BTS7960大功率直流电机驱动原理图

合集下载

BTS7960中文资料

BTS7960中文资料

BTS7960智能功率芯片中文资料The BTS7960 is part of the NovalithIC family containing three separate chips in one package: One p-channel highside MOSFET and one n-channel lowside MOSFET together with a driver IC, forming a fully integrated high current half-bridge. All three chips are mounted on one common leadframe, using the chip on chip and chip by chip technology. The power switches utilize vertical MOS technologies to ensure optimum on state resistance. Due to the p-channel highside switch the need for a charge pump is eliminated thus minimizing EMI. Interfacing to a microcontroller is made easy by the integrated driver IC which features logic level inputs, diagnosis with current sense, slew rate adjustment, dead time generation and protection against overtemperature, overvoltage, undervoltage, overcurrent and short circuit. The BTS7960 can be combined with other BTS7960 to form H-bridge and 3-phase drive configurations.BTS7960是NovalithIC家族三个独立的芯片的一部分:一是p型通道的高电位场效应晶体管,二是一个n型通道的低电位场效应晶体管,结合一个驱动晶片,形成一个完全整合的高电流半桥。

TBS7960四路直流电机驱动板数据手册(创智科技)

TBS7960四路直流电机驱动板数据手册(创智科技)
创智科技
BTS7960四路直流电机 驱动板
技 术 手 册
v1.0
创智科技
BTS7960四路直流电机驱动板
电气性能
型号:TBS7960 输入电压:5.5V-27.5V 最大瞬间电流: 43A 控制方式:PWM 或电平 占空比:0-100%
创智科技
板子特点:
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 双 BTS7960最大电流( 43A)H 驱动; 支持四路直流电机驱动; 跳帽使能控制,减少杜邦线的使用; 电源支持27.5V 电压; 单片机与驱动芯片使用芯片隔离; 采用进口芯片,保证原装、正规; 采用2P 插口减少接线麻烦; 单路电机仅需2根线控制; 72HC244采用直插形式,方便更换; 直插方式安装驱动芯片,半桥损坏后直接更换; 72HC244采用直插形式,方便更换; 驱动芯片配置散热片,更好的达到散热效果; 驱动芯片插在主板上,自然形成上下风道; 电机接口添加安规电容防止逆流损毁驱动;
4.
I 口使用杜邦线直接连接单片机即可
逻辑图
EN 高电平
Ix1 H L H/L 悬空 H L
Ix2 L H 悬空 H/L H L H/L H/L
电机状态 正转 反转 禁止 禁止 短路 停止 停止 禁止
低电平 悬空
H/L H/L
创智技
创智科技
BTS7960四路直流电机 驱动板
技 术
创智科技
红字部分是创智科技独创技术! ! !
电机与电源接口
创智科技
电机驱动基本使用方法
1. 2.
最左侧5V、GND 为74HC244供电口 EN1是电机1号使能、EN2是电机2号使能、 EN3是电机3号使能、EN4是电机4号使能

BTS7960B

BTS7960B

High Current PN Half Bridge NovalithICTM
BTS 7960B BTS 7960P
Product Summary
The BTS 7960 is a fully integrated high current half
bridge for motor drive applications. It is part of the
9 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Data Sheet
1
Rev. 1.1, 2004-12-07
3 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
4 Block Description and Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 4.1 Supply Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 4.2 Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 4.2.1 Power Stages - Static Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2.2 Switching Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2.3 Power Stages - Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 11 4.3 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 4.3.1 Overvoltage Lock Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3.2 Undervoltage Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3.3 Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3.4 Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3.5 Short Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3.6 Electrical Characteristics - Protection Functions . . . . . . . . . . . . . . . . . . . 16 4.4 Control and Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 4.4.1 Input Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4.2 Dead Time Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4.3 Adjustable Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4.4 Status Flag Diagnosis With Current Sense Capability . . . . . . . . . . . . . . 17 4.4.5 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.4.6 Electrical Characteristics - Control and Diagnostics . . . . . . . . . . . . . . . . 2t.

BTS7960_v1.1_2004-12-07电机驱动中文版

BTS7960_v1.1_2004-12-07电机驱动中文版
7
4.2Power 阶段 该 BTS7960 的功率级包括一个 P 沟道垂直 DMOS 晶体管的 高侧开关和一个 N 沟道垂直 DMOS 晶体管的低侧开关。所有 保护和诊断功能都位于一个单独的顶级芯片。这两款交换机可以 操作高达 25 千赫,允许活跃随心所欲,从而降低功耗 耗散在集成二极管的正向操作。 开态电阻 RON 是依赖于电源电压 VS 以及对 结温 Tj 。在通电阻特性的典型显示在 图 4。 Figure4Typical 通电阻与电源电压 5 10 15 20 25 481216202428 VS RON(HS) MΩ V TJ =150°C TJ =25°C TJ =-40°C 高端开关
1 概述 该 BTS7960 是 NovalithIC 系列包含三种不同的芯片的一部分 包装:一个 P 沟道海赛德 MOSF1Overview 该 BTS7960 是 NovalithIC 系列包含三种不同的芯片的一部分 包装:一个 P 沟道海赛德 MOSFET 和一个 N 沟道 MOSFET 的低边 用驱动器 IC 一起,形成一个完全集成的高电流半桥。所有这三个 芯片被安装在一个共用的引线框架,使用该芯片上的芯片和芯片通过芯片 技术。电源开关采用垂直 MOS 技术,以确保最佳的上 态电阻。由于 P 沟道高侧开关需要一个电荷泵 从而最大限度地降低 EMI 消除。连接到微控制器是由简单的
4.4Control 和诊断。 。 。 。 。 。 。 。 。 。 。 。 0.17
4.4.1Input。 。 。 ຫໍສະໝຸດ 。 。 。 。 。 。 。 17
4.4.2Dead 时间生成。 。 。 。 。 。 。 。 。 。 。 。 17
4.4.3Adjustable 压摆率。 。 。 。 。 。 。 。 。 。 17

图文讲解无刷直流电机地工作原理

图文讲解无刷直流电机地工作原理

图文讲解无刷直流电机的工作原理导读:无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。

电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。

它的应用非常广泛,在很多机电一体化设备上都有它的身影。

什么是无刷电机?无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。

由于无刷直流电动机是以自控式运行的,所以不会像变频调速下重载启动的同步电机那样在转子上另加启动绕组,也不会在负载突变时产生振荡和失步。

中小容量的无刷直流电动机的永磁体,现在多采用高磁能级的稀土钕铁硼(Nd-Fe-B)材料。

因此,稀土永磁无刷电动机的体积比同容量三相异步电动机缩小了一个机座号。

无刷直流电动机是采用半导体开关器件来实现电子换向的,即用电子开关器件代替传统的接触式换向器和电刷。

它具有可靠性高、无换向火花、机械噪声低等优点,广泛应用于高档录音座、录像机、电子仪器及自动化办公设备中。

无刷直流电动机由永磁体转子、多极绕组定子、位置传感器等组成。

位置传感按转子位置的变化,沿着一定次序对定子绕组的电流进行换流(即检测转子磁极相对定子绕组的位置,并在确定的位置处产生位置传感信号,经信号转换电路处理后去控制功率开关电路,按一定的逻辑关系进行绕组电流切换)。

定子绕组的工作电压由位置传感器输出控制的电子开关电路提供。

位置传感器有磁敏式、光电式和电磁式三种类型。

采用磁敏式位置传感器的无刷直流电动机,其磁敏传感器件(例如霍尔元件、磁敏二极管、磁敏诂极管、磁敏电阻器或专用集成电路等)装在定子组件上,用来检测永磁体、转子旋转时产生的磁场变化。

采用光电式位置传感器的无刷直流电动机,在定子组件上按一定位置配置了光电传感器件,转子上装有遮光板,光源为发光二极管或小灯泡。

转子旋转时,由于遮光板的作用,定子上的光敏元器件将会按一定频率间歇间生脉冲信号。

采用电磁式位置传感器的无刷直流电动机,是在定子组件上安装有电磁传感器部件(例如耦合变压器、接近开关、LC谐振电路等),当永磁体转子位置发生变化时,电磁效应将使电磁传感器产生高频调制信号(其幅值随转子位置而变化)。

一种新型智能车电机驱动电路的设计与实现概要

一种新型智能车电机驱动电路的设计与实现概要

产品设计与开发roduct Design and Development一种新型智能车电机驱动电路的设计与实现 New Design and Realization of the M otor Driver Circuit for the Intelligent Car陈军 , 杨数强 , 王军强 (洛阳师范学院 , 河南洛阳 471022Chen J un,Yang Shu-qiang,Wang J un-qiang (LuoyangNormal University,HenanLuoyang 471022摘要:设计了基于 BTS7960芯片的电机驱动电路, 详细分析了芯片的特点和电路功能。

在驱动电路的输出端加入了短路自动断电保护电路, 分析了电路的工作原理。

对驱动电路进行了 10KHz 、 30%占空比的 PWM 驱动实验, 在占空比从15%变化到 40%的 PWM 信号驱动下, 测量了芯片的温度变化, 结果证明该电路能够实现设计功能并具有较好的温度稳定性。

关键词:智能车; BTS7960; 驱动电路中图分类号:TP213.13文献标识码:A 文章编号:1003-0107(201109-0032-03Abstract:Designed a motor driver circuit based on BTS7960,explained the characteristics of the chip and the theories of circuit partic-ularly.Added a automatic protective circuit which could cut off when the circuit was short out.The circuit was tested by the PWM wave, frequence was 10KHz,duty cycle was 30%.Whilethe circuit was working under the PWM signal of duty cycle from 15%to 40%,thechip temperatures were measured.The results proved that the circuit realized the design function and had better temperature stability.Key w ords:intelligent car;BTS7960;driving circuitCLC num ber:TP213.13Docum ent code:A Article ID:1003-0107(201109-0032-03 1前言智能车是光机电控一体化技术等最新科技成果与汽车技术相结合的产物,目前已经成为智能机器人研究领域的一个重要基础环节。

智能车电路图整理,总结综述

智能车电路图整理,总结综述

(1)驱动电路:以下是BTS 7960全桥的接线电路,同样适用于BTS(BTN)7960 7970等。

BTN比BTS性能更强。

A车用两片做驱动就够了,不需要像下图那样用四片,四片B车模才需要。

BTS7960芯片引脚简绍1脚(GND);2脚(IN)PWM输入-0.3~5.3V;3脚(INH)使能1有效0进入睡眠模式;4脚(OUT)半桥驱动功率输出;5脚(SR)Slew Rate转换速率,通过在SR和GND之间接入一个电阻可以调整转换速率,电阻越大,上升下降越慢;6脚(IS)输出脚电流传感器和故障诊断输出;7脚(VS)VCC供电-0.3~45V。

这是工作原理,可以不看。

BTS7960的芯片内部为一个半桥。

INH引脚为高电平,使能BTS7960。

IN引脚用于确定哪个MOSFET导通。

IN=1且INH=1时,高边MOSFET导通,OUT引脚输出高电平;IN=0且INH=1时,低边MOSFET导通,OUT引脚输出低电平。

SR引脚外接电阻的大小,可以调节MOS管导通和关断的时间,具有防电磁干扰的功能。

IS引脚是电流检测输出引脚。

BTS7960的引脚IS具有电流检测功能。

正常模式下,从IS引脚流出的电流与流经高边MOS管的电流成正比,若RIS=1kΩ,则V=I load/8.5;在故障条件下,从IS引脚流出的电流等于I IS(lim) (约IS4.5mA),最后的效果是IS为高电平。

如图4所示,图(a)为正常模式下IS引脚电流输出,图(b)为故障条件下IS引脚上的电流输出。

BTS7960短路故障实验的实验条件如下:+12.45V电池电压,+5V 电源供电,2.0m短路导线(R=0.2Ω),横截面积为0.75 mm,连接1kΩ电阻和一个发光二极管。

V S与电池正极间导线长1.5m (R=0.15Ω)。

如图5所示,其中V IS是IS引脚对地的电压、V L 是OUT引脚对地电压,I L为发生对地短路故障时,流过BTS7960的短路电流。

BTS7960连接线路图

BTS7960连接线路图

BTS7960接口连线图图中的引脚7960INH1、与7960INH2接在一起7960IN1、7960IN2分别连接到XS1 28的I/0口。

BTS7960是应用于电机驱动的大电流半桥高集成芯片,它带有一个P沟道的高边MOSFET、一个N沟道的低边MOSFET和一个驱动IC。

P沟道高边开关省去了电荷泵的需求, 因而减小了EMI。

集成的驱动IC具有逻辑电平输入、电流诊断、斜率调节、死区时间产生和过温、过压、欠压、过流及短路保护的功能。

BTS7960通态电阻典型值为16mΩ,驱动电流可达43A。

因此即使在北方寒冷的冬天,仍能保证车窗的安全启动。

由于7960是单桥驱动芯片,要想让点击能够正反转,就必须使用两片7960构成全桥,上图就是两片构成的全桥驱动,IN1、IN2分别为方向控制端口,INH1、INH2为使能端,接在一起接上单片机PMW输出口,例如:IN1接高电平,IN2接低电平电机正传,反之则电机反转。

PWM脉冲也可由IN1、IN2输入,此时INH1、INH2就是方向控制端口。

接在5引脚的电容的作用是使7960的通断速度更快,接在各引脚的电阻主要作用是限流电阻,也可不加,但加上对跟安全,在电源端口的电容耐压必须注意,由于电机存在反向电动势,电容的耐压应是电源电压的两倍,更高则不需要,不仅增加成本还会占用更大体积,否则会导致电容发生击穿甚至爆炸,本人亲身经历,造成后果相当严重,望各位注意。

与7960差不多的驱动芯片7970,相比较7970驱动电流更大,其他参数大致相同。

在做飞思卡尔比赛中使用此芯片较多,在汽车车窗驱动也用的较多。

在做板布线时引脚4与引脚8都是输出端口,引脚8是芯片背面金属部分,输出电流很大如果只用引脚4的输出将会使布线烧毁,因此应将引脚4与引脚8接在一起并使用引脚8输出接至电机。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档