概率密度函数

合集下载

概率分布函数与概率密度函数

概率分布函数与概率密度函数

概率分布函数与概率密度函数概率分布函数和概率密度函数是统计学中常见的两个重要概念,它们在描述随机变量分布特征时起着至关重要的作用。

下面我们将分别介绍概率分布函数和概率密度函数的概念、特点和应用。

一、概率分布函数概率分布函数又称为累积分布函数,是描述随机变量取值的概率分布规律的函数。

对于任意一个实数t,概率分布函数F(t)定义为随机变量X的取值小于等于t的概率,即F(t)=P(X≤t)。

概率分布函数的性质有以下几个特点:1. F(t)是一个单调非减的函数,即对于任意s和t(s≤t),有F(s)≤F(t)。

2. F(t)在整个实数轴上取值范围为[0,1]。

3. 当t趋近于负无穷时,F(t)趋近于0;当t趋近于正无穷时,F(t)趋近于1。

4. 概率分布函数是一种分步函数,具有不连续点。

在不连续点上,概率分布函数的值对应着概率的跳跃。

概率分布函数在统计学中有着广泛的应用,可以帮助研究者了解随机变量的分布情况,进而进行参数估计、假设检验、置信区间估计等统计分析工作。

二、概率密度函数概率密度函数是描述随机变量取值的密度分布的函数,通常用f(t)表示。

对于连续型随机变量X,如果存在一个函数f(t),对于任意实数区间[a,b],有P(a≤X≤b)= ∫[a,b] f(t)dt。

概率密度函数的性质如下:1. 概率密度函数在整个定义域上非负,即f(t)≥0。

2. 概率密度函数的积分在整个定义域上等于1,即∫(-∞,+∞) f(t)dt=1。

3. 概率密度函数f(t)与概率分布函数F(t)之间存在积分关系,即F(t)=∫(-∞,t) f(u)du。

4. 概率密度函数的图形代表了随机变量在不同取值上的密度大小,可以直观地表示随机变量的分布情况。

概率密度函数在连续型随机变量的分布描述中占据重要地位,例如正态分布、指数分布、均匀分布等常见的概率分布都可以通过概率密度函数来描述其分布规律。

综上所述,概率分布函数和概率密度函数是统计学中两个重要的概念,它们分别适用于离散型随机变量和连续型随机变量的分布描述。

《概率密度函数》课件

《概率密度函数》课件
概率密度函数的积分为1的性质是概 率论中的基本定理之一。这意味着概 率密度函数在整个定义域上的取值之 和为1,即所有可能事件发生的概率 之和为1。
期望和方差
总结词
概率密度函数的期望值和方差描述了随机变量的中心趋势和离散程度。
详细描述
期望值是概率密度函数在定义域上的积分,表示随机变量的平均值或中心趋势。方差则描述了随机变 量取值离散程度的大小,即各个取值与期望值的偏离程度。期望值和方差是概率密度函数的重要特征 ,用于描述随机变量的统计特性。
二项分布
01
二项分布适用于描述伯努利试 验中成功的次数,例如抛硬币 的结果、遗传学中的基因型等 。
02
二项分布的概率密度函数是 f(k)=C(n, k)p^k(1-p)^(n-k) ,其中n是试验次数,k是成功 的次数,p是每次试验成功的 概率。
03
二项分布在统计学、生物学和 经济学等领域有广泛应用,例 如在可靠性工程、市场调查等 领域。
02
常见概率密度函数
正态分布
正态分布是一种常见的概率密 度函数,其概率密度曲线呈钟 形,对称轴为均值所在直线。
正态分布具有两个参数,即 均值和标准差,它们决定了
分布的形状和范围。
在自然界和社会现象中,许多 随机变量的概率分布都服从正 态分布,例如人类的身高、考
试分数等。
指数分布
01
指数分布适用于描述独立随机事件的时间间隔,例如电子元件 的寿命、排队等待时间等。
概率密度函数是微积分中连续函数概念在概率论中的推广。在微积分中,连续函 数可以用其导数描述其变化率;而在概率论中,概率密度函数描述了随机变量取 值在某个区间的概率与该区间长度的关系。
概率密度函数的积分(即概率质量函数)与微积分中的定积分有相似的性质和计 算方法。

概率密度函数

概率密度函数

1 0, 2 0, | | 1

性质 二维正态分布(X,Y)的概率密度函数
f(x,y)满足:
(1) (2)




f ( x, y)dxdy 1
令f 1 ( x) : f 1 ( x)



f ( x, y ) dy
( x 1 ) 2
2 2 1
则:
1 2 1
e
证明见黑板
二维正态分布
这一讲我们介绍了二维连续型 随机向量的概率密度函数,深入了解 其概念及性质是十分重要的. 另外,还介绍的二维均匀分布,二 维正态分布.
y x
F ( x, y )
20 dudv 2 2 2 (16 u )( 25 v ) y 20 x 1 1 2 du dv 2 2 25 v 16 u 20 1 x 1 y 2 arctg arctg 4 4 2 5 5 2 x 1 1 y 1 1 arctg arctg 4 2 5 2


y
x

f (u, v)dudv
二维随机变量(X,Y) 连续型 X和Y 的联合密度函数
一维随机变量X 连续型 X的密度函数
f ( x , y) P{( x, y) A} f ( x, y )dxdy
A
P{a X b}
A 2
f ( x )dx
a
b
f ( x, y ) 0
(三) 二维正态分布
若二维随机变量(X,Y)具有概率密度 1 1 x 1 2 f ( x , y) exp{ [( ) 2 2(1 ) 1 21 2 1 2 x 1 y 2 y 2 2 2 ( )( )( ) ]} 1 2 2 其中 1, 2 , 1, 2 , 均为常数,且 则称( X,Y)服从参数为 1, 2 , 1, 2 , 的二维正态分布. 2 2 记作( X,Y)~N( 1 , 2 , 1 , 2 , )

概率密度函数

概率密度函数
概率密度函数可以计算在某一区间内随机变量取值的概率。该函数具有非负性和规范性,且与分布函数密切相关,通过积分关系可以得到分布函数,若密度函数在某点连续,则该点的分布函数导数值等于密度函数值。对于连续型随机变量,其取任意指定实数值的概率为0,而在某区间的概率等于密度函数在此区间上的定积分。通过实例,我们可以了解如何利用密度函数性质求概率,以及从已知分布函数推导密度函数。此外,均匀分布、指数分布和正态分布是常见的概率分布形式,它们在实际问题中有着广泛的应用。均匀分布表示随机变量在等长度子区间内取值的可能性相同,指数分布常用于描述事件发生之间的时间间隔,而正态分布则是许多自然现象和社会现象的重要模型。

概率密度函数

概率密度函数

3、设Ai “第 i只晶体管150h 失效” i 1, 2, 3, 4. 10
P Ai

PX
150

1 3
由于 A1 A2 A3 A4 相互独立, 则所求的概率为
P( A1 A2 A3 A4 ) 1 P(A1 A2 A3 A4 )
1 P( A1)P( A2 )P( A3)P( A4 ) 1 ( 2)4 65
x

x

pt d
t
求 Fx.
对 x < 0, Fx 0
对 0 x 1,
F(x) 2 x 1 dt 2 arcsin x
0 1t2

对 x 1, Fx 1
0
x0

F
(
x)

2

arcsin
x
0 x 1
1
x 1
18
例5 x, 0 x 1
p (x)
F ( x)
0x
x
12
连续性随机变量分布函数的性质
(1) Fx是连续的单增函数
0 Fx 1 x ,
F(x)= x p(t)dt px 0

F ( x)
p (x)
F ( x)
1
0x
x
0
x
13
(2)若 px在点x 处连续,则有 F(x) px
0 x1 x2 x
px lim Px X x x
x0
x
若不计高阶无穷小,有: Px X x x px x
这表示X落在小区间[x,x+Δx] 上的概率近似地等于pxx.
5
对 p(x) 的进一步理解:

常见分布的概率密度函数

常见分布的概率密度函数

常见分布的概率密度函数概率密度函数是描述随机变量概率分布的数学函数,表示了随机变量取某个值的概率密度。

常见的概率密度函数包括正态分布、均匀分布、指数分布、伽马分布等。

正态分布是最为常见的分布,其概率密度函数为:$$f(x) =frac{1}{sqrt{2pi}sigma}e^{-frac{(x-mu)^2}{2sigma^2}}$$ 其中,$mu$ 和 $sigma$ 分别表示均值和标准差。

正态分布的图像呈钟形曲线,具有以下特点:对称性、均值、中位数和众数相等、标准差越小峰越尖等。

均匀分布是另一种常见的分布,其概率密度函数为:$$f(x) = begin{cases} frac{1}{b-a}, & aleq xleq b 0, & text{otherwise} end{cases}$$其中,$a$ 和 $b$ 分别表示区间的起始值和终止值。

均匀分布的图像呈矩形,特点是各点概率密度相等。

指数分布是描述等待时间的分布,其概率密度函数为:$$f(x) = begin{cases} lambda e^{-lambda x}, & xgeq 0 0, & text{otherwise} end{cases}$$其中,$lambda$ 表示事件发生的速率。

指数分布的图像呈指数下降曲线,特点是随着时间的增加,事件发生的概率逐渐减小。

伽马分布是描述正随机变量的分布,其概率密度函数为:$$f(x) = begin{cases}frac{1}{Gamma(k)theta^k}x^{k-1}e^{-frac{x}{theta}}, & xgeq 0 0, & text{otherwise} end{cases}$$其中,$k$ 和 $theta$ 分别表示形状参数和尺度参数。

伽马分布的图像呈现出右偏斜的形态,具有长尾性质。

16种常见概率分布概率密度函数意义及其应用

16种常见概率分布概率密度函数意义及其应用

16种常见概率分布概率密度函数意义及其应用1. 常数分布(Constant distribution):概率密度函数(Probability Density Function,PDF)为常数,表示特定区间内的概率相等。

这种分布常用于模拟实验或作为基线分布进行比较。

2. 均匀分布(Uniform distribution):概率密度函数为一个常数,表示在特定区间内的各个取值的概率相等。

均匀分布经常用于随机抽样,以确保样本的代表性。

3. 二项分布(Binomial distribution):概率密度函数描述了进行n次独立二类试验中成功次数的概率分布。

二项分布在实验设计、质量控制和市场研究中广泛应用。

4. 泊松分布(Poisson distribution):5. 正态分布(Normal distribution):概率密度函数为指数函数形式,常用来描述自然界中众多连续变量的分布,例如身高、体重等。

正态分布在统计学和金融学中广泛应用。

6. χ2分布(Chi-square distribution):概率密度函数描述了n个独立标准正态分布随机变量的平方和的分布,是假设检验和方差分析中常用的分布。

7. t分布(t-distribution):概率密度函数描述了标准正态分布随机变量与一个自由度为n的卡方分布随机变量的比值的分布。

t分布在小样本推断和回归分析中常用。

8. F分布(F-distribution):概率密度函数描述了两个自由度为m和n的卡方分布随机变量的比值的分布。

F分布在方差分析、回归分析和信号处理中常应用。

9. 负二项分布(Negative binomial distribution):概率密度函数描述了进行一系列独立二类试验中直到第r次取得第k 次成功的概率。

负二项分布在可靠性工程和传染病模型中常用。

10. 伽马分布(Gamma distribution):概率密度函数描述了多个指数分布随机变量的和的分布,常被用于描述连续事件的时间间隔。

概率密度函数

概率密度函数
而概率 P {Y ≥3 } = ∑k3=03 [C30k pk ( 1 – p)30 – k ]
根据指数分布的分布函数,这个人每次等车 时间超过 10 分钟的概率是: p = P { X >10 } = 1 – F (10) = 1 – [ 1 – e – 10 / 5 ] = e – 2 ; 每个月等车超过10 分钟的次数 Y ~ B(30,e – 2) ; 他至少有三天坐出租车上班的概率就是: P {Y ≥3 } = ∑k3=03 [C30k pk ( 1 – p)30 – k ] = 1 – ∑k=02 [C30k pk ( 1 – p)30 – k ]
假定通过考试的成绩至少要为 d 分 ,即必须有
P { X ≥ d } ≤ 0.05 P { X ≤ d } ≥ 0.95 。
根据定理 2.4.1, X – 60 ——— ~ N (0,1) 10
因此
d – 60 0.95 ≤P { X ≤ d } = (——— ) 10
查正态分布表,有,
(1.64) = 0.9495 , (1.65) = 0.9505 ;
1 2
p ( x)
o

x
说明对于同样长度的区间,当参数 越大时,X 落在这个区间里的概率将越小,而当参数 越小时,X 落在这个区间里的概率将越大。
4. 标准正态分布 X ~ N ( 0 ,1 ) 参数 = 0 , = 1 的正态分布 (1) 标准正态分布的密度函数
( x)
1 2
e
x2 2
, x
(2) 标准正态分布的分布函数
( x)


x
1 2
e
t2 2
dt , x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

均匀分布常见于下列情形: 如在数值计算中,由于四舍五 入,小数 点后某一位小数引入的误差; 公交线路上两辆公共汽车前后通过某汽 车停车站的时间,即乘客的候车时间等.
例10 某路公共汽车每5分钟一趟,设为乘客 在某站口的候车时间, 试求他候车时间不超过3 分钟的概率.
解: X ~ U ( 0, 30 )
0
由此得, 1) 对连续型 r.v X,有
P ( a X b) P ( a X b)
P ( a X b) P ( a X b)
2) 由P(X=a)=0 可推知
P ( X R a) f ( x )dx P ( X a) 1
1 pk
0k 1,2,
2 . f x dx 1.
2 p1 p2 pk pk
k

1
3
P(a X b) P( X b) P( X a) F (b) F (a)
f ( x)dx
a
b
P(a X b)
F (b) F (a)
P( X a ) 0
连续型r.v取任一指定值的概率为0.
即:
P ( X a) 0,
a为任一指定值
这是因为
P ( X a) lim P (a X a x )
x 0
lim
x 0 a

a x
f ( x )dx
1 , 0 x 30 f ( x ) 30 其它 0,
(2)若 r.v X具有概率密度
e f ( x) 0
x
x0 0 x0
则称 X 服从参数为 的指数分布. 常简记为 X~E( ) . 指数分布常用于可靠性统计研究 中,如元件的寿命.
x 0 x 0 andx 20 otherwise
设 具有概率密度
c, a x b, f ( x) 0, otherwise.
C 为一常数,称X服从区间( a, b)上的均匀分布
c?
(1)若 r.vX的概率密度为: 1 , a xb f ( x) b a a 其它 b 0, 则称X服从区间( a, b)上的均匀分布,记作: X ~ U (a , b )
随机变量的分布函数
一、分布函数的概念. 定义 设X是随机变量,对任意实数x,事件{X<x} 的概率P(X<x)称为随机变量X的分布函数。 记为F(x),即 F(x)=P(X<x). 易知,对任意实数a, b (a<b), P {a X<b}=P{X<b}-P{X<a}= F(b)-F(a).
X
若x是 f(x)的连续点,则: x x f ( t )dt P ( x X x x ) lim lim x x 0 x 0 x x =f(x)
故 X的密度 f(x) 在 x 这一点的值,恰好是 X落在区间 ( x, x x ]上的概率与区间长度 x 之比的极限. 这里,如果把概率理解为质量, f (x)相当于线密度.


而 {X=a} 并非不可能事件
{ X R {a}} 并非必然事件
可见, 由P(A)=0, 不能推出 A
由P(B)=1, 不能推出 B=S
称A为几乎不可能事件,B为几乎必然事件.
4. 对 f(x)的进一步理解:
(4) 在 f (x) 的连续点 x 处,有
f ( x) F '( x)
x
二、分布函数的性质 1、单调不减性:若x1<x2, 则F(x1)F(x2);
2、归一 性:对任意实数x,0F(x)1,且
F( ) lim F( x ) 0, F( ) lim F( x ) 1;
x x
3、左连续性:对任意实数x,
F ( x0 0) lim F ( x) F ( x0 ).
连续型r.v及其密度函数的定义 对于随机变量 X ,如果存在非负可积函数 f(x) , 使得 X 的分布函数 F(x) 可以写成
F ( x) P( X x)
数,简称为概率密度或密度.
x

f ( x)dx
则称 X为连续型r.v,称 f(x)为 X 的概率密度函
概率密度函数的性质
1. f x 0;
x x0
反之,具有上述三个性质的实函数,必是某个 随机变量的分布函数。故该三个性质是
分布函数的充分必要性质。
假设离散型r.v. X 具有分布列
P X xk pk k 1,2,
F ( x) pk
xk x
连续型随机变量X所有可能取值充满一个 区间, 对这种类型的随机变量, 不能象离 散型随机变量那样, 以指定它取每个值 概率的方式, 去给出其概率分布, 而是 通过给出所谓“概率密度函数”的方式.
f (x)
o 下面给出几个r.v的例子.
x
例9 已知连续型r.v. 具有概率密度
kx 1, 0 x 2, f ( x) 0, otherwise.
求系数 k 及分布函数F(x), 并计算 P(1.5< 1
2 . f x dx 1.
f (x)

这两条性质是判定一个 函数 f(x)是否为某r.vX的 概率密度函数的充要条件.
面积为1
o
x
连续r.v.的密度函数 与 离散r.v.分布列 的性质 比较
P X xk pk k 1,2,
1. f x 0;
服从以 为参数的指数分 布的随机变量X的分布函数为
1 e F x 0
x
x0 x0
它的实际背景是: r.v X 取值在区间 (a, b) 上,并且取值在(a, b)中任意小区间 内的概率与这个小区间的长度成正比. 则 X 具有(a,b)上的均匀分布.
f ( x)
服从均匀分布的随机变量x 的分布函数为
0 xa F x b a 1
xa a xb xb
大学文科数学
之 线性代数与概率统计
北京师范大学珠海分校 国际特许经营学院与不动产学院
2004-2005学年第二学期 欧阳顺湘 2005.5.11
连续型随机变量
• 复习+进一步学习 分布函数的性质 • 连续型r.v及其密度函数的定义 • 重要的连续型r.v
复习随机变量的分布函数
• 分布函数的概念. • 分布函数的性质
f (x)
o
x
要注意的是,密度函数 f (x)在某点处a 的高度,并不反映X取值的概率. 但是,这 个高度越大,则X取a附近的值的概率就越 大. 也可以说,在某点密度曲线的高度反 映了概率集中在该点附近的程度.
由于连续型 r.v唯一被它的密度函数所确 定. 所以,若已知密度函数,该连续型 r.v 的概率规律就得到了全面描述.
若不计高阶无穷小,有:
P{x X x x} f ( x )x
它表示随机变量 X 取值于 ( x, x x ] 的 概率近似等于 f ( x )x .
f ( x )x 在连续型r.v理论中所起的作用与
P( X xk ) pk 在离散型r.v理论中所起的
作用相类似.
相关文档
最新文档