人教版高中数学必修一集合1.2 子集.ppt

合集下载

集合间的基本关系ppt课件

集合间的基本关系ppt课件
( B
A.2
)
B.3
C.4
【解析】集合M满足M ⫋ {1,2},集合{1,2}的元素个数为2,
则满足题意的M的个数为22 − 1 = 3.
D.5
例3-7 已知集合A = {x ∈ | − 2 < x < 3},则集合A的所有非空真子集的个数是
( A
)
A.6
B.7
C.14
D.15
【解析】A = {x ∈ | − 2 < x < 3} = {0,1,2},
图形语言:
符号语言:若A⊆B,且B⊆A,则A=B
例如:A={x|x是两条边相等的三角形}
B={x|x是等腰三角形}
B (A)
2、集合相等
一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B的
任何一个元素都是集合A的元素,此时集合A与集合B中的元素是一样的,那
么集合A与集合B相等,记作:A=B.
【解析】B = {1,2,4,8},可知集合A中的任意一个元素都是集合B中的元素,故
A ⫋ B.用Venn图表示更加直观,如图1.2-8.
图1.2-8
(2)A = {x| − 1 < x < 5},B = {x|0 < x < 5};
【解析】在数轴上表示出集合A,B,如图1.2-9所示,由图可知B ⫋ A.
方法1 (列举法) 满足条件的集合有:{0},{1},{2},{0,1},{0,2},{1,2},共6个.
方法2 (公式法) 集合A的元素个数为3,则集合A的所有非空真子集的个数为
23 − 2 = 6.
高考题型1 集合间关系的判断
例10 指出下列各组集合之间的关系:
(1)A = {1,2,4},B = {x|x是8的正约数};

高中数学高一上册第一章-1.1.2集合之间的关系-子集个数问题的研究 课件

高中数学高一上册第一章-1.1.2集合之间的关系-子集个数问题的研究 课件

拓展探究:
满足 A1,2,3 的集合 A 的个数
是多少?
改造条件,生成问题,解决问题
对课后作业的反思:
习题.满足 A1,2,3,4,5, 且若 x A ,
则 6xA, 问非空集合 A 的个数为多少?
反思条件,确定方向,判断可能性,生成问题
对课后作业的反思:
习题.满足 A1,2,3,4,5, 且若 x A ,
身体健康, 知之者不如好之者,好之者不如乐之者。——孔子
在等待的日子里,刻苦读书,谦卑做人,养得深根,日后才能够枝叶茂盛。 问候不一定要慎重其事,但一定要真诚感人。 今天应做的事没有做,明天再早也是耽误了。——裴斯泰洛齐 最好的教育是以身作则。孩子们对谎言或虚伪非常敏感,极易察觉。如果他们尊重你依赖你他们就是在很小的时候也会同你合作。——甘地夫 人 过去一切时代的精华尽在书中。——卡莱尔 只有想不到的事,没有做不到的事。
一定不要把别人都当傻子,事实上,所有你能遇到的人都比你聪明。如果你能抱着这样的心态为人处世,那么你的人脉会越来越宽,财富越来 越多,人生也就越来越好! 不要太肯定自己的看法,这样子比较少后悔。 记住:你是你生命的船长,走自己的路,何必在乎其它。 我们的人生必须励志,不励志就仿佛没有灵魂。 只要我还有梦,就会看到彩虹! 活在别人的掌声中,是禁不起考验的人。 内外相应,言行相称。——韩非 当你用烦恼心来面对事物时,你会觉得一切都是业障,世界也会变得丑陋可恨。
谢谢同学们! 欢迎老师指正!
在人生征途中有许多弯路小路险路暗路,只有意志坚定且永不停步的人,才有希望到达胜利的远方。 友谊的最大努力并不是向一个朋友展示我们的缺陷,而是使他看到自己的缺陷。
一棵小草,也许永远不能成为参天大树,但它可能做最绿最坚强的小草;一滴水,也许永远不能像长江大河一样奔腾,但它可以成为所有水中 的最纯的那一滴 志不立,天下无可成之事。

2018学年高中数学必修1课件:1.2 第1课时 子集、真子

2018学年高中数学必修1课件:1.2 第1课时 子集、真子
阶 段 1
1.2 子集、全集、补集 第1课时 子集、真子集
阶 段 3
阶 段 2

学 业 分 层 测 评
1.理解集合间包含与相等的含义、能识别给定集合间是否有包含关系. (重点) 2.能通过分析元素的特点判断集合间的关系.(难点) 3.能根据集合间的关系确定一些参数的取值.(难点、易错点)
[基础· 初探] 教材整理1 子集的概念及其性质 阅读教材P8开始至例1,完成下列问题. 1.子集
集合A={x|x2-1=0},B={-1,0,1},则A与B的关系是________.
【解析】 ∵x2-1=0,∴x=± 1,∴A={1,-1}. 显然A B.
【答案】 A B
[小组合作型]
集合关系的判断
指出下列各对集合之间的关系: (1)A={-1,1},B={x∈N|x2=1}; (2)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)}; (3)P={x|x=2n,n∈Z},Q={x|x=2(n-1),n∈Z}; (4)A={x|x是等边三角形},B={x|x是三角形}; (5)A={x|-1<x<4},B={x|x-5<0}.
探究2若集合M={x|x≤1},N={x|x<1},则M⊆N成立吗? 【提示】 不成立,因为1∈M但1∉N,故M⊆N错误.
探究3 集合M={x|2a<x<a+1}可能是空集吗?此时a应满足什么条件? 【提示】 M可以是空集,此时只需要2a≥a+1,即a≥1.
已知集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且B⊆A,求 实数m的取值范围.
【精彩点拨】 讨论集合B→列关于m的不等式(组)
→求m的取值范围

人教版高中数学必修1(A版) 1.1.2集合间的基本关系 PPT课件

人教版高中数学必修1(A版) 1.1.2集合间的基本关系 PPT课件

回到目录
三、教师点拨
1.集合的相等
回到目录
三、教师点拨
2.真子集定义
一般地,若集合A中的元素都是集合B的元素, B中至少有一个元素不属于A。我们称集合A是 集合B的真子集。记作:
AÞ B
回到目录
三、教师点拨
2.真子集定义
回到目录
三、教师点拨
3.子集定义 如果集合A的任何一个元素都是集合B的元素, 那么,集合A就叫做集合B的一个子集.记作:
A B
说明:(1)子集包含相等与真子集两种情况, 任何一个集合都是它自身的子集; (2)空集是任何集合的子集,包括它本身;
回到目录
பைடு நூலகம்
三、教师点拨
3.子集的定义
回到目录
四、课堂小结
(1)集合相等定义 (2)真子集的定义 (3)子集的定义 (4)体会类比发现新结论与数形结合的思想
回到目录
自主探究 时间15分钟 (完成所有探究与练习) 集中全部精力!提升自学能力!
回到目录
三、教师点拨
1.集合的相等
一般地,如果集合A的每一个元素都是集合B的元素, 反过来集合B的每一个元素也都是集合A的元素,我们 就说集合A等于集合B。记作:
AB
这里的符号“=”是借用了数学中的等号,它表示两 个集合中的元素完全相同 ( 即两个集合中的元素个数 相等且相应的元素都相同).
标题
§1.1.2集合间的基本关系
§1.1.2集合间的基本关系
一、问题情景 二、自主学习 三、教师点拨 四、课堂小结
本课结束
一、问题情景 山东人组成的集合为A,中国人组成的集 合为B, 某人说:“我是一个山东人”,
那我们马上能反应出这个人也是一个中 国人,集合A与集合B有什么关系呢?

人教版高中数学必修一1.1.2集合间的基本关系ppt课件

人教版高中数学必修一1.1.2集合间的基本关系ppt课件

【类题试解】已知集合P={x|x2+x-6=0},M={x|mx-1=0},若
M P,求满足条件的实数m取值的集合Q.
【解析】P={x|x2+x-6=0}={-3,2}.∵M P,∴M=∅或M≠∅.
(1)当M=∅,即m=0时,满足M P.
(2)当M≠∅,即m≠0时,M={x|mx-1=0}={
=-3或2,解得m= 或 .
1 1, ∴a a≤-2.…………………………11分
2

a

1,
a 0, 综上可知,a≤-2或a=0或a≥2.…………………………12分
【失分警示】
【防范措施】 1.特别关注空集 此题含有条件A⊆B,解答此类含有集合包含关系的问题时,一定要考虑集合 为空集,此类问题往往因为对空集的关注不够而出现不必要的失误. 2.分类讨论的意识 本题中由于a的取值未限定,因而要考虑不等式组解的情况,即需要分a=0, <0三种情况讨论,也就是在解题时要有分类讨论的意识.
1.空集:指的是_____不__含__任__何_的元集素合,记作__,并规定: ∅
空集是________的子集. 任何集合
2.集合间关系具有的性质
(1)任何一个集合是它本身的_____,即______. (2)对于集合A,B,C,如果A⊆B,且B⊆C子,那集么_____. A⊆A
判断:(正确的打“√”,错误的打“×”) (1)集合{0}是空集.( ) (2)集合{x|x2+1=0,x∈R}是空集.( ) (3)空集没有子集.( ) 提示:(1)错误.集合{0}含有一个元素0,是非空集合. (2)正确.由于方程x2+1=0在实数范围内无解,故此集合是空集. (3)错误.空集是任何集合的子集,也是它本身的子集. 答案:(1)× (2)√ (3)×

最新-高中数学必修1 12 子集、全集、补集 课件26张 精

最新-高中数学必修1 12 子集、全集、补集 课件26张 精

两集合的相等关系
已知集合A={x,2x},B={y,y2},若A=B,求实 数x与y的值. (链接教材P7练习T5)
[解] 因为{x,2x}={y,y2},
所以,(1)x2=x=y,y2,解得xy==00,,(舍去)或xy==22,,
(2)x2=x=y2y,,解得xy==00,,(舍去)或
x=14, y=12.
透相对的观点.
1.子集的概念及表示 自然 如果集合A的任意一个元素都是集合B的元素(若 语言 a∈A,则a∈B),那么集合A称为集合B的子集 符号 A⊆B或B⊇A,读作“集合A__包__含__于__集合B”或 语言 “集合B__包__含___集合A” 图形 A⊆B可以用Venn图表示为 语言
2.真子集 如果__A_⊆__B_,并且_A_≠__B__ ,那么集合A称为集合B的真子集, 记为A B或B A,读作“A _真__包__含__于___B”或“B真__包__含__A”. 3.子集、真子集的性质 (1)任何一个集合A是它本身的__子__集__,即_A__⊆_A__ . (2)空集是任何集合的_子__集___,是任何非空集合的_真__子__集_.
1.用适当的符号表示下列各题中集合之间的关系: (1)A={x|x=2n,n∈N},B={x|x=4n,n∈Z}; (2)A={x|x 是等腰三角形},B={x|x 是等边三角形}; (3)A={x|y= x+3,y∈R},B={y|y=x2+1,x∈R}.
解:(1)B⃘A 且 A⃘B. (2)等边三角形一定是等腰三角形,故 B A. (3)使 y= x+3,y∈R 有意义的 x 值为 x≥-3,所以 A ={x|x≥-3,x∈R}.而对 x∈R,有 y=x2+1≥1,所以 B={y|y≥1,y∈R},故 B A.

人教版(新教材)高中数学第一册(必修1)精品课件3:1.2 集合间的基本关系


[微体验] 1.思考辨析 (1)空集可以用表示.( ) (2)空集中只有元素0,而无其余元素.( ) 答案 (1)× (2)×
2.下列四个集合中,是空集的为( )
A.{0}
B.{x|x>8,且x<5}
C.{x∈N|x2-1=0}
D.{x|x>4}
解析 满足x>8且x<5的实数不存在,故{x|x>8,且x<5}=∅. 答案 B
答案 C B A
课堂互动探究
探究一 集合关系的判断
例 1 (1)已知集合 M={x|x2-3x+2=0},N={0,1,2},则集合 M 与 N 的关系是( )
A.M=N
ቤተ መጻሕፍቲ ባይዱ
B.N M
C.M N
D.N⊆M
解析 解方程 x2-3x+2=0 得 x=2 或 x=1,则 M={1,2},
因为 1∈M 且 1∈N,2∈M 且 2∈N,所以 M⊆N.
探究二 子集、真子集问题
例 2 已知集合 A={x|x2-3x+2=0},B={x|0<x<6,x∈N},写出满足 A⊆C⊆B 的集合 C 的所有可能情况.
解 由 A={x|x2-3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5}, 又因为 A⊆C⊆B,即{1,2}⊆C⊆{1,2,3,4,5}, 所以 C 中至少含有元素 1,2,故 C 的所有可能情况是: {1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5}, {1,2,3,4,5},共 8 个.
A.M⊆P
B.P⊆M
C.M=P
D.M,P互不包含
解析 由于集合M为数集,集合P为点集,因此M与P互不包含. 答案 D

高中必修一数学第一章集合间的基本关系ppt课件-人教版

高中数学
[导入新知] 子集的概念
任意一个
包含
A⊆B B⊇A
高中数学
⊆ ⊆
高中数学
[化解疑难] 对子集概念的理解
(1)集合 A 是集合 B 的子集的含义是:集合 A 中的 个元素都是集合 B 中的元素,即由 x∈A 能推出 x∈B.例 ⊆{-1,0,1},则 0∈{0,1},0∈{-1,0,1}.
(2)若两集合相等,则两集合所含元素完全相同,与 列顺序无关.
高中数学
真子集 [提出问题] 给出下列集合: A={a,b,c},B={a,b,c,d,e}. 问题1:集合A与集合B有什么关系? 提示:A⊆B. 问题2:集合B中的元素与集合A有什么关系? 提示:集合B中的元素a,b,c都在A中,但元素d,e不
高中数学
[导入新知] 集合相等的概念
如果集合 A 是集合 B 的 子集 (A⊆B),且集合 B A 的 子集 (B⊆A),此时,集合 A 与集合 B 中的元素 的,因此,集合 A 与集合 B 相等,记作 A=B .
高中数学
[化解疑难] 对两集合相等的认识
(1)若 A⊆B,又 B⊆A,则 A=B;反之,如果 A= ⊆B,且 B⊆A.这就给出了证明两个集合相等的方法,即 =B,只需证 A⊆B 与 B⊆A 同时成立即可.
(2)若 A 不是 B 的子集,则 A 一定不是 B 的真子集
高中数学
空集 [提出问题] 一个月有32天的月份组成集合T. 问题1:含有32天的月份存在吗? 提示:不存在. 问题2:集合T存在吗?是什么集合? 提示:存在,是空集.
高中数学
[导入新知]
空集的概念
定义 我们把 不含任何元素 的集合,叫做空
1 理解教 材新知
1.1.2

人教A版高中数学必修一《1.1.2集合间的基本关系》课件

1.∈,∉用在元素与集合之间,表示从属关 系;⊆,(或 )用在集合与集合之间,表示包含(真 包含)关系.
2.a与{a}的区别:一般地,a表示一个元素, 而{a}表示只有一个元素的一个集合,我们常称之为 单元素集.1∈{1},不能写成1⊆{1}.
3.关于空集∅:空集是不含任何元素的集合, 它既不是有限集又不是无限集,不能认为∅={0}, 也不能认为{∅}=∅或{空集}=∅.
高中数学课件
(金戈铁骑 整理制作)
1.1.2集合间的基本关系
冠县一中 姚增珍
2012.9.7
1.理解集合之间包含与相等的含义,能识别给 定集合的子集.
2.在具体情境中,了解空集的含义.
自学导引
1.一般地,对于两个集合A、B,如果集合A中 _任__意__一__个__元素都是集合B中的元素,我们就说这两 个集合有包含关系,称集合A为集合B的子集,记作 _A_⊆__B_(或_B__⊇_A_),读作“_A_含__于__B_”(或“_B_包__含__A__”).
误区解密 因忽略空集而出错
【例4】设A={x|2≤x≤6},B={x|2a≤x≤a+ 3},若B⊆A,则实数a的取值范围是( )
A.{a|1≤a≤3}B.{a|a>3} C.{a|a≥1}D.{a|1<a<3}
错解:∵B⊆A,∴2aa+≥32≤6 , 解得 1≤a≤3,故选 A.
错因分析:空集是任何集合的子集,忽视这一 点,会导致漏解,产生错误结论.对于形如 {x|a<x<b}一类的集合,当a≥b时,它表示空集,解 题中要引起注意.
解析:(1)为元素与集合的关系,(2)(3)(4)为集 合与集合的关系.
易知a∈{a,b,c}; ∵x2+1=0在实数范围内的解集为空集, 故∅={x∈R|x2+1=0}; ∵{x|x2=x}={0,1}, ∴{0} {x|x2=x}; ∵x2-3x+2=0的解为x1=1,x2=2. ∴{2,1}={x|x2-3x+2=0}. 答案:(1)∈ (2)= (3) (4)=

高中必修高一数学PPT课件集合


集合的基本概念(2)
• 观察如下一些集合: • (a) 集合 {1}、{2}、{3}、{1,2}、{2,3}、 {3,1}、{1,2,3} • (b) 以上这些集合与集合{1,2,3}、 {1,2,3,4}分别有什么关系?
• 结论:(a)中集合的元素都在(b)
中的集合之中。
1.子集:对于两个集合A和B,如果集 合A的任何一个元素都是集合B的元素, 那么集合A叫做集合B的子集。




练习三:用描述法写出集合如能 化简并化简为列举法的形式。
• 8.由数字1,3,6中抽出一部分或全部数字 (没有重复)所排成的一切自然数。 • 答:{由数字1,3,6中抽出一部分或全部数 字(没有重复)所排成的自然数}={1,3,6, 13,31,16,61,36,63,136,361, 613,316,163,631}。 • 9.直角坐标系第二象限内所有的点的坐标。 • 答:{(x,y)│x<0,y>0}


• 包含、真包含关系具有传递性(1)如果 C.(2)如果 C,那么A A B,B A B,B C,那么A C. • 3.集合相等:对于集合A,B,C,如果 A B,B A,那么就说这两个集合相等。 记作 A = B.



例1写出集合{a}的所有
的子集及真子集 • 解:集合{a}的所有 的子集是φ,{a},其 中φ是真子集.
10.写出方程组
• 答:方程组
x y 4 y z 5 z x 3
的解ห้องสมุดไป่ตู้。
x y 4 y z 5 z x 3
}
的解集为

• •
x y 4 {(x,y,z)│ y z 5 z x 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档