低碳钢、铸铁拉伸试验

合集下载

低碳钢和铸铁的拉伸与压缩试验

低碳钢和铸铁的拉伸与压缩试验

低碳钢和铸铁的拉伸与压缩试验一、试验目的1.测定低碳钢在拉伸时的下屈服强度人.、抗拉强度《、断后伸长率4和断面收缩率观看低碳钢在拉伸过程中的各种现象(包括屈服、强化、缩颈及断裂),并绘制拉伸图(F一ΔL曲线)。

2.测定铸铁的抗拉强度兄。

3.测定铸铁的抗压强度,观看低碳钢和铸铁压缩时的变形和破坏现象,并进行比较。

二、试验设施与试样材料试验机,试样分划机或冲点机,游标卡尺,低碳钢和铸铁的拉伸试样,压缩试样。

三、试验步骤1.低碳钢拉伸试验(1)试样预备为便于观看试样标距范围内伸长沿轴向的分布状况和测量拉断后的标距人,在试样平行长度内涂上快干着色涂料,然后用特地的划线机,在标距屋范围内每隔10mm (对长试样)或每隔5mm (对短试样)刻划一根圆周线,或用冲点机冲点标记,将标距L fl分成10格。

因直径d 0沿试样长度不匀称,故用游标卡尺在标距的两端及中间三个横截面I、II、ΠI处,在相互垂直的两个直径方向上各测量一次,记入表1-1,算出各自的平均直径,取其中最小的一个作为原始直径d Q ,计算试样的最小原始横截面面积S 1, , S fl取三位有效数字。

(2)试验机预备依据低碳钢的抗拉强度尼和试样原始横截面面积5。

,由公式尼兀估算拉断试样所需的最大力晨°依据估算的心的大小,选择试验机合适的量程。

试验机调“零工(3)安装试样将试件的一段夹持在固定夹头内,移动可动夹头至适当位置,牢靠地夹好试件的另一端。

(4)检查及试机请老师检查以上步骤完成状况,获得认可后在比例极限内施力至10kN,然后卸力至接近零点,以检查试验机工作是否正常。

(5)施力测读启动试验机加载部分,缓慢匀称地施力。

留意观看试件的拉伸图,参照图5-8所示的几种屈服图形,确定下屈服力记入表・2。

过了屈服阶段后,可用较快的速度施力,直至试样断裂为止。

读出最大力片,记入表Cl-2o(6)取下试样,试验机复位。

(7)依据断口位置采纳直接法或移位法测量拉断后的标距人,并在缩颈最小处两个相互垂直的方向上测量其直径,取其平均值为4,,计算缩颈处最小横截面面积黑,将有关数据填入表l-30需要指出的是,在测量4和Z时,应将断裂试样的两段在断裂处紧密对接在一起,尽量使其轴线位于同始终线上。

低碳钢和铸铁的拉伸实验

低碳钢和铸铁的拉伸实验

实验一 低碳钢和铸铁的拉伸实验一、实验目的要求1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极限b σ。

2.低碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(L F ∆-曲线)。

3.比较低碳钢和铸铁两种材料的拉伸性能和断口情况。

二、实验设备和仪器CMT5504/5105电子万能试验机、游标卡尺等图1-1 CMT5504/5105电子万能试验机三、拉伸试件金属材料拉伸实验常用的试件形状如图所示。

图中工作段长度l 称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。

为了使实验测得的结果可以互相比较,试件必须按国家标准做成标准试件,即d l 5=或d l 10=。

对于一般板的材料拉伸实验,也应按国家标准做成矩形截面试件。

其截面面积和试件标距关系为A l 3.11=或A l 65.5=,A 为标距段内的截面积。

低碳钢拉伸铸铁拉伸图1-2 拉伸试件四、实验原理和方法1.低碳钢拉伸实验低碳钢试件在静拉伸试验中,通常可直接得到拉伸曲线,如图1—3所示。

用准确的拉σ-曲线。

首先将试件安装于试验机的夹头内,之后匀速缓伸曲线可直接换算出应力应变ε慢加载(加载速度对力学性能是有影响的,速度越快,所测的强度值就越高),试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。

图1-3 低碳钢拉伸曲线OA段,没有任何残留变形。

在弹性阶段,载荷与变形(1) 弹性阶段是指拉伸图上的'是同时存在的,当载荷卸去后变形也就恢复。

在弹性阶段,存在一比例极限点A,对应的应σ,此部分载荷与变形是成比例的。

力为比例极限p(2) 屈服阶段对应拉伸图上的BC段。

金属材料的屈服是宏观塑性变形开始的一种标志,是由切应力引起的。

在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。

这种载荷在一定范围内波动而试件还继续变形伸长的现象称为屈服现象。

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸压缩实验报告摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理一.拉伸实验1.低碳钢拉伸实验拉伸实验试件 低碳钢拉伸图在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:低碳钢拉伸应力-应变曲线(1)弹性阶段(Ob段)在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段(ce段)经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

实验一低碳钢和铸铁的拉伸实验

实验一低碳钢和铸铁的拉伸实验

第一部分基本实验实验一低碳钢和铸铁的拉伸实验一、实验目的:1、测定低碳钢在拉伸时屈服极限σs 、强度极限σb、延伸率δ和截面收缩率Ψ。

2、观察低碳钢拉伸过程中的各种现象(包括屈服、强化、颈缩等现象),及拉伸图(P-ΔL曲线)。

3、测定铸铁拉伸时的强度极限σb。

4、比较低碳钢与铸铁抗拉性能的特点,并进行断口分析。

二、实验设备:1、万能材料实验机2、游标卡尺三、试件:由于试件的形状和尺寸对实验结果有一定的影响。

为了便于互相比较应按统一规定加工成标准试件。

试件加工须按《金属拉伸实验试样》(GB6397-86)的有关要求进行。

本实验的试件采用国家标准(GB6397-86)所规定的圆棒试件,尺寸为d=10mm,标距长度L=100mm,见图1-1。

为测定低碳钢的断后延伸率δ,须用刻线机在试样标距范围内刻划圆周线,将标距L分为等长的10格。

图1-1 圆形拉伸试件四、实验原理和方法拉伸实验是测定材料力学性能最基本的实验之一。

材料的力学性能如:屈服极限、强度极限、延伸率、截面收缩率等均是由拉伸破坏实验确定的。

1、低碳钢(1)力-伸长曲线的绘制:通过实验机绘图装置可自动绘成以轴向力P为纵坐标、试件伸长量ΔL为横坐标的力-伸长曲线(P-ΔL图),如图1-2所示。

低碳钢的力-伸长曲线是一种典型的形式,整个拉伸变形分四个阶段:弹性阶段、屈服阶段、强化阶段和颈缩阶段。

应当指出,绘图仪所绘出的拉伸变形ΔL是整个试件(不只是标距部分)的伸长,而且还包括机器本身的弹性变形和试件头部在夹头中的滑动等。

试件开始受力时,头部夹头中的滑动很大,故绘出的拉伸图最初一般是曲线。

图1-2 低碳钢拉伸图(2)屈服极限的测定:随着荷载的增加,变形也与荷载呈正比增加,P-ΔL图上为一直线,此即直线弹性段。

过了直线弹性段,尚有一极小的非直线弹性段。

弹性阶段包括直线弹性段和非直线弹性段。

当荷载增加到一定程度,测力指针往回偏转,继而缓慢的来回摆动,相应地在P-ΔL图上画出一段锯齿形曲线,此段即屈服阶段。

低碳钢和铸铁拉伸实验报告

低碳钢和铸铁拉伸实验报告

低碳钢和铸铁拉伸实验报告一、实验目的。

本实验旨在通过对低碳钢和铸铁的拉伸实验,了解两种材料的机械性能,探究它们在受力过程中的表现及性能差异。

二、实验原理。

拉伸实验是通过对材料施加拉力,观察其受力变形情况,从而得出材料的拉伸性能参数。

在实验中,我们将对低碳钢和铸铁进行拉伸实验,通过拉伸试验机施加拉力,测量其应力-应变曲线,得出材料的屈服强度、抗拉强度、断裂伸长率等参数,从而对两种材料的性能进行比较分析。

三、实验步骤。

1. 将低碳钢和铸铁试样分别固定在拉伸试验机上;2. 施加拉力,记录应力-应变曲线;3. 测量材料的屈服强度、抗拉强度、断裂伸长率等参数;4. 对实验结果进行分析和比较。

四、实验数据及分析。

经过拉伸实验,我们得到了低碳钢和铸铁的应力-应变曲线,通过对曲线的分析,得出了以下数据:低碳钢:屈服强度,250MPa。

抗拉强度,400MPa。

断裂伸长率,25%。

铸铁:屈服强度,150MPa。

抗拉强度,300MPa。

断裂伸长率,5%。

通过对比两种材料的拉伸性能参数,可以得出以下分析:1. 低碳钢的屈服强度和抗拉强度均高于铸铁,表明低碳钢具有更好的抗拉性能;2. 低碳钢的断裂伸长率远高于铸铁,表明低碳钢具有更好的延展性,更适合用于受力较大、需要一定延展性的场合;3. 铸铁的屈服强度和抗拉强度较低,但硬度较高,适合用于一些对硬度要求较高的场合。

五、实验结论。

通过本次实验,我们对低碳钢和铸铁的拉伸性能进行了比较分析,得出了以下结论:1. 低碳钢具有较好的抗拉性能和延展性,适合用于需要抗拉性能和延展性的场合;2. 铸铁具有较高的硬度,适合用于对硬度要求较高的场合;3. 不同材料具有不同的机械性能,需要根据具体使用场合选择合适的材料。

六、实验总结。

本次拉伸实验使我们更加深入地了解了低碳钢和铸铁的机械性能,对于工程材料的选择和应用具有一定的指导意义。

在今后的工程实践中,我们应根据具体的使用场合和要求,选择合适的材料,以确保工程质量和安全。

实验一 低碳钢、铸铁的拉伸实验

实验一 低碳钢、铸铁的拉伸实验

实验一 低碳钢、铸铁的拉伸实验拉压实验是材料的力学性能实验中最基本最重要的实验,是工程上广泛使用的测定材料力学性能的方法之一。

一、实验目的:1、了解万能材料试验机的结构及工作原理,熟悉其操作规程及正确使用方法。

2、通过实验,观察低碳钢和铸铁在拉伸时的变形规律和破坏现象,并进行比较。

3、测定低碳钢拉伸时的屈服极限σs 、强度极限σb 、延伸率δ和截面收缩率ψ,铸铁拉伸时的强度极限σb 。

二、实验设备及试样1、万能材料试验机2、游标卡尺3、钢直尺4、拉伸试样:图2.7 拉伸试样由于试样的形状和尺寸对实验结果有一定影响,为便于互相比较,应按统一规定加工成标准试样。

图2.7分别表示横截面为圆形和矩形的拉伸试样。

L 0是测量试样伸长的长度,称为原始标距。

按现行国家GB6397-86的规定,拉伸试样分为比例试样和非比例试样两种。

比例试样的标距L 0与原始横截面A 0的关系规定为00A k L = (2.2)式中系数k 的值取为 5.65时称为短试样,取为11.3时称为长试样。

对直径d 0的圆截面短试样,0065.5A L ==5d 0;对长试样, 000103.11d A L ==。

本实验室采用的是长试样。

非比例试样的L 0和A 0不受上列关系的限制。

试样的表面粗糙度应符合国标规定。

在图2.7中,尺寸L称为试样的平行长度,圆截面试样L不小于L0+d 0;矩形截面试样L不小于L0+b 0/2。

为保证由平行长度到试样头部的缓和过渡,要有足够大的过渡圆弧半径R。

试样头部的形状和尺寸,与试验机的夹具结构有关,图2.7所示适用于楔形夹具。

这时,试样头部长度不小于楔形夹具长度的三分之二。

三、实验原理及方法常温下的拉伸实验是测定材料力学性能的基本实验。

可用以测定弹性E和μ,比例极限σp ,屈服极限σs (或规定非比例伸长应力),抗拉强度σb ,断后伸长率δ和截面收缩率ψ等。

这些力学性能指标都是工程设计的重要依据。

1、低碳钢拉伸实验1)、屈服极限σs 及抗拉强度σb 的测定对低碳钢拉伸试样加载,当到达屈服阶段时,低碳钢的P-△L曲线呈锯齿形(图2.8)。

材料力学低碳钢铸铁拉伸实验报告

材料力学低碳钢铸铁拉伸实验报告

材料力学低碳钢铸铁拉伸实验报告材料力学实验报告实验目的:1.了解和掌握材料拉伸试验的基本原理和操作方法;2.通过拉伸试验获取低碳钢和铸铁的力学性能参数,如抗拉强度、屈服强度、延伸率等;3.分析和对比低碳钢和铸铁的力学性能,并探讨其差异。

实验器材:1.拉伸试验机2.低碳钢和铸铁试样3.卡尺4.万能试验机5.整定尺实验步骤:1.试样制备利用卡尺测量低碳钢和铸铁试样的尺寸。

根据实验要求,制备符合标准的试样。

2.实验装置搭建将试样夹持于拉伸试验机上,确保试样夹持牢固。

3.实验参数设定启动拉伸试验机,设置拉伸速度为固定值。

根据试验标准,设置合适的拉伸速度。

4.开始拉伸试验启动拉伸试验机,进行拉伸实验。

记录试样在拉伸过程中所产生的变形、力值等数据。

5.绘制力与变形曲线利用万能试验机绘制力与变形曲线。

在拉伸试验过程中,通过力传感器和位移传感器实时记录和绘制曲线。

6.计算低碳钢和铸铁的力学性能参数根据拉伸试验数据,计算低碳钢和铸铁的抗拉强度、屈服强度、延伸率等重要力学性能参数。

实验数据:实验结果及分析:1.低碳钢的力学性能参数:通过拉伸试验数据计算得出低碳钢的抗拉强度为XXXMPa,屈服强度为XXXMPa,延伸率为XXX%。

2.铸铁的力学性能参数:通过拉伸试验数据计算得出铸铁的抗拉强度为XXXMPa,屈服强度为XXXMPa,延伸率为XXX%。

3.力学性能参数对比及分析:比较低碳钢和铸铁的力学性能参数,并分析其差异。

比如,低碳钢的抗拉强度和屈服强度较高,延伸率较低,说明低碳钢的强度较大,但延展性较差;而铸铁的抗拉强度和屈服强度较低,延伸率较高,说明铸铁的强度相对较低,但延展性较好。

结论:通过本次拉伸实验,我们获取并分析了低碳钢和铸铁的力学性能参数。

通过对比两种材料的实验结果,我们发现它们在抗拉强度、屈服强度和延伸率等方面存在明显差异。

这些数据和结论为进一步研究材料力学性能提供了重要依据。

实验中的不确定因素和改进措施:1.实验设备和试样不同批次或品质的差异可能会对实验结果产生一定影响。

低碳钢和铸铁的拉伸实验

低碳钢和铸铁的拉伸实验

实验一 低碳钢和铸铁的拉伸实验一、实验目的要求1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极限b σ。

2.低碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(L F ∆-曲线)。

3.比较低碳钢和铸铁两种材料的拉伸性能和断口情况。

二、实验设备和仪器CMT5504/5105电子万能试验机、游标卡尺等图1-1 CMT5504/5105电子万能试验机三、拉伸试件金属材料拉伸实验常用的试件形状如图所示。

图中工作段长度l 称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。

为了使实验测得的结果可以互相比较,试件必须按国家标准做成标准试件,即d l 5=或d l 10=。

对于一般板的材料拉伸实验,也应按国家标准做成矩形截面试件。

其截面面积和试件标距关系为A l 3.11=或A l 65.5=,A 为标距段内的截面积。

低碳钢拉伸铸铁拉伸图1-2 拉伸试件四、实验原理和方法1.低碳钢拉伸实验低碳钢试件在静拉伸试验中,通常可直接得到拉伸曲线,如图1—3所示。

用准确的拉σ-曲线。

首先将试件安装于试验机的夹头内,之后匀速缓伸曲线可直接换算出应力应变ε慢加载(加载速度对力学性能是有影响的,速度越快,所测的强度值就越高),试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。

图1-3 低碳钢拉伸曲线OA段,没有任何残留变形。

在弹性阶段,载荷与变形(1) 弹性阶段是指拉伸图上的'是同时存在的,当载荷卸去后变形也就恢复。

在弹性阶段,存在一比例极限点A,对应的应σ,此部分载荷与变形是成比例的。

力为比例极限p(2) 屈服阶段对应拉伸图上的BC段。

金属材料的屈服是宏观塑性变形开始的一种标志,是由切应力引起的。

在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。

这种载荷在一定范围内波动而试件还继续变形伸长的现象称为屈服现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低碳钢、铸铁拉伸试验一、实验目的本试验以低碳钢和铸铁为代表,了解塑性材料在简单拉伸时的机械性质。

它是力学性能试验中最基本最常用的一个。

一般工厂及工程建设单位都广泛利用该实验结果来检验材料的机械性能。

试验提供的 E ,R eL ,R m ,A 和Z 等指标,是评定材质和进行强度、刚度计算的重要依据。

本试验具体要求为:1.了解材料拉伸时力与变形的关系,观察试件破坏现象。

2.测定强度数据,如屈服点R eL ,抗拉强度R m 。

3.测定塑性材料的塑性指标:拉伸时的伸长率A ,截面收缩率Z 。

4.比较塑性材料与脆性材料在拉伸时的机械性质。

二、实验原理进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。

一般试验机都设有自动绘图装置,用以记录试样的拉伸图即F-ΔL 曲线,形象地体现了材料变形特点以及各阶段受力和变形的关系。

但是F-ΔL 曲线的定量关系不仅取决于材质而且受试样几何尺寸的影响。

因此,拉伸图往往用名义应力、应变曲线(即R-ε曲线)来表示:0F R S =——试样的名义应力L L ∆=ε——试样的名义应变S 0和L 0分别代表初始条件下的面积和标距。

R-ε曲线与F-ΔL 曲线相似,但消除了几何尺寸的影响。

因此,能代表材料的属性。

单向拉伸条件下的一些材料的机械性能指标就是在R-ε曲线上定义的。

如果试验能提供一条精确的拉伸图,那么单向拉伸条件下的主要力学性能指标就可精确地测定。

不同性质的材料拉伸过程也不同,其R-ε曲线会存在很大差异。

低碳钢和铸铁是性质截然不同的两种典型材料,它们的拉伸曲线在工程材料中十分典型,掌握它们的拉伸过程和破坏特点有助于正确、合理地认识和选用材料。

低碳钢具有良好的塑性,由R-ε曲线(图1-1)可以看出,低碳钢断裂前明显地分成四个阶段:弹性阶段(OA):试件的变形是弹性的。

在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。

习惯上认为材料在弹性范围内服从虎克定律,其应力、应变为正比关系,即R E ε= (1-1)比例系数E 代表直线OA 的斜率,称作材料的弹性模量。

屈服(流动)阶段(BC):R-ε曲线上出现明显的屈服点。

这表明材料暂时丧失抵抗继续变形的能力。

这时,应力基本上不变化,而变形快速增长。

通常把下屈服点(B ˊ)作为材料屈服极限R eL 。

R eL 是材料开始进入塑性的标志。

结构、零件的应力一旦超过R eL ,材料就会屈服,零件就会因为过量变形而失效。

因此强度设计时常以屈服极限R eL 作为确定许可应力的基础。

从屈服阶段开始,材料的变形包含弹性和塑性两部分。

如果试样表面光滑,材料杂质含量少,可以清楚地看到表面有45°方向的滑移线。

(c )图1-1 试件拉伸图强化阶段(CD):屈服阶段结束后,R-ε曲线又开始上升,材料恢复了对继续变形的抵抗能力,载荷就必须不断增长。

如果在这一阶段卸载,弹性变形将随之消失,而塑性变形将永远保留下来。

强化阶段的卸载路径与弹性阶段平行。

卸载后若重新加载,加载线仍与弹性阶段平行,但重新加载后,材料的弹性阶段加长、屈服强度明显提高,而塑性却相应下降。

这种现象称作为形变强化或冷作硬化。

冷作硬化是金属材料极为宝贵的性质之一。

塑性变形和形变强化二者联合,是强化金属材料的重要手段。

例如喷丸,挤压,冷拨等工艺,就是利用材料的冷作硬化来提高材料强度的。

强化阶段的塑性变形是沿轴向均匀分布的。

随塑性变形的增长,试样表面的滑移线亦愈趋明显。

D 点是R-ε曲线的最高点,定义为材料的强度极限又称作材料的抗拉强度记作R m 。

对低碳钢来说R m 是材料均匀塑性变形的最大抗力,是材料进入颈缩阶段的标志。

颈缩阶段(DE):应力达到强度极限后,塑性变形开始在局部进行。

局部截面急剧收缩,承载面积迅速减少,试样承受的载荷很快下降,直到断裂。

断裂时,试样的弹性变形消失,塑性变形则遗留在破断的试样上。

材料的塑性通常用试样断裂后的残余变形来衡量,单拉时的塑性指标用断后伸长率A 和断面收缩率Z 来表示。

即 00100%u L L A L -=⨯00100%uS S Z S -=⨯ (1-2)L u ,S u 分别代表试样拉断后的标距和断口的面积。

低碳钢颈缩部分的变形在总变形中占很大比重如图1-2所示。

测试断后伸长率时,颈缩局部及其影响区的塑性变形都应包含在L u 之内。

这就要求断口位置应在标距的中央附近。

若断口落在标距之外则试验无效。

工程上通常认为,材料的断后伸长率A> 5%属于韧断,A< 5%则属于脆断。

韧断的特征是断裂前有较大的宏观塑性变形,断口形貌是暗灰色纤维状组织。

低碳钢断裂时有很大的塑性变形,断口为杯状周边为45°的剪切唇,断口组织为暗灰色纤维状,因此是一种典型的韧状断口。

铸铁是典型的脆性材料,其拉伸曲线如图1-1(c )所示。

其拉伸过程较低碳钢简单,可近似认为是经弹性阶段直接过渡到断裂。

其破坏断口沿横截面方向,说明铸铁的断裂是由拉应力引起,其强度指标只有R m 。

由拉伸曲线可见,铸铁断后伸长率甚小,所以铸铁常在没有任何预兆的情况下突然发生脆断。

因此这类材料若使用不当,极易发生事故。

铸铁断口与正应力方向垂直,断面平齐为闪光的结晶状组织,是典型的脆状断口。

多数工程材料的拉伸曲线介于低碳钢和铸铁之间,常常只有两个或三个阶段如图1-3。

但强度、塑性指标的定义和测试方法基本相同。

所以,通过拉伸破坏试验,分析比较低碳钢和铸铁的拉伸过程,确定其机械性能,在机械性能试验研究中具有典型意义。

三、实验设备1. 万能材料试验机。

2. 0.02mm 游标卡尺。

四、试样的制备试样制备是试验的重要环节。

国家标准《金属拉伸试验试样》GB6397-86对此有详细规定。

通常拉伸试样有比例试件和定标准试件两种。

一般拉伸试样由三部分组成,即工作部分,过渡部分和夹持部分(图1-4)。

工作部分必须保持光滑均匀以确保材料表面的单向应力状态。

均匀部分的有效工作长度L 0称做标距。

d 0、S 0分别代表工作部分的直径和面积。

过渡部分必须有适当的台肩和圆角,以降低应力集中,保持该处不会断裂。

试样两端的夹持部分用以传递载荷,其形状尺寸应与试验机的钳口相匹配。

前已述及,颈缩局部及其影响区的塑性变形在断后伸长率中占很大的比重。

虽然,同种材料的断后伸长率不仅取决于材质,而且还取决于试样的标距。

试样愈短、局部变形所占比例愈大,A 也就愈大。

为了便于相互比较,试样的长度应当标准化。

按照规定,测试断后伸长率应当采用比例试样。

比例试样的长度有两种规定:10倍直径圆试样:· · · · · · · · ·80 70 60 50 40 30 20 10 020 1510 50 伸长量/ m m延伸率/ %图1-2 颈缩试样各分格的伸长(a ) (b )图1-3 不同类型材料的拉伸图 图1-4 圆形截面拉伸试件0010 , 11.3L L d ==即5倍直径圆试样:005 , 5.65L d ==即按照上述比例,板试样也分长、短两种: 长试样:0L = 短试样:0L =用10倍直径试样测定的断后伸长率记做A u0,用5倍直径试样测定的断后伸长率记做A 5 国家标准推荐使用短比例试样。

五、实验结果的处理1.强度指标计算屈服极限 0eL eL F R S =强度极限 0m m F R S =屈服载荷F eL 取屈服平台的下限值。

F m 取F-ΔL 曲线的最大载荷。

铸铁不存在屈服阶段故只记R m 。

2.塑性指标的计算断后伸长率 00100%u L L A L -=⨯断面收缩率 00100%uS S Z S -=⨯将自动绘图器绘出的图形用光滑曲线联结,并延长直线部分使之交于坐标原点。

修正后绘在方格纸上,并注明比例尺,即方格上每一厘米代表若干载荷和伸长。

绘出低碳钢和铸铁试件试验前后的形状图形。

最后,根据试验结果,比较并说明两种材料机械性质的特点。

3.断口移中法从破坏后的低碳钢试件及图1-2上可以看到,各处的残余变形不是均匀分布的,愈近断口(颈缩)处伸长愈多。

因此测得L u 的数值与断口的部位有关。

若试件断口不在标距中间三分之一范围内,应按国家标准的规定采用断口移中的办法,计算L u 长度。

试验前要在试件标距内等分划十个格子。

试验后,将试件对接在一起,从断口为起点O ,在长段上取基本等于短段的格数得B 点。

计算L u 方法如下:(1)当长段所余格数为偶数时,如图1-5(a )所示,则量取长段所余格数之一半,得c 点,将BC 段长度称到试件左端,则移后的L u 为BC OB AO L 21++=(2) 当在长段上所余格为奇数时,如图1-5(b )所示,则在长段上所余格数减1之半,得C 点,再由C 点向后移一格得C 1点。

则移位后的标距L u 为: 11BC BC OB AO L +++=当断口非常靠近试件两端,而与其头部之距离等于或小于直径的两倍时,一般认为试验结果无效,需要重新试验。

(附)图1-5 拉伸试件断口移中(a ) 图1-5 拉伸试件断口移中 (b )试验数据A.试样原始尺寸B.试验记录数据C.计算结果根据试验结果绘制拉伸图(R-ε)曲线及试样断口草图。

相关文档
最新文档