高数下册总复习知识点
高数下册常用常见知识点

高数下册常用常见知识点高等数学下册常用知识点第八章:空间解析几何与向量代数一、向量及其线性运算1.向量的概念及基本性质:包括向量相等、单位向量、零向量、向量平行、共线、共面等基本概念。
2.向量的线性运算:包括加减法和数乘。
3.空间直角坐标系:包括坐标轴、坐标面、卦限和向量的坐标分解式等。
4.利用坐标进行向量的运算:设向量a=(ax。
ay。
az),向量b=(bx。
by。
bz),则a±b=(ax±bx。
ay±by。
az±bz),λa=(λax。
λay。
λaz)。
5.向量的模、方向角、投影:包括向量的模、两点间的距离公式、方向角、方向余弦和投影等。
二、数量积和向量积1.数量积:包括数量积的概念、性质和计算公式等。
2.向量积:包括向量积的概念、性质和计算公式等。
三、曲面及其方程1.曲面方程的概念:包括曲面方程的定义和基本性质等。
2.旋转曲面:包括旋转曲面的定义、方程和旋转后方程的计算等。
3.柱面:包括柱面的特点、方程和母线的概念等。
4.二次曲面:包括椭圆锥面的方程和图形等。
2.椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$3.旋转椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$4.单叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$5.双叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1$6.椭圆抛物面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=z$7.双曲抛物面(马鞍面):$\frac{x^2}{a^2}-\frac{y^2}{b^2}=z$8.椭圆柱面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$9.双曲柱面:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$10.抛物柱面:$2x=ay^2$空间曲线及其方程:1.参数方程:$\begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases}$,如螺旋线:$\begin{cases}x=a\cos t\\y=a\sin t\\z=bt\end{cases}$2.一般方程:$F(x,y,z)=0$,消去$z$,得到曲线在面$xoy$上的投影。
大一高数下册知识点汇总

大一高数下册知识点汇总在大一高等数学下学期的学习中,我们将继续学习和探索更深入的数学知识。
下面是对本学期知识点的汇总和总结。
一、向量代数1. 向量的基本概念和表示法:向量的定义,零向量,单位向量,向量的数量表示法。
2. 向量的加法和减法:向量之间的加法和减法运算,平行四边形法则,共线向量和共面向量。
3. 数乘和数量积:向量与实数的数乘运算,向量的数量积的定义和性质,向量的模长和方向余弦。
4. 向量的叉乘和向量积:向量的叉乘定义和性质,向量积的模长和方向。
二、空间解析几何1. 空间直线及其方程:空间直线的定义,向量方程和参数方程的转换,直线的方向向量和点向式方程。
2. 平面及其方程:平面的定义,平面的一般方程,点法式方程和一般法式方程。
3. 空间曲线及其方程:空间曲线的定义,参数方程,齐次方程和标准方程。
4. 空间曲面及其方程:二次曲面的方程和图像,球面和圆锥曲线的方程。
三、多元函数及其极限1. 多元函数的概念与性质:多元函数的定义,自变量和因变量的关系,函数的定义域和值域。
2. 多元函数的极限:二重极限和多重极限的概念,函数极限的性质与判定方法。
3. 偏导数:多元函数的偏导数定义,偏导数的计算方法,高阶偏导数,混合偏导数。
4. 微分:多元函数的微分及其几何意义,微分的计算方法。
四、多元函数的微分学1. 隐函数及其求导:隐函数的概念和性质,隐函数求导的方法。
2. 方向导数与梯度:方向导数的定义和计算,梯度的概念和性质。
3. 多元函数极值与条件极值:多元函数的极值判定,约束条件下的极值求解。
五、多元函数的积分学1. 重积分:二重积分的概念和性质,二重积分的计算,极坐标下的二重积分。
2. 三重积分:三重积分的概念和性质,三重积分的计算,柱面坐标和球面坐标下的三重积分。
3. 曲线与曲面积分:曲线积分的概念和计算,曲面积分的概念和计算。
六、无穷级数1. 数列极限与无穷级数:数列的极限概念和性质,常见数列的收敛与发散,无穷级数的概念和性质。
高等数学下册知识点归纳

高等数学下册知识点归纳
高等数学下册的知识点主要包括以下内容:
1. 向量的模、方向角、投影:向量的模是表示向量大小的度量,方向角和方向余弦是描述向量方向的量,投影则是描述向量在另一个向量上的投影。
2. 两向量的数量积、向量积:数量积是两个向量的点乘,结果是一个标量;向量积是两个向量的叉乘,结果是一个向量。
3. 平面及其方程:平面的一般方程、点法式方程等都是描述平面的重要方式。
4. 空间直线及其方程:空间直线的方程包括对称式方程、参数方程等。
5. 空间曲线的切线与法平面:空间曲线的切线方程和法平面方程是描述空间曲线的重要方式。
6. 曲面的切平面与法线:曲面的切平面和法线是描述曲面在某一点的切线和方向的重要方式。
7. 全微分:全微分是函数在某一点的变化率的度量,包括一阶偏导数和高阶偏导数。
8. 偏导计算:偏导数是函数在某个变量上的变化率,对于多元函数来说,偏导数是重要的概念。
9. 二元函数的极限:二元函数的极限是描述函数在某个点附近的性质的重要方式,包括极限的求解和证明。
10. 二重积分:二重积分是计算二维区域上的积分的重要方式,包括定积分和反常积分。
以上是高等数学下册的一些主要知识点,掌握这些知识点有助于理解和应用高等数学的基本概念和方法。
期末高数下册知识总结

期末高数下册知识总结本文将对高等数学下册的知识进行总结,主要分为以下几个部分:空间解析几何、多元函数与偏导数、重积分、无穷级数与幂级数、常微分方程五个部分。
一、空间解析几何(平面与直线、空间曲线与曲面、空间直角坐标系下的曲线与曲面)空间解析几何是指在空间情形下分析和研究几何形体、几何运动、数学方程和几何方程之间的联系的一门数学学科。
学习空间解析几何可以帮助我们理解空间形体之间的关系以及其运动规律。
1.平面与直线- 平面方程:点法式、一般式、截距式、两平面交线、平面与平面垂直、平行关系- 直线方程:点向式、两点式、一般式、向量叉乘、直线与直线垂直、平行、斜率、角度的概念与求解2.空间曲线与曲面- 空间曲线的方程:参数方程、一般方程- 空间曲面的方程:二次曲面、旋转曲面、柱面、锥面的方程3.空间直角坐标系下的曲线与曲面- 参数方程下的曲线计算:弧长、速度、加速度、切线、法平面、法线- 参数化的曲面计算:一类曲面的面积、体积、切平面、切向量二、多元函数与偏导数多元函数是指具有多个自变量的函数,偏导数是研究多元函数对其中一个自变量求导数的方法。
学习多元函数与偏导数可以帮助我们更加深入地了解多元函数的性质和变化规律。
1.多元函数的极限- 多元函数极限的定义与性质- 极限存在的条件与计算- 多元函数极限与连续函数2.多元函数的偏导数- 偏导数的定义与性质- 高阶偏导数的计算与应用- 隐函数的偏导数3.多元函数的微分与全微分- 多元函数的微分定义与性质- 链式法则与全微分的计算4.多元函数的方向导数与梯度- 方向导数的概念与计算- 梯度的概念与计算- 梯度的几何意义5.多元函数的极值与最值- 多元函数的极值的判定与求解- 条件极值的求解- 二次型的矩阵表示与规范形三、重积分重积分是对多元函数在给定区域上的积分,通过重积分可以计算出在多元函数定义的区域上的一些量的总和。
1.二重积分- 二重积分的概念与性质- 直角坐标系下的二重积分的计算- 极坐标系下的二重积分的计算2.三重积分- 三重积分的概念与性质- 柱坐标系下的三重积分的计算- 球坐标系下的三重积分的计算3.坐标变换与积分- 坐标变换的概念与方法- 二重积分与三重积分的坐标变换4.重积分的应用- 质量、重心、质心的计算- 总质量与平均密度的计算- 转动惯量与转动半径的计算四、无穷级数与幂级数无穷级数是指所含项的个数为无穷多个的数列之和,幂级数是指形如∑\(a_n(x-a)^n\)的形式的级数。
高等数学(下)知识点总结[汇编]
![高等数学(下)知识点总结[汇编]](https://img.taocdn.com/s3/m/94efe8f49fc3d5bbfd0a79563c1ec5da51e2d64d.png)
高等数学(下)知识点总结[汇编]
1.常微分方程:常微分方程是涉及未知函数在某个函数域内的导数与该未知函数自身
的关系的方程。
在常微分方程的解法中,可以使用分离变量法、齐次法等方法求解。
同时,也需要掌握一阶线性微分方程、一阶非线性微分方程、高阶线性微分方程等方程的解法。
3.多元函数微积分学:多元函数微积分学是研究多元函数的微积分理论及其应用的学科。
在多元函数微积分学的知识点中,需要掌握多元函数的极限、连续性、偏导数、方向
导数、梯度、多元函数的微分、多元函数的积分等内容。
4.向量代数与空间解析几何:向量代数与空间解析几何是研究向量相关理论及其在空
间解析几何中的应用的学科。
在向量代数与空间解析几何的知识点中,需要掌握向量的基
本运算、向量的数量积与向量积、直线及平面的方程、空间曲面方程等内容。
6.常微分方程的数值解法:常微分方程的数值解法是利用数值方法求解常微分方程的
近似解。
其中,欧拉法、龙格-库塔法等是常用的数值解法。
掌握常微分方程的数值解法
有利于在实际问题中应用数学知识进行求解。
以上就是高等数学下学期的知识点总结。
对于学习这门学科的学生来说,掌握以上知
识点是非常重要的,可以帮助他们更好地应对考试和实际问题的求解。
高三数学下册知识点归纳总结

高三数学下册知识点归纳总结本文旨在对高三数学下册的知识点进行归纳总结,帮助同学们全面回顾所学内容,巩固知识。
以下将按照不同章节进行分述。
一、函数与导数1. 函数的概念与性质:了解函数的定义、定义域、值域、单调性等概念,掌握函数性质与图像之间的关系。
2. 导数概念与计算:学习导数的定义、几何意义以及导数的计算方法,熟练运用求导法则。
3. 函数的应用:通过导数的应用解决实际问题,如最值问题、变率问题等。
二、极限与连续函数1. 极限与极限存在准则:了解数列极限存在的几种常见准则,如夹逼准则、单调有界准则等。
2. 函数极限与无穷极限:学习函数极限的定义和性质,了解无穷极限的概念及其运算法则。
3. 连续函数与间断点:掌握连续函数的定义,理解间断点的分类及性质。
三、导数应用与微分学1. 导数应用题:通过导数求解函数的近似计算问题,如函数的线性近似、求解极值等。
2. 高阶导数及应用:学习高阶导数的定义和计算方法,掌握高阶导数在函数图像研究中的应用。
3. 微分学的基本概念:了解微分的定义以及函数的微分与导数的关系,掌握微分学的基本运算法则。
四、不定积分与定积分1. 不定积分的定义与性质:学习不定积分的定义和基本性质,熟练运用不定积分的基本法则。
2. 定积分的概念与性质:了解定积分的定义及其几何意义,掌握定积分的性质与运算法则。
3. 定积分的应用:通过定积分解决实际问题,如定积分的几何应用、物理应用等。
五、常微分方程1. 常微分方程的概念与解法:了解常微分方程的基本概念,学习常微分方程的解法及其应用。
2. 一阶线性微分方程:学习一阶线性微分方程的解法,熟悉应用实例。
3. 高阶线性微分方程:掌握高阶线性微分方程的解法,熟练运用常数变易法等解题方法。
六、向量与立体几何1. 向量的基本概念与运算:了解向量的定义、线性运算、数量积、向量积等基本概念与性质。
2. 空间直线与平面:学习空间直线与平面的定义、相交关系及其方程的求解。
高数下知识点复习

高数下知识点复习一、导数与微分1.导数的定义导数是描述函数变化率的概念,表示函数在某一点的瞬时变化率。
导数的定义为:$$f'(x)=\lim_{\Delta x \to 0}{\frac{f(x+\Delta x)-f(x)}{\Delta x}}$$2.导数的性质导数具有如下的性质:(1) 导函数存在的充要条件是函数在该点可导。
(2) 导函数的值表示函数的斜率。
(3) 导函数具有线性性质,即对于常数a和b,有$(af(x)+bg(x))'=af'(x)+bg'(x)$。
(4) 导函数的导数为二阶导数,记作$f''(x)$。
3.微分的定义与性质微分是导数的一种几何解释,表示函数在某一点附近的变化量。
微分的定义为:$$df(x) = f'(x)dx$$微分满足的性质包括:(1) $\Delta f = f(x+\Delta x)-f(x) \approx df$(2) 微分的四则运算:若函数f(x)和g(x)可导,则$$d(f\pm g) = df \pm dg$$$$d(f \cdot g) = g(df) + f(dg)$$$$d\left(\frac{f}{g}\right) = \frac{g(df) - f(dg)}{g^2}$$二、极限与连续1.数列极限数列极限是描述数列趋向某一值的概念。
数列的极限定义为:对于任意给定的正数$\varepsilon$,存在正整数N,使得当$n>N$时,有$|a_n-L|<\varepsilon$。
2.函数极限函数极限是描述函数趋向某一值的概念。
函数的极限定义为:对于任意给定的正数$\varepsilon$,存在正数$\delta$,使得当$0<|x-a|<\delta$时,有$|f(x)-L|<\varepsilon$。
3.极限的性质极限具有如下的性质:(1) 唯一性:如果极限存在,则极限是唯一的。
高等数学(下)知识点总结

高等数学(下)知识点总结1、二次曲面1)椭圆锥面:2)椭球面:旋转椭球面:3)单叶双曲面:双叶双曲面:4)椭圆抛物面:双曲抛物面(马鞍面):5)椭圆柱面:双曲柱面:6)抛物柱面:(二)平面及其方程1、点法式方程:法向量:,过点2、一般式方程:截距式方程:3、两平面的夹角:,,;4、点到平面的距离:(三)空间直线及其方程1、一般式方程:2、对称式(点向式)方程:方向向量:,过点3、两直线的夹角:,,;4、直线与平面的夹角:直线与它在平面上的投影的夹角,;第九章多元函数微分法及其应用1、连续:2、偏导数:;3、方向导数:其中为的方向角。
4、梯度:,则。
5、全微分:设,则(一)性质1、函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:偏导数存在函数可微函数连续偏导数连续充分条件必要条件定义122342、微分法1)复合函数求导:链式法则若,则,(二)应用1)求函数的极值解方程组求出所有驻点,对于每一个驻点,令,,,① 若,,函数有极小值,若,,函数有极大值;② 若,函数没有极值;③ 若,不定。
2、几何应用1)曲线的切线与法平面曲线,则上一点(对应参数为)处的切线方程为:法平面方程为:2)曲面的切平面与法线曲面,则上一点处的切平面方程为:法线方程为:第章重积分(一)二重积分:几何意义:曲顶柱体的体积1、定义:2、计算:1)直角坐标,,2)极坐标,(二)三重积分1、定义:2、计算:1)直角坐标-----------“先一后二”-----------“先二后一”2)柱面坐标,3)球面坐标(三)应用曲面的面积:第一章曲线积分与曲面积分(一)对弧长的曲线积分1、定义:2、计算:设在曲线弧上有定义且连续,的参数方程为,其中在上具有一阶连续导数,且,则(二)对坐标的曲线积分1、定义:设 L 为面内从 A 到B 的一条有向光滑弧,函数,在 L 上有界,定义,、向量形式:2、计算:设在有向光滑弧上有定义且连续, 的参数方程为,其中在上具有一阶连续导数,且,则3、两类曲线积分之间的关系:设平面有向曲线弧为,上点处的切向量的方向角为:,,,则、(三)格林公式1、格林公式:设区域 D 是由分段光滑正向曲线 L 围成,函数在D 上具有连续一阶偏导数, 则有2、为一个单连通区域,函数在上具有连续一阶偏导数,则曲线积分在内与路径无关(四)对面积的曲面积分1、定义:设为光滑曲面,函数是定义在上的一个有界函数,定义2、计算:—“一投二代三定号”,,在上具有一阶连续偏导数,在上连续,则,为上侧取“ + ”,为下侧取“级数:(二)函数项级数1、定义:函数项级数,收敛域,收敛半径,和函数;2、幂级数:3、收敛半径的求法:,则收敛半径4、泰勒级数展开步骤:(直接展开法)1)求出;2)求出;3)写出;4)验证是否成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
b
axbx
a yby
azbz
两向量夹角余弦的坐标表示式
cos
ab
axbx a yby azbz ax2 a y2 az2 bx2 by2 bz2
rr a b 0 axbx ayby azbz 0
项目三 儿歌
3、向(叉量积积、外积)
|
c||
a||
b|
sin
其中 为a与b的夹角
项目三 儿歌
两点间距离公式: 设M1 ( x1 , y1 , z1 )、M 2 ( x2 , y2 , z2 )为空间两点
它们距离为
M1M2 x2 x1 2 y2 y1 2 z2 z1 2
项目三 儿歌
2、(数点量积积、内积)
a
b
|
a||
b|
cos
其中 为a与b的夹角
数量积的坐标表达式
2
z2 c2
1绕
y 轴和z轴;
x 0
绕 y 轴旋转
y2 a2
x2 c2
z2
1
旋 转
绕z 轴旋转
x2 a2
y2
z2 c2
1
椭 球 面
z
o
y
x
项目三 儿歌
(1)球面 (2)圆锥面 (3)旋转双曲面
x2 y2 z2 1
x2 y2 z2
( x x0 )2 ( y y0 )2 (z z0 )2 R2
c的方向既垂直于a,又垂直于b,指向符合右
手系.
i jk
向量积的坐标表达式
a
b
ax
ay
az
bx by bz
(二)空间解项析目三几儿何歌
1. 旋转曲面
方程特点:
设
有
平
面
曲 线L
:
f
(
x, y) z0
0
(1) 曲线 L 绕 x 轴旋转所成的旋转曲面方程为
f ( x, y2 z2 ) 0
(2) 曲线 L 绕 y 轴旋转所成的旋转曲面方程为
f ( x2 z2 , y) 0
x z 项目2三 儿歌 2 1
a2 c2
x2 单叶双曲面
x2 a2
y2 c2
z2
1
旋转双叶双曲面
项目三 儿歌
抛物线
y2
2
pz 绕 z 轴;
x 0
x2 y2 2 pz
旋转抛物面 z
z
y x
y xo
项目三 儿歌
y2
椭圆
a
影曲线的方程为:
z 0
项目三 儿歌
5.平面
z
n
[1] 平面的点法式方程
A( x x0 ) B( y y0 )
C(z z0 ) 0
x
[2] 平面的一般方程
Ax By Cz D 0
M0 M
o
y
nM 0
( x0 , { A,
y0 B,
, z0 C}
)
z c
[3] 平面的截距式方程 x yz 1 a bc
x x(t)
y
y(t )
z z(t)
[3] 空间曲线在坐标项目面三上儿歌的投影 C
C关于 的投影柱面 C在 上的投影曲线
zC
设曲线
C
:
F ( x, G( x,
y, z) y, z)
0 0
O
y
则C关于xoy面的投影柱 x
面方程应为消z后的方程: H( x, y) 0
所以C在xoy面上的投 H ( x, y) 0
a
x
i
a
y
j
az
k
在三个坐标轴上的分向量:a
x
i,
ay j,
azk
向量的坐标表示式:
r a (ax , ay , az )
向量的坐标: ax , a y , az
其中 ax,ay ,az 分别为向量在 x, y, z 轴上的投影.
项目三 儿歌
向量的加减法、向量与数的乘积等的坐标表达式
)k
(ax )i (ay ) j (az )k
项目三 儿歌
向量模长的坐标表示式 | a| ax2 a y2 az2
向量方向余弦的坐标表示式
cos
ax
ax2 ay2 az2
cos
ay
ax2 ay2 az2
cos
az
ax2 ay2 az2
cos2 cos2 cos2 1
x2 a2
y2 a2
z2 c2
1
项目三 儿歌
2. 柱面
定义: 平行于定直线并沿定曲线C移动的直线 L所形成的曲面称之.
这条定曲线叫柱面 的准线,动直线叫
柱面的母线.
项目三 儿歌
从柱面方程(的特征:二元方程)看柱面的特征:
只含 x, y而缺z的方程F(x, y) 0,在
空间直角坐标系中表示母线平行于 z 轴的柱
o xa
by
项目三 儿歌
n1
[4] 平面的夹角
n2
1 : A1 x B1 y C1z D1 0
2
2 : A2 x B2 y C2z D2 0
cos
| A1 A2 B1B2 C1C2 |
1
A12 B12 C12 A22 B22 C22
面,其准线为 x o y面上曲线C . (其他类推)
实 例
y2 b2
z2 c2
1
椭圆柱面
母线 //x 轴
x2 a2
y2 b2
1
双曲柱面
母线 //z 轴
z 2 2 px 抛物柱面
母线//y 轴
x
项目三 儿歌
z
y2 b2
z2 c2
1
z 椭圆柱面 y
x
x
双曲柱面 y
x2 a2
y2 b2
1
z
抛物柱面z 2 2 px
arar(brax(, aaxy
,
r az) b (bx , by, bz)
bx
,
ay
by
,
az bz)
ar
r b
(ax bx )i (ay by )
(ax bx ,ay by, az
j (az
bz)
bz
)k
ar
(ax
( ax,
bx )i
ay
,
(ay by
az)
)
j
(az
bz
y
项目三 儿歌
3. 二次曲面
定义:三元二次方程所表示的曲面称为二次曲面.
(1)椭球面
x2 a2
y2 b2
z2 c2
1
(2)椭圆抛物面
x2 y2 z 2 p 2q ( p 与 q 同号 )
项目三 儿歌
特殊地:当p q 时,方程变为
x2 y2 z ( p 0) 2p 2p
旋转抛物面
(由xoz 面上的抛物线x2 2 pz 绕它的轴
旋转而成的)
项目三 儿歌
(3)马鞍面 (4)单叶双曲面
x2 y2 z
2 p 2q
( p 与 q 同号 )
x2 y2 z2 a2 b2 c2 1
(5)圆锥面 x2 y2 z2
项目三 儿歌
4.空间曲线
[1] 空间曲线的一般方程
F(x, y,z) 0 G( x, y, z) 0
[2] 空间曲线的参数方程
项目三 儿歌
高数下册总复习知识点归纳
软件三班 jason
项目三 儿歌
第八章 向量代数与空间解析
各
几何总结
章
节
第九章多元函数微分法
知
第十张:重积分,三重积分
识
点
第十一章:曲线积
归
分与曲面积分
纳
第十二章:无穷级数
项目三 儿歌
第八章 向量代数与空间解析几何总结
(一)向量代数
1、向量的坐标表示法
向量的分解式:a