得到的图形是俯视图.4.【分析】将x﹣3=2y移项即可得.【解答】解:∵x﹣3=2y,∴x﹣2y=3,故选:C.【点评】本题主要考查代数式求值,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.5.【分析】根据同类项的定义和合并同类项的法则进行解答.【解答】解:A、x与x2不是同类项,不能合并,故本选项错误;B、原式=x2,故本选项错误;C、x2y与xy2不是同类项,不能合并,故本选项错误;D、x2﹣2x2=﹣x2,故本选项正确.故选:D.【点评】考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.6.【分析】题目已经设出该手机的原售价为x元,则按原价的8折出售为0.8x,根据“此时的利润率为14%,若此种手机的进价为1200元”,结合进价×利润率=出售价﹣进价,列出方程即可.【解答】解:设该手机的原售价为x元,根据题意得:0.8x﹣1200=1200×14%,故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,正确找出等量关系,列出一元一次方程是解题的关键.二、填空题(每小题3分,共30分)7.【分析】互为相反数的和为0,那么0的相反数是0.【解答】解:0的相反数是0.故答案为:0.【点评】考查的知识点为:0的相反数是它本身.8.【分析】根据非负数的性质求出a、b的值,再将它们代入a b中求值即可.【解答】解:∵|a+1|+(b﹣3)2=0,∴a+1=0,b﹣3=0,∴b=3,a=﹣1,则a b=(﹣1)3=﹣1.故答案为:﹣1【点评】本题主要考查了非负数的性质,解题的关键是掌握:几个非负数的和等于0,则每一个算式都等于0.9.【分析】根据公理“两点确定一条直线”,来解答即可【解答】解:∵只要定出两个树坑的位置,这条就确定了,∴能使同一行树坑在同一条直线上.故答案为:两点确定一条直线.【点评】本题考查的是“两点确定一条直线”在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.10.【分析】两个单项式合并成一个单项式,说明这两个单项式为同类项.【解答】解:由同类项的定义可知a=2,b=1,∴a+b=3.【点评】本题考查的知识点为:同类项中相同字母的指数是相同的.11.【分析】根据题意和图形,可以用代数式表示出图中阴影部分的面积,本题得以解决.【解答】解:由题意可得,图中阴影部分的面积是:(x+3)(x+2)﹣2x=x2+5x+6﹣2x=x2+3x+6,故答案为:x2+3x+6.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.12.【分析】依据同角的余角相等,即可得到∠CAE=∠BAD,再根据AD平分∠BAC,即可得出∠CAE=∠BAD=45°.【解答】解:∵∠EAD=∠CAB=90°,∴∠CAE=∠BAD,∵AD平分∠BAC,∴∠BAD=45°,∴∠CAE=45°,故答案为:45°.【点评】此题主要考查了角平分线的定义以及互余两角的定义,正确掌握互余两角的定义是解题关键.13.【分析】把x=﹣2018代入代数式得到﹣20183a+2018b=8,根据添括号法则代入计算即可.【解答】解:当x=﹣2018时,式子ax3﹣bx﹣3的值为5,∴﹣20183a+2018b﹣3=5,∴﹣20183a+2018b=8,当x=2018时,ax3﹣bx﹣3=20183a﹣2018b﹣3=﹣(﹣20183a+2018b)﹣3=﹣8﹣3=﹣11,故答案为:﹣11.【点评】本题考查的是代数式求值,掌握乘方法则,添括号法则是解题的关键.14.【分析】根据方向角的定义以及角的和差,可得∠AOB的度数.【解答】解:∵点A在点O的北偏东60°的方向上,点B在点O的南偏东40°的方向上,∴∠AOB=180°﹣60°﹣40°=80°,故答案为:80.【点评】本题考查了方向角的定义,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边.15.【分析】设CE=x,则BE=x+4,根据线段中点的定义得到AE=BE=x+4,求得AC=AE+CE =2x+4,根据线段中点的定义得到CF=AC=x+2,根据线段的和差即可得到结论.【解答】解:设CE=x,则BE=x+4,∵点E是AB的中点,∴AE=BE=x+4,∴AC=AE+CE=2x+4,∵点F是AC的中点,∴CF=AC=x+2,∴EF=CF﹣CE=x+2﹣x=2,故答案为:2.【点评】本题考查了两点间的距离,利用了线段中点的性质得出CM、CN的长,线段的和差得出答案.16.【分析】题目已经设出可以生产x盒盒装月饼,则每盒中2块大月饼的质量为0.05×2x,每盒中4块小月饼的质量为0.02×4x,根据“现共有面粉540kg”,找出等量关系,就可以列出方程.【解答】解:设可以生产x盒盒装月饼,根据题意得:0.05×2x+0.02×4x=540,故答案为:0.05×2x+0.02×4x=540.【点评】本题考查了由实际问题抽象出一元一次方程,正确找出等量关系,列出一元一次方程是解题的关键.三、解答题(每小题5分,共15分)17.【分析】将减法转化为加法,计算加法即可得.【解答】解:原式=12+18﹣7﹣15=30﹣22=8.【点评】本题主要考查有理数的加减混合运算,解题的关键是熟练掌握加减运算法则.18.【分析】本题需先根据有理数的混合运算顺序和法则,分别进行计算,再把所得结果合并即可.【解答】解:原式=,=﹣8.【点评】本题主要考查了有理数的混合运算,在解题时要注意运算顺序和符号是本题的关键.19.【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【解答】解:原式=﹣1000+[16﹣(﹣8)×2]=﹣1000+32=﹣968.【点评】本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.四、解谷答题〔每小题7分,共21分)20.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:8x﹣9x﹣6=6,移项合并得:﹣x=12,解得:x=﹣12.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:4(5x+4)+3(x﹣1)=24﹣(5x﹣5)去括号得:20x+16+3x﹣3=24﹣5x+5移项合并得:28x=16系数化为1得:.【点评】去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.22.【分析】先根据整式的运算法则化简,然后将a与b的值代入原式即可求出答案.【解答】解:原式=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2当a=,b=时,原式=12××()﹣6××=﹣1=【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.五、解答题(每小题8分,共16分)23.【分析】可设该队共胜了x场,根据“11场比赛保持连续不败”,那么该队平场的场数为11﹣x,由题意可得出:3x+(11﹣x)=23,解方程求解.【解答】解:设设该队共胜了x场,根据题意得:3x+(11﹣x)=23,解得x=6.故该队共胜了6场.【点评】此题考查了一元一次方程的应用,列一元一次方程解足球赛问题的关键是抓住胜的场数与平的场数的关系,根据积分总数列出方程.24.【分析】(1)根据题意列式计算即可;(2)根据题意列式计算即可;(3)设∠AOB=α,则∠AOC=3α,∠COD=4α,得到∠BOD=6α,根据∠BOD=90°,求得α=15°,于是得到∠BOC=90°﹣4×15°=30°.【解答】解:(1)∵∠M=10°21′,∴3∠M=3×10°21′=31°3′;(2)∵∠AOB=∠BOC=∠COD,∴∠AOC=2∠AOB,∠BOD=2∠AOB;(3)∵∠AOC是∠AOB的3倍角,∠COD是∠AOB的4倍角,∴设∠AOB=α,则∠AOC=3α,∠COD=4α,∴∠AOD=7α,∴∠BOD=6α,∵∠BOD=90°,∴α=15°,∴∠BOC=90°﹣4×15°=30°.【点评】此题主要考查了角的计算以及余角定义,关键是理清图中角之间的关系,掌握两角和为90°为互余.六、解答题(每小题10分共20分)25.【分析】(1)设乙机器每小时生产4x个,则丙机器每小时生产5x个,依据甲、乙、丙三台机器同时生产,刚好在10小时25分钟完成任务.列一元一次方程即可解答;(2)每次循环交替生产48个零件,那么最后一次循环是500除以48的余数,然后按顺序计算即可;(3)速度快的先做即可.【解答】解:(1)设乙机器每小时生产4x个,则丙机器每小时生产5x个,10小时25分钟=小时.依题意得:(12+4x+5x)=500解得:x=4,乙机器每小时生产4x=16个,丙机器每小时生产5x=20个,答:乙机器每小时生产16个,丙机器每小时生产20个,(2)500÷(12+16+20)=10……20,按甲、乙、丙次序交替生产循环10次,共10×3=30小时,最后20个先由甲生产1小时12个,余下8个由乙生产8÷16=0.5小时,∴整个生产过程共需30+1+0.5=31.5小时,故答案为:乙;31.5(3)使完成生产任务的时间最少,按丙、乙、甲次序交替生产循环,生产循环10次,共10×3=30小时,最后20个由丙生产1小时即可,共需30+1=31小时.答:使完成生产任务的时间最少,按丙、乙、甲次序交替生产循环共需31小时.【点评】本题考查了一元一次方程应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,设未知数,得到方程即可解答.26.【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.【解答】解:(1)当t=1时,AP=1,BQ=2,∵AB=4﹣(﹣2)=6,∴PQ=AB﹣AP﹣BQ=3,即d=3.故答案为3;(2)线段AB的中点表示的数是:=1.①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,AP=1×=,则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.故d的值为3或;(3)当点P运动到线段AB的3等分点时,分两种情况:①如果AP=AB=2,那么t==2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=AB=4,那么t==4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4;(4)当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为或5.【点评】本题考查了一元一次方程的应用,数轴,两点间的距离,理解题意,分清动点P与动点Q的运动方向、运动速度与运动时间,从而正确进行分类讨论是解题的关键.。
2018-2019学年七年级上学期期末考试数学试题(含两套)
2018-2019学年七年级(上)期末数学试卷一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.﹣5的绝对值是()A.﹣5B.5C.D.﹣2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10133.已知代数式﹣3a m﹣1b6和ab2n是同类项,则m﹣n的值是()A.﹣1B.﹣2C.﹣3D.04.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有()A.1个B.2个C.3个D.4个5.某书店把一本书按进价提高60%标价,再按七折出售,这样每卖出一本书就可盈利6元,设每本书的进价是x元,根据题意列一元一次方程,正确的是()A.(1+60%)x=6B.60%x﹣x=6C.(1+60%)x﹣x=6D.(1+60%)x﹣x=66.已用点A、B、C、D、E的位置如图所示,下列结论中正确的是()A.∠AOB=130°B.∠AOB=∠DOEC.∠DOC与∠BOE互补D.∠AOB与∠COD互余7.已知线段AB=6,在直线AB上画线段BC,使BC=2,则线段AC的长()A.2B.4C.8D.8或48.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b二、填空题(每题2分,共16分,把答案写在题中横线上)9.|﹣|的相反数是.10.请写出一个单项式,同时满足下列条件:①含有字母m、n;②系数是负整数;③次数是3,你写的单项式为.11.如图,在正方形网格中,点O、A、B、C、D均是格点.若OE平分∠BOC,则∠DOE 的度数为°.12.已知|x+1|+(3﹣y)2=0,则x y的值是.13.已知a+b=2,则多项式2﹣3a﹣3b的值是.14.若一个角比它的补角大36°48′,则这个角为°′.15.甲组有33个人,乙组有27个人,从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,求变化后乙组有人.16.有一列数4,7,x3,x4,…,x n,从第二个数起,每一个数都是它前一个数和后一个数和的一半,则当n≥2时,x n=.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.(8分)计算:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019(2)﹣×[﹣32×(﹣)2﹣2]18.(4分)解方程:x﹣=1﹣19.(5分)先化简,再求值:3x2y﹣[2x2y﹣x(xy+3)],其中x=﹣,y=2.20.(5分)已知多项式A、B,其中A=x2+2x﹣1,某同学在计算A+B时,由于粗心把A+B 看成了A﹣B求得结果为﹣3x2+2x﹣1,请你算出A+B的正确结果.四、解答题(每题8分,共16分)21.(8分)如图,N为线段AC中点,点M、点B分别为线段AN、NC上的点,且满足AM:MB:BC=1:4:3.(1)若AN=6,求AM的长.(2)若NB=2,求AC的长.22.(8分)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE(1)若∠BOC=60°,则∠AOF的度数为.(2)若∠COF=x°,求∠BOC的度数.五、解答题(23题10分,24题10分,25题10分,共30分)23.(10分)上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1180公里,问两车几点相遇?24.(10分)某商场购进西装30件,衬衫45件,共用了39000元,其中西装的单价是衬衫的5倍.(1)求西装和衬衫的单价各为多少元?(2)商场仍需要购买上面的两种产品55件(每种产品的单价不变),采购部预算共支出32000元,财会算了一下,说:“如果你用这些钱共买这两种产品,那么账肯定算错了”请你用学过的方程知识解释财会为什么会这样说?25.(10分)如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:3,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度.(2)在(1)旋转过程中,当旋转至图3的位置时,使得OM在∠BOC的内部,ON落在直线AB下方,试探究∠COM与∠BON之间满足什么等量关系,并说明理由.2018-2019学年辽宁省鞍山市七年级(上)期末数学试卷参考答案与试题解析一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.【分析】根据负数的绝对值等于它的相反数计算即可.【解答】解:﹣5的绝对值是5,故选:B.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】由同类项的定义可先求得m和n的值,从而求出代数式的值.【解答】解:∵代数式﹣3a m﹣1b6和ab2n是同类项,∴m﹣1=1,2n=6,∴m=2,n=3,∴m﹣n=2﹣3=﹣1,故选:A.【点评】本题考查了同类项定义,定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.4.【分析】根据有理数的分类可得A的正误;根据射线的表示方法可得B的正误;根据相反数的定义可得C的正误;根据线段的性质可得D的正误.【解答】解:①一个有理数不是正数就是负数,说法错误,0既不是正数也不是负数;②射线AB与射线BA是同一条射线,说法错误,端点不同;③0的相反数是它本身,说法正确;④两点之间,线段最短,说法正确.故选:B.【点评】此题主要考查了相反数、有理数、线段的性质、射线的表示方法,关键是牢固掌握基础知识.5.【分析】设每本书的进价是x元,根据利润=售价﹣进价,即可得出关于x的一元一次方程,此题得解.【解答】解:设每本书的进价是x元,根据题意得:(1+60%)x•﹣x=6.故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.6.【分析】由题意得出∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,得出∠DOC+∠BOE=180°即可.【解答】解:∵∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,∴∠DOC+∠BOE=180°;故选:C.【点评】本题考查了余角和补角;根据题意得出各个角的度数是关键.7.【分析】由于在直线AB上画线段BC,那么CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC;②当C在线段AB的延长线上,此时AC=AB﹣BC.然后代入已知数据即可求出线段AC的长度.【解答】解:∵在直线AB上画线段BC,∴CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC=6﹣2=4cm;②当C在线段AB的延长线上,此时AC=AB+BC=6+2=8cm.故选:D.【点评】此题主要考查了线段的和差的计算.在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.【分析】根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c﹣a>0,a+b<0,根据绝对值的性质化简计算.【解答】解:由数轴可知,b<a<0<c,∴c﹣a>0,a+b<0,则|c﹣a|﹣|a+b|=c﹣a+a+b=c+b,故选:A.【点评】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.9.【分析】根据负数的绝对值是它的相反数,可得负数的绝对值,根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:,的相反数是﹣,故答案为:﹣.【点评】本题考查了相反数,先求绝对值,再求相反数.10.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据题意,得﹣2m2n(答案不唯一),故答案为:﹣2m2n(答案不唯一).【点评】本题考查了单项式的定义,解答本题的关键是理解单项式的定义中的单项式的次数的正确含义.11.【分析】观察图形可知,∠BOC=135°,∠COD=45°,根据角平分线的定义可得∠EOC,再根据角的和差关系即可求解.【解答】解:由图形可知,∠BOC=135°,∠COD=45°,∵OE平分∠BOC,∴∠EOC=67.5°,∴∠DOE=67.5°﹣45°=22.5°.故答案为:22.5【点评】此题考查了角的计算,角平分线的定义,关键是观察图形可得∠BOC=135°,∠COD=45°.12.【分析】直接利用非负数的性质以及偶次方的性质得出x,y的值进而得出答案.【解答】解:∵|x+1|+(3﹣y)2=0,∴x+1=0,3﹣y=0,解得:x=﹣1,y=3,则x y的值是:(﹣1)3=﹣1.故答案为:﹣1.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.13.【分析】观察题中的两个代数式a+b和2﹣3a﹣3b,可以发现,2﹣3a﹣3b=2﹣3(a+b),因此可整体代入a+b=2,求出结果.【解答】解:2﹣3a﹣3b=2﹣3(a+b)因为a+b=2,所以原式=2﹣3×2=2﹣6=﹣4故答案为:﹣4.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,应考虑a+b为一个整体,然后利用“整体代入法”求代数式的值.14.【分析】设这个角为x°,则这个角的补角为(180﹣x)°,根据题意可得方程x﹣(180﹣x)=36.8,再解即可.【解答】解:36°48′=36.8°,设这个角为x°,则这个角的补角为(180﹣x)°,x﹣(180﹣x)=36.8,解得:x=108.4,108.4°=108°24′,故答案为:108;24.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.【分析】根据从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,可以列出相应的方程,从而可以解答本题.【解答】解:设变化后乙组有x人,33+(27﹣x)=3x,解得,x=15,即变化后乙组有15人,故答案为:15.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.16.【分析】根据题意分别计算出x3,x4,x5…,据此可得后面每个数均比前一个数大3,据此求解可得.【解答】解:由题意知=7,解得x3=10,=10,解得x4=13,=13,解得x5=16,……∴第n个数x n为3n+1,故答案为:3n+1.【点评】本题主要考查数字的变化规律,解题的关键是根据题意得出后面每个数均比前一个数大3的规律.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.【分析】(1)先算乘方,再算乘除法,最后加减法即可解答本题;(2)先算中括号里的,再根据有理数的乘法即可解答本题.【解答】解:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019=﹣4+8×(﹣)×﹣(﹣1)=﹣4﹣1+1=﹣4;(2)﹣×[﹣32×(﹣)2﹣2]====9.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.18.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:4x﹣(x﹣1)=4﹣2(3﹣x),去括号得:4x﹣x+1=4﹣6+2x,移项合并得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=3x2y﹣(2x2y﹣x2y﹣3x)=3x2y﹣(x2y﹣3x)=3x2y﹣x2y+3x=2x2y+3x当x=,y=2时,原式=2××2+3×()=1=.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:∵A=x2+2x﹣1,A﹣B=﹣3x2+2x﹣1,∴A+B=2A﹣(A﹣B)=2x2+4x﹣2﹣(﹣3x2+2x﹣1)=2x2+4x﹣2+3x2﹣2x+1=5x2+2x﹣1.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.四、解答题(每题8分,共16分)21.【分析】(1)根据线段中点的定义得到AC=2AN=12,于是得到AM=×AC=×12=;(2)根据线段中点的定义得到AN=AC,得到AB=AC=AC,列方程即可得到结论.【解答】解:(1)∵AN=6,N为线段AC中点,∴AC=2AN=12,∵AM:MB:BC=1:4:3.∴AM=×AC=×12=;(2)∵N为线段AC中点,∴AN=AC,∵AM:MB:BC=1:4:3,∴AB=AC=AC,∴BN=AB﹣AN=AC﹣AC=AC=2,∴AC=16.【点评】本题考查的是两点间的距离,正确理解线段中点的意义是解题的关键.22.【分析】(1)根据对顶角的性质得到∠AOD=∠BOC=60°,根据垂直的定义得到∠DOE=90°,根据角平分线的定义即可得到结论;(2)由垂直的定义得到∠DOE=∠COE=90°,根据角平分线的定义得到∠AOE=2∠EOF=180°﹣2x°,根据对顶角的性质即可得到结论.【解答】解:∵∠AOD=∠BOC=60°,∵OE⊥OC于点O,∴∠DOE=90°,∴∠AOE=30°,∵OF平分∠AOE,∴∠AOF=∠AOE=15°,故答案为:15°;(2)∵OE⊥OC于点O,∴∠COE=∠DOE=90°,∵∠COF=x°,∴∠EOF=x°﹣90°,∵OF平分∠AOE,∴∠AOE=2∠EOF=2x°﹣180°,∴∠AOD=90°﹣∠AOE=270°﹣2x°,∴∠BOC=∠AOD=270°﹣2x°.【点评】本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足,垂线的性质过一点有且只有一条直线与已知直线垂直.五、解答题(23题10分,24题10分,25题10分,共30分)23.【分析】设从北京到上海的G5次列车行驶x小时与G102次列车相遇,根据相遇时,两车行驶的路程和等于1180公里列出方程,求解即可.【解答】解:设从北京到上海的G5次列车行驶x小时与G102次列车相遇,根据题意,得200(x+)+280x=1180,解得x=2.25,2.25时=2时15分,7时+2时15分=9时15分.答:两车于9点15分相遇.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.【分析】(1)设衬衫的单价为x元,则西装的单价为5x元,由两种产品共39000元为等量关系建立方程求出其解即可;(2)设单价为21元的A种产品为y件,单价为25元的B种产品为(105﹣y)件,根据支出总额为2447元为等量关系建立方程求出其解就可以判断结论.【解答】解:(1)设衬衫的单价为x元,则西装的单价为5x元,根据题意,得30×5x+45x=39000解得:x=200 则:5x=1000答:衬衫的单价为200元,则西装的单价为1000元;(2)设购买衬衫的数量为y件,则购买西装的数量为(55﹣y)件,根据题意,得200y+1000(55﹣y)=32000,解得:y=28.75(不符合题意),所以,帐肯定算错了.【点评】本题考查了列一元一次方程的运用,解答时找准题目的等量关系是解答本题的关键.25.【分析】(1)根据OM的初始位置和旋转后在图2的位置进行分析;(2)依据已知先计算出∠BOC=135°,则∠MOB=135°﹣MOC,根据∠BON与∠MOB互补,则可用∠MOC表示出∠BON,从而发现二者之间的等量关系.【解答】解:(1)OM由初始位置旋转到图2位置时,在一条直线上,所以旋转了180°.故答案为180;(2)∵∠AOC:∠BOC=1:3,∴∠BOC=180°×=135°.∵∠MOC+∠MOB=135°,∴∠MOB=135°﹣∠MOC.∴∠BON=90°﹣∠MOB=90°﹣(135°﹣∠MOC)=∠MOC﹣45°.即∠COM﹣∠BON=45°.【点评】本题主要考查了角之间的和差关系,解题时一定要结合图形分析题目.2018—2019 学年度第一学期期末初一年级学业水平测试数学试卷(考试时间120分钟,全卷满分120分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第3题)A.B.C.D.七年级上期末模拟考试数学试卷说明:1. 本试卷分为第I卷和第Ⅱ卷. 第I卷为选择题,第Ⅱ卷为非选择题. 全卷共6页. 考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效,考试结束后,将答题卡交回.2. 本试卷满分120分,答题时间为100分钟.第Ⅰ卷选择题(共36分)一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1. 3的相反数是A. -3B.31- C.31D. 32. 据媒体报道,我国因环境污染造成的巨大经济损失,每年平均高达680000000元,这个数用科学记数法表示正确的是A. 71068⨯元 B. 68108.⨯元 C. 68107.⨯元 D. 68106.⨯元3. 桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,从左面看得到的图形是4. 下列说法中不正确的是①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B在线段AC上,如果AB=BC,则点B是线段AC的中点A. ①B. ②C. ③D. ④5. 一位同学做了以下4道计算题:①2010(1)2010-=;②011--=-();③111236-+=-;④11122÷-=-().请你帮他检查一下,他一共做对了A. 1个题B. 2个题C. 3个题D . 4个题6. 下面的图形中,是三棱柱的平面展开图的是A B C D 7. 下列代数式书写符合要求的是A. 48aB. y x ÷C. 211abc D. )(y x a +8. 将方程:2-342-x =-67-x ,去分母,正确的是A. 2-2 (2x -4)= -(x -7)B. 12-2 (2x -4)= -x -7C. 12-2 (2x -4)= -(x -7)D. 2-(2x -4)= -(x -7)9. 实数a 、b 在数轴上的位置如图,则∣a+b ∣+∣a-b ∣等于A. a 2D. a b 22+10. 足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分. 一个队打了14场比赛,负5场,共得19分,那么这个队胜了A. 3场B. 4场C. 5场D. 6场11. 若1022-=+ab a ,1622=+ab b ,则多项式224b ab a ++与22b a -的值分别为 A. 6,26 B. -6,26 C. -6,-26D. 6,-2612. 如果两条平行线与第三条直线相交,那么一组同旁内角的平分线互相A .垂直B .重合C .平行D .相交,但不垂直第Ⅱ卷 非选择题(84分)二、填空题(本大题共8个小题,每小题3分,本大题满分24分)请把答案直接填在题中的横线上. 13. 计算:-3-7= .abMPN123(第17题图)14. 已知123-m+2)12(+n=0,则=-nm2.15. 如果(2m-6)x│m│-2=m2是关于x的一元一次方程,那么m的值是.16. 将一张长方形纸片按如图所示的方式折叠,BC、BD为折痕,则∠CBD为度.17. 如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于度.18. 把“对顶角相等”改写成“如果……那么……”的形式为.19. 父亲和女儿现在年龄之和是91,当父亲的年龄是女儿现在年龄的2倍的时候,女儿年龄是父亲现在年龄的31,女儿现在年龄是岁.20. 如图,已知点A、B是直线上的两点,AB=12cm,点C在线段AB上,且BC=4cm.点P,Q是直线上的两个动点,点P的速度为1cm/s,点Q的速度为2cm/s,点P,Q分别从点C,B同时出发在直线上运动,则经过s时,线段PQ的长为5cm.三、解答题(第21题16分,第22题10分,第23题6分,本大题满分32分)21. 计算题(每小题4分,共16分)①)2(43-⨯+;②32)2()32(1-⨯--;A BC③21293()12323-÷+-⨯+;④2-[1-(1-0.5×31)]×[2-(-3)2 ]-22 .22. 解方程(每小题5分,共10分) (1)3x -7(x -1)=3-2(x+3) ; (2)17.012.04.01=--+x x .23.(本题6分)若单项式523y x 与 1312---b a y x 是同类项,求下面代数式的值: 5ab 2 -[6a 2b -3(ab 2+2a 2b)].四、列方程解应用题(本大题满分8分)(1)某单位购买A 商品30件,B 商品20件,选用何种方案划算?能便宜多少钱? (2)某单位购买A 商品x 件(x 为正整数),购买B 商品的件数是A 商品件数的2倍少1件. 若两方案的实际付款一样,求x 的值.五、几何题(第25题6分,第26题6分,第27题8分,本大题满分20分) 25.(6分)如图,点C 是线段AB 上的一点,点M 、N 、P 分别是线段AC ,BC ,AB 的中点.(1)若AB=10cm ,则MN= cm ; (2)若AC=3cm ,CP=1cm ,求线段PN 的长.PABC MN26.(6分)如图,已知∠AOC:∠BOC=1:4,OD 平分∠AOB ,且∠COD=36°,求∠AOB 的度数.27.(8分)已知:如图,C ,D 是直线AB 上两点,∠1+∠2=180°,DE 平分∠CDF ,EF ∥AB. (1)求证:CE ∥DF ;(2)若∠DCE=130°,求∠DEF 的度数.OA CDB数学试卷参考答案一、选择题(本大题共12个小题,每小题3分,满分36分)二、填空题(本大题共8个小题,每小题3分,满分24分) 13. -10 14. 10 15. -3 16. 90 17. 36018. 如果两个角是对顶角,那么这两个角相等 19. 28 20.31或1或9或3 s 三、解答题(第21题16分,第22题10分,第23题6分,本大题满分32分)①解:)2(42-⨯+②解:32)2()32(1-⨯--)8(3-+= …………2分 )8()1(12-⨯--= ………………2分 .5-= ………………4分 )8(11-⨯-= ……………………3分 81+=.9= ……………………………4分③解:2312)3221(39+⨯-+÷-④解:2-[1-(1-0.5×31)]×[2-(-3)2 ]-22=9÷3+6-8+9 ……2分 =2―[1―(1―61)]×[2―9]―4 …1分 =3+6-8+9 =2-61×(―7)―4 ………………2分 =9-8+9 =2+67-4 ……………………3分=10. …………………4分 =-65. …………………………4分22. ①3x -7(x -1)=3-2(x+3) ②17.012.04.01=--+x x解:去括号,得 解:整理为 3x -7x +7=3―2x ―6 ……2分1710241010=--+x x …………2分 移项,得 去分母,得3x -7x +2x =3―6―7 ……3分 7(10x +10)―4(2x ―10)=28 ……3分 合并,得 去括号-2x =-10 ………………4分 70x +70-8x +40=28 …………4分 x =5. …………………5分 62x =28―70―4062x =-82x =-3141. ……………………5分 23. 解:由题意1-a =2,3b -1=5,a =-1,b =2. ……………………………………2分 5ab 2 -[6a 2b -3(ab 2+2a 2b)]=5ab 2―[6a 2b -3ab 2-6a 2b] =5ab 2+3ab 2=8ab 2. …………………………………………………………………………………4分 当a =-1,b =2时,原式=8×(-1)×22=-32. …………………………………6分 四、列方程解应用题(本大题满分8分)24.(1)解:方案一:90(1-30%)×30+100(1-15%)×20=90×0.7×30+100×0.85×20=3590(元). ………………………………………………………1分方案二:90(1-20%)×30+100(1-20%)×20=90×0.8×30+100×0.8×20=3760(元). ………………………………………………………2分因为3590<3760,3760-3590=170, ……………………………………………………………3分 所以选用方案一划算,能便宜170元. ………………………………………4分(2)解:购买A 商品x 件,则购买B 商品(2x ―1)件. 根据题意得90(1―20%)x +100(1―15%)(2x ―1)=90(1-20%)x +100(1―20%)(2x ―1) ………6分 63x +170x -85=72x +160x -80x =5. ……………………………………………………………………8分∴x 的值是5.五、几何题(第25题6分,第26题6分,第27题8分,本大题满分20分)25.(1)∵M 、N 分别是AC 、BC 的中点,∴MC =21AC ,CN =21BC. ………………………………………………………1分 ∴MN =MC +CN =21AC +21BC =21(AC +BC )=21AB =21×10=5(cm ). (3)分(2)∵AC =3cm ,CP =1cm ,∴AP =AC +CP =4cm. ∵点P 是线段AB 的中点,∴AB =2AP =8cm ,CB =AB -AC =5cm. …………………………………………4分 ∵点N 是线段CB 的中点,P A B C M N∴CN =21CB =25(cm ). ……………………………………………………………5分 ∴PN =CN -CP =25-1=23(cm ). ………………………………………………6分26. 解:由∠AOC : ∠BOC =1 : 4,设∠AOC =x ,则∠BOC =4x ,∴∠AOB =∠AOC +∠BOC =5x. ……2分 ∵OD 平分∠AOB ,∴∠AOD =21∠AOB =25x. …………3分 ∵∠COD =∠AOD -∠AOC , ∴25x -x =36, x =24°. ………………………………………………………………………5分∴∠AOB =5×24°=120°. …………………………………………………………6分 27.(1)证明:∵C 、D 是直线上两点,∴∠1+∠DCE =180°(邻补角定义). …………………………1分 ∵∠1+∠2=180°,∴∠2=∠DCE. ………………2分∴CE ∥DF (同位角相等,两直线平行). …………………………4分 (2)∵CE ∥DF ,∠DCE =130°,∴∠CDF =180°-∠DCE =50°(两直线平行,同旁内角互补). ………………6分 ∵DE 平分∠CDF ,∴∠CDE =21∠CDF =25°. …………………………………………………………7分 ∵EF ∥AB ,∴∠DEF =∠CDE =25°(两直线平行,内错角相等). …………………………8分OACDB。