低碳钢和铸铁拉伸试验.docx
低碳钢和铸铁的拉伸与压缩试验

低碳钢和铸铁的拉伸与压缩试验一、试验目的1.测定低碳钢在拉伸时的下屈服强度人.、抗拉强度《、断后伸长率4和断面收缩率观看低碳钢在拉伸过程中的各种现象(包括屈服、强化、缩颈及断裂),并绘制拉伸图(F一ΔL曲线)。
2.测定铸铁的抗拉强度兄。
3.测定铸铁的抗压强度,观看低碳钢和铸铁压缩时的变形和破坏现象,并进行比较。
二、试验设施与试样材料试验机,试样分划机或冲点机,游标卡尺,低碳钢和铸铁的拉伸试样,压缩试样。
三、试验步骤1.低碳钢拉伸试验(1)试样预备为便于观看试样标距范围内伸长沿轴向的分布状况和测量拉断后的标距人,在试样平行长度内涂上快干着色涂料,然后用特地的划线机,在标距屋范围内每隔10mm (对长试样)或每隔5mm (对短试样)刻划一根圆周线,或用冲点机冲点标记,将标距L fl分成10格。
因直径d 0沿试样长度不匀称,故用游标卡尺在标距的两端及中间三个横截面I、II、ΠI处,在相互垂直的两个直径方向上各测量一次,记入表1-1,算出各自的平均直径,取其中最小的一个作为原始直径d Q ,计算试样的最小原始横截面面积S 1, , S fl取三位有效数字。
(2)试验机预备依据低碳钢的抗拉强度尼和试样原始横截面面积5。
,由公式尼兀估算拉断试样所需的最大力晨°依据估算的心的大小,选择试验机合适的量程。
试验机调“零工(3)安装试样将试件的一段夹持在固定夹头内,移动可动夹头至适当位置,牢靠地夹好试件的另一端。
(4)检查及试机请老师检查以上步骤完成状况,获得认可后在比例极限内施力至10kN,然后卸力至接近零点,以检查试验机工作是否正常。
(5)施力测读启动试验机加载部分,缓慢匀称地施力。
留意观看试件的拉伸图,参照图5-8所示的几种屈服图形,确定下屈服力记入表・2。
过了屈服阶段后,可用较快的速度施力,直至试样断裂为止。
读出最大力片,记入表Cl-2o(6)取下试样,试验机复位。
(7)依据断口位置采纳直接法或移位法测量拉断后的标距人,并在缩颈最小处两个相互垂直的方向上测量其直径,取其平均值为4,,计算缩颈处最小横截面面积黑,将有关数据填入表l-30需要指出的是,在测量4和Z时,应将断裂试样的两段在断裂处紧密对接在一起,尽量使其轴线位于同始终线上。
低碳钢与铸铁的拉伸、压缩和扭转实验

低碳钢与铸铁的拉伸、压缩和扭转实验一、实验目的1、测定拉伸时低碳钢的下屈服强度s σ,抗拉强度b σ,断后伸长率δ和断面收缩率ψ,测定铸铁的抗拉强度b σ。
2、测定压缩时低碳钢压下屈服强度s σ,铸铁抗压强度b σ。
3、测定扭转时低碳钢的屈服强度、 抗扭强度;铸铁抗扭强度。
二、实验原理 (一)拉伸1.拉伸时低碳钢的下屈服极限s σ及抗拉强度b σ的测定。
书P19屈服阶段过后,进入强化阶段,试样又恢复了承载能力,载荷到达最大值F b ,时,试样某一局部的截面明显缩小,出现“颈缩”现象,这时示力盘的从动针停留在F b 不动,主动针则迅速倒退表明载荷迅速下降,试样即将被拉断。
以试样的初始横截面面积A 除F b 得抗拉强度为0A P bb =σ2. 伸时低碳钢的断后伸长率δ和断面收缩率ψ的测定P20铸铁试件在变形极小时,就达到最大载荷P b 而突然发生断裂。
没有屈服和颈缩现象,其强度极限远小于低碳钢的强度极限。
(二)压缩材料压缩时的力学性质可以由压缩时的力与变形关系曲线表示。
铸铁受压时曲线上没有屈服阶段,但曲线明显变弯,断裂时有明显的塑性变形。
由于试件承受压缩时,上下两端面与压头之间有很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。
铸铁压缩实验的强度极限:b σ=Fb/A0(A0为试件变形前的横截面积)。
(三)扭转P32 三、实验设备万能材料试验机 扭转试验机 游标卡尺。
四、实验步骤 1.测量试样尺寸测定试样初始直径,并用粉笔在试样上画一长为50mm 的标记。
图22、试验机准备(1)检查试验机的夹具是否安装好,各种限位是否在实验状态下就位;(2)启动试验机的动力电源及计算机的电源;(3)调出试验机的操作软件,按提示逐步进行操作;(4)安装试件。
(5)启进行调零,回到试验初始状态;(6)根据实验设定,点击开始实验,注意观察试验中的试件及计算机上的曲线变化;(7)实验完成,记录数据;(8)试件破坏后(非破坏性试验应先卸载),断开控制器并关闭,关闭动力系统及计算机系统,清理还原。
低碳钢和铸铁的拉伸实验

实验一 低碳钢和铸铁的拉伸实验一、实验目的要求1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极限b σ。
2.低碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(L F ∆-曲线)。
3.比较低碳钢和铸铁两种材料的拉伸性能和断口情况。
二、实验设备和仪器CMT5504/5105电子万能试验机、游标卡尺等图1-1 CMT5504/5105电子万能试验机三、拉伸试件金属材料拉伸实验常用的试件形状如图所示。
图中工作段长度l 称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。
为了使实验测得的结果可以互相比较,试件必须按国家标准做成标准试件,即d l 5=或d l 10=。
对于一般板的材料拉伸实验,也应按国家标准做成矩形截面试件。
其截面面积和试件标距关系为A l 3.11=或A l 65.5=,A 为标距段内的截面积。
低碳钢拉伸铸铁拉伸图1-2 拉伸试件四、实验原理和方法1.低碳钢拉伸实验低碳钢试件在静拉伸试验中,通常可直接得到拉伸曲线,如图1—3所示。
用准确的拉σ-曲线。
首先将试件安装于试验机的夹头内,之后匀速缓伸曲线可直接换算出应力应变ε慢加载(加载速度对力学性能是有影响的,速度越快,所测的强度值就越高),试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。
图1-3 低碳钢拉伸曲线OA段,没有任何残留变形。
在弹性阶段,载荷与变形(1) 弹性阶段是指拉伸图上的'是同时存在的,当载荷卸去后变形也就恢复。
在弹性阶段,存在一比例极限点A,对应的应σ,此部分载荷与变形是成比例的。
力为比例极限p(2) 屈服阶段对应拉伸图上的BC段。
金属材料的屈服是宏观塑性变形开始的一种标志,是由切应力引起的。
在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。
这种载荷在一定范围内波动而试件还继续变形伸长的现象称为屈服现象。
实验一低碳钢和铸铁的拉伸实验

第一部分基本实验实验一低碳钢和铸铁的拉伸实验一、实验目的:1、测定低碳钢在拉伸时屈服极限σs 、强度极限σb、延伸率δ和截面收缩率Ψ。
2、观察低碳钢拉伸过程中的各种现象(包括屈服、强化、颈缩等现象),及拉伸图(P-ΔL曲线)。
3、测定铸铁拉伸时的强度极限σb。
4、比较低碳钢与铸铁抗拉性能的特点,并进行断口分析。
二、实验设备:1、万能材料实验机2、游标卡尺三、试件:由于试件的形状和尺寸对实验结果有一定的影响。
为了便于互相比较应按统一规定加工成标准试件。
试件加工须按《金属拉伸实验试样》(GB6397-86)的有关要求进行。
本实验的试件采用国家标准(GB6397-86)所规定的圆棒试件,尺寸为d=10mm,标距长度L=100mm,见图1-1。
为测定低碳钢的断后延伸率δ,须用刻线机在试样标距范围内刻划圆周线,将标距L分为等长的10格。
图1-1 圆形拉伸试件四、实验原理和方法拉伸实验是测定材料力学性能最基本的实验之一。
材料的力学性能如:屈服极限、强度极限、延伸率、截面收缩率等均是由拉伸破坏实验确定的。
1、低碳钢(1)力-伸长曲线的绘制:通过实验机绘图装置可自动绘成以轴向力P为纵坐标、试件伸长量ΔL为横坐标的力-伸长曲线(P-ΔL图),如图1-2所示。
低碳钢的力-伸长曲线是一种典型的形式,整个拉伸变形分四个阶段:弹性阶段、屈服阶段、强化阶段和颈缩阶段。
应当指出,绘图仪所绘出的拉伸变形ΔL是整个试件(不只是标距部分)的伸长,而且还包括机器本身的弹性变形和试件头部在夹头中的滑动等。
试件开始受力时,头部夹头中的滑动很大,故绘出的拉伸图最初一般是曲线。
图1-2 低碳钢拉伸图(2)屈服极限的测定:随着荷载的增加,变形也与荷载呈正比增加,P-ΔL图上为一直线,此即直线弹性段。
过了直线弹性段,尚有一极小的非直线弹性段。
弹性阶段包括直线弹性段和非直线弹性段。
当荷载增加到一定程度,测力指针往回偏转,继而缓慢的来回摆动,相应地在P-ΔL图上画出一段锯齿形曲线,此段即屈服阶段。
低碳钢和铸铁拉伸实验报告

低碳钢和铸铁拉伸实验报告一、实验目的。
本实验旨在通过对低碳钢和铸铁的拉伸实验,了解两种材料的机械性能,探究它们在受力过程中的表现及性能差异。
二、实验原理。
拉伸实验是通过对材料施加拉力,观察其受力变形情况,从而得出材料的拉伸性能参数。
在实验中,我们将对低碳钢和铸铁进行拉伸实验,通过拉伸试验机施加拉力,测量其应力-应变曲线,得出材料的屈服强度、抗拉强度、断裂伸长率等参数,从而对两种材料的性能进行比较分析。
三、实验步骤。
1. 将低碳钢和铸铁试样分别固定在拉伸试验机上;2. 施加拉力,记录应力-应变曲线;3. 测量材料的屈服强度、抗拉强度、断裂伸长率等参数;4. 对实验结果进行分析和比较。
四、实验数据及分析。
经过拉伸实验,我们得到了低碳钢和铸铁的应力-应变曲线,通过对曲线的分析,得出了以下数据:低碳钢:屈服强度,250MPa。
抗拉强度,400MPa。
断裂伸长率,25%。
铸铁:屈服强度,150MPa。
抗拉强度,300MPa。
断裂伸长率,5%。
通过对比两种材料的拉伸性能参数,可以得出以下分析:1. 低碳钢的屈服强度和抗拉强度均高于铸铁,表明低碳钢具有更好的抗拉性能;2. 低碳钢的断裂伸长率远高于铸铁,表明低碳钢具有更好的延展性,更适合用于受力较大、需要一定延展性的场合;3. 铸铁的屈服强度和抗拉强度较低,但硬度较高,适合用于一些对硬度要求较高的场合。
五、实验结论。
通过本次实验,我们对低碳钢和铸铁的拉伸性能进行了比较分析,得出了以下结论:1. 低碳钢具有较好的抗拉性能和延展性,适合用于需要抗拉性能和延展性的场合;2. 铸铁具有较高的硬度,适合用于对硬度要求较高的场合;3. 不同材料具有不同的机械性能,需要根据具体使用场合选择合适的材料。
六、实验总结。
本次拉伸实验使我们更加深入地了解了低碳钢和铸铁的机械性能,对于工程材料的选择和应用具有一定的指导意义。
在今后的工程实践中,我们应根据具体的使用场合和要求,选择合适的材料,以确保工程质量和安全。
实验一 低碳钢、铸铁的拉伸实验

实验一 低碳钢、铸铁的拉伸实验拉压实验是材料的力学性能实验中最基本最重要的实验,是工程上广泛使用的测定材料力学性能的方法之一。
一、实验目的:1、了解万能材料试验机的结构及工作原理,熟悉其操作规程及正确使用方法。
2、通过实验,观察低碳钢和铸铁在拉伸时的变形规律和破坏现象,并进行比较。
3、测定低碳钢拉伸时的屈服极限σs 、强度极限σb 、延伸率δ和截面收缩率ψ,铸铁拉伸时的强度极限σb 。
二、实验设备及试样1、万能材料试验机2、游标卡尺3、钢直尺4、拉伸试样:图2.7 拉伸试样由于试样的形状和尺寸对实验结果有一定影响,为便于互相比较,应按统一规定加工成标准试样。
图2.7分别表示横截面为圆形和矩形的拉伸试样。
L 0是测量试样伸长的长度,称为原始标距。
按现行国家GB6397-86的规定,拉伸试样分为比例试样和非比例试样两种。
比例试样的标距L 0与原始横截面A 0的关系规定为00A k L = (2.2)式中系数k 的值取为 5.65时称为短试样,取为11.3时称为长试样。
对直径d 0的圆截面短试样,0065.5A L ==5d 0;对长试样, 000103.11d A L ==。
本实验室采用的是长试样。
非比例试样的L 0和A 0不受上列关系的限制。
试样的表面粗糙度应符合国标规定。
在图2.7中,尺寸L称为试样的平行长度,圆截面试样L不小于L0+d 0;矩形截面试样L不小于L0+b 0/2。
为保证由平行长度到试样头部的缓和过渡,要有足够大的过渡圆弧半径R。
试样头部的形状和尺寸,与试验机的夹具结构有关,图2.7所示适用于楔形夹具。
这时,试样头部长度不小于楔形夹具长度的三分之二。
三、实验原理及方法常温下的拉伸实验是测定材料力学性能的基本实验。
可用以测定弹性E和μ,比例极限σp ,屈服极限σs (或规定非比例伸长应力),抗拉强度σb ,断后伸长率δ和截面收缩率ψ等。
这些力学性能指标都是工程设计的重要依据。
1、低碳钢拉伸实验1)、屈服极限σs 及抗拉强度σb 的测定对低碳钢拉伸试样加载,当到达屈服阶段时,低碳钢的P-△L曲线呈锯齿形(图2.8)。
拉伸试验报告模板

一、实验目的1.测定低碳钢拉伸时的屈服极限s σ、强度极限b σ、伸长率δ和断面的收缩率ψ;测定铸铁的抗拉强度。
2.观察低碳钢拉伸时的屈服和颈缩现象,分析力与变形之间的关系,并绘制拉伸图。
3.对低碳钢和铸铁试样拉伸的断口进行分析。
二、实验仪器设备1.万能试验机。
2.游标卡尺。
3.试样:按GB/228-87《金属拉伸试验方法》的规定制作拉伸试样,如图1-1图1-1圆截面拉伸试样(l = 10d )三、实验原理低碳钢和铸铁拉伸时力学性能的测定低碳钢拉伸过程中材料经历的四个阶段:1、弹性阶段,拉伸图是一条直线。
2、屈服阶段,拉伸图成锯齿状。
电脑屏幕上曲线会上下波动,软件会自动记录屈服载荷,进而可以计算出屈服极限。
3、强化阶段,屈服后,曲线又缓慢上升,这段曲线的最高点,拉力达到最大值——最大荷载P b ,即可计算出抗拉强度极限。
4、颈缩阶段,拉伸图上荷载迅速减小,曲线下滑,试样开始产生局部伸长和颈缩,直至试样在颈缩处断裂。
测量断裂后试样标距的长度和断口处的直径,可计算材料的伸长率和断面的收缩率。
铸铁拉伸过程没有屈服和颈缩现象,伸长率非常小,软件会自动记录最大载荷,进而可以计算出抗拉强度极限。
四、实验内容与步骤(一)低碳钢的拉伸实验1、准备试样。
2、测量试样的直径:并量出试样的标距,打上明显的标记。
在标距中间和两端相互垂直的方向各量一次直径,取最小处的平均值来计算截面面积。
3、试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十分钟才可使用。
按照“软件使用手册”,运行配套软件。
4、夹持试样。
5、开始实验:按运行命令按钮,按照软件设定的方案进行实验。
6、记录数据:试样断裂后,取下试样,观察分析断口形貌和塑性变形能力,填写实验数据和计算结果。
(二)铸铁拉伸实验1、准备试样(除不确定标距外其余同低碳钢)。
2、准备试验(同低碳钢)。
3、进行实验:按运行命令按钮,按照软件设定的方案进行实验。
4、记录数据:试样断裂后,取下试样,观察分析断口形貌和变形能力,填写实验数据和计算结果。
低碳钢和铸铁拉伸试验.doc

低碳钢和铸铁拉伸试验.doc
低碳钢是指含碳量低于0.25%的普通碳钢。
其具有良好的冷加工性能和焊接效果,易
于表面处理,易于抛光,有一定的韧性,可磨粒性佳,成型性能优良,但是强度和韧性较差,铸态强度低,尤其是高温拉伸性能更差,因此不适合制作高强度的零件。
铸铁是指含碳量在2%以上的铁碳合金,比普通铁具有更佳的耐热性,机械性能优良,适应性强,易于铸造,但是强度、塑性和韧性都相对较差,成型性能一般性不佳,而且容
易脆性断裂,外表面还容易有灰渣和腐蚀。
拉伸试验是指向一定的外力将金属拉变形,使原有样品经受形变后与析出面形成夹角,通过对应变形程度测试金属材料的断裂强度、断面拉伸率等性能。
一是检验材料的性能,包括断裂强度、断面拉伸率、冷脆性、冷韧性等,即确定该材
料的抗拉应力、断裂应力和断裂延伸率等数据。
二是研究拉伸条件对材料性能的影响,它能反映出该材料在不同温度下的拉伸性能、
机械性能和疲劳性能。
三是用拉伸试验确定塑性变形临界点参数,这个参数它可以帮助确定材料具体加工工艺。
根据低碳钢和铸铁拉伸性能的不同所使用的拉伸加工方法也有所不同:
低碳钢的拉伸处理中,一般以温度在400~450℃的富碳钢为主,它通常采用冷拉伸加
工或轧制加工,温度较高的钢可以采用热拉伸加工,但要达到抗张强度较高的要求,则必
须采用淬火处理。
铸铁拉伸处理应尽量选择低温拉伸,常采用温度一般在150~200℃之间,并且采用回
火处理可以提高拉伸强度。
因此,对于低碳钢和铸铁来说,拉伸处理的温度也有不同的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验编号2 低碳钢和铸铁的拉伸实验
低碳钢和铸铁拉伸试验
概述
常温,静载下的轴向拉伸试验是材料力学实验中最基本,应用最广泛的实验。
通过拉伸试验,可以全面地测定材料地力学性能,如弹性、塑性、强度、断裂等力学性能指标。
弹性模量E是表征材料力学性能中弹性的重要指标之一,它反映了材料抵抗弹性变形的能力。
这些性能指标对材料力学地分析计算、工程设计、选择材料和新材料开发都有极其重要的作用。
二、实验目的
1、测定低碳钢的下屈服点δSL 、抗拉强度δb、断后伸长率δ、断面收缩率ψ
2、验证虎克定律,测定低碳钢的弹性模量E
3、测定铸铁的抗拉强度δb
4、观察分析两种材料在拉伸过程中的各种现象
5、学习自动绘制σ—ε曲线及微机控制电子万能实验机、电子引伸计的
操作
三、实验设备和仪器
1、微机控制电子万能实验机(IOT)
2、游标卡尺
3、低碳钢和铸铁圆形拉伸试样
四、实验原理
1、低碳钢拉伸
低碳钢拉伸实验过程分四个阶段:
(1)、弹性阶段OE在此阶段中的OP段拉力和伸长成正比关系,表明钢材的应力和应
变为线性关系。
完全遵循虎克定律δ= Eε,故点P的应力δP称为材料的比例极限。
如图1-1所示,当应力继续增加达到材料的弹性极限δ E 对应的E点时,应力和应变间的关系不再是线性关系,但变形仍然是弹性的,即卸除拉力后变形完全消失,工程上对弹性极限和比例极限不严格的区分它们。
(2)、屈服阶段ES,当应力超过弹性极限到达S点时,应变有明显的增加,而应力
先是下降,然后作微小的波动,在σ—ε曲线上出现锯齿形线段。
这种应力基本保持不变,而应变显著增加的现象,称为屈服。
在屈服阶段内的最高应力和最低应力分别称为上屈服极限和下屈服极限。
上屈服极限的数值与试样形状、加载速度等因素有关,一般不稳定。
下屈服极限则有比较稳定的数值,能够反应材料的性能。
通常把下屈服极限称为屈服极限或屈服点,用δSL来表示。
屈服应力是衡量材料强度的一个重要指标。
其计算公式为δSL=F S L/A O
(3)、强化阶段SB,过了屈服阶段以后,
试样材料因塑性变形其内部晶体组织结构重新得到了调整,其抵抗变形的能力有所增强,随着拉力的增加,伸长变形也随之增加,拉伸曲线继续上升。
SB曲线段称为强化阶段。
强化
阶段中的最高点B所对应的的应力δb是材料所承受的最大应力,称为强度极限或抗拉强度。
其计算公式为δb=F b∕A o,它也是材料强度性能的重要指标。
(4)、颈缩和断裂阶段BK,
当拉力到达F b以后,变形主要集中于试样的某一局部区域,该处横截面积急剧减少,出现“颈缩”现象,此时拉力随之下降,直至试样被拉断,其断口形貌成杯椎状。
试样的断后伸长率和断面收缩率的测定为(1)延伸率:试样标距原长L o,拉断后,将两段试样紧密地对接在一起,量出拉断后地标距长为L i ,则延伸率「.= Lι-L o)∕L o*% ; (2) 断面收缩率:试样拉断后,设颈缩处的最小横截面积为A i ,则断面收缩率
ψ =丄「亠.
O 铸铁的拉伸
[、铸铁是典型的脆性材料,整个拉伸过程中的变形很小,无屈服、颈缩现 象。
曲线很快达到最大拉力 F b ,试样突然发生断裂,其断口是平齐粗糙的。
抗拉 强度为;R=F b/ A o
五、实验步骤
1.开机:试验机一一 >打印机一一 >计算机
注意:每次开机后,最好要预热10分钟,待系统稳定后,再进行试验
工作。
若刚刚关机,需要再开机,至少保证 1分钟的时间间隔。
3.根据试样情况准备好夹具,若夹具已安装到试验机上,则对夹具进行检查 并根据试样的长度及夹具的间距设置好限位装置。
4. 点击试验都分里的新试验,选择相应的试验方案,输入试样的原始用户参数 如尺寸
等。
测量试样的尺寸方法为:用游标卡尺在试样标距两端和中间三个 截面上测量直径,每个截面在互相垂直方向各测量一次,取其平均值。
用三 个平均值中最小者计算横截面积,低碳钢还要测量出原始的长度。
序号I 已运行
试样标距(比)(≡) 试样厚度(t)血) 试样宽度(W) (ι≡) I
1
[ESl 10 T) 2
100 10 5
3 100
10 5 4 IOo 10 5
5 •夹好试样,在夹好试样上端后,力值清零(点击力窗口的 ------------- 按钮)再
夹下端。
图标,进入试验软件,选择好联机的用户名和密码
2.双击电脑桌面 选择对应的传感器及引伸计后击
联机匸
6点击主机小键盘上的试样保护键,消除夹持力。
7、位移清零、峰值力清零
8、点击H^^ll,开始自动试验。
9、观察试验过程
10、试验结束,在试验结果栏中,程序将自动计算出结果显示在其中。
如果想清楚的观
看结果,可双击试验结果区,试验结果区将放大到半屏,方便观看结果数据,再次双击,试验结果区大小复原。
如果想分析曲线,双击曲线区,曲线区将放大到半屏,方便分析曲线,再次双击,曲线区大小复原。
11、实验完成后,点击口,打印试验报告。
12、关闭试验窗口及软件。
关机:试验软件一一>试验机机一一>计算机。