离散双线性系统二次型最优控制的迭代算法
《最优控制》第4章线性系统二次型性能指标的最优控制问题

1 T 1 T e ( t ) Q ( t ) e ( t ) X (t )Q(t ) x(t ) 以零状态为平衡状态 2 2 1 T 1 T ②输出调节器 e (t )Q(t )e(t ) y (t )Q(t ) y (t ) 2 2
<输出调节器可转化为状态调节器> y(t ) c(t ) x(t )
第4章——线性系统二次型性能指标的最优控制问题
(t ) (22 F12 )1( F11 21) x(t )
可以证明 (22 F12 )1 存在 因此, (t )与X (t ) 呈线性关系,可表示为 (t ) P(t ) x(t ) 则
u * (t ) R 1(t ) BT (t ) P(t ) x(t )
(微分方程解的存在性和唯一性定理)
* * * * x1 x2 即x1 x2
16
第4章——线性系统二次型性能指标的最优控制问题
5.总结 状态调节器控制规律 u * (t ) R 1 (t ) BT (t ) P(t ) x(t ) 其中P(t)满足下面的矩阵黎卡提微分方程及边界条件
⑤状态方程
x Qx AT
1 T 1 T x x Ax BR B A BR B x T T Qx A Q A
x(t0 ) x(t ) (t ) (t , t0 ) (t ) 0
3 Q(t ), R(t ) 加权矩阵 Q(t )半正定,R(t )正定且均为时变 1 T 4 e (t f ) Fe(t f ) 突出对终端的误差的要求 2 特别要求终端固定,即e(t f ) 0时,F
5
【线性系统课件】线性二次型最优控制问题

x (t f ) P (t f ) x (t f )
T
1 2
x (0) P (0) x (0)
T
1 2 1 1 2 1 2 1 2
tf
d dt
[ x P ( t ) x ] dt
T T
T
0 tf
2
[ x P ( t ) x x P ( t ) x x P ( t ) x ] dt { x [ A P ( t ) P ( t ) P ( t ) A ] x u B P ( t ) x x P ( t ) Bu } dt
T
1 2
tf
[ x ( t ) Qx ( t ) u ( t ) Ru ( t )] dt
T T
t0
S , Q : 半正定 , 对称矩阵 R : 正定 , 对称矩阵
求 u (t )
使
J ( u ( t )) min J ( u ( t ))
u (t )
二. 有限时间LQ调节问题
调节问题:受外部动态扰动时,保持x(t)回到零平衡态; 有限时间: t f 为有限值; LQ问题:二次型性能指标。 定理:系统 x Ax Bu , x ( 0 ) x 0 , t [ 0 , t f ] 使性能指标
z Fz Gy Hu , z ( 0 ) z 0 ˆ x T
1
z
在F,G,H,T满足一定条件时,可作为原系统 的观测器。
结论1: x 0 , z 0 , u 任意,上述系统是{A,B,C}的全维状态观测 器的充要条件是:
(1) TA FT GC , T 非奇异 ( 2 ) H TB ( 3 ) i ( F ), i 1, 2 , , n 均具负实部
线性二次型最优控制共41页

线性二次型最优控制
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
(优选)线性二次型最优控制器设计

其中, lqry()函数用于求解二次型状态调节器的特 例,是用输出反馈代替状态反馈,即其性能指标为:
x u 1
J (
TQx
TRu)dt
20
这种二次型输出反馈控制叫做次优控制。
此外,上述问题要有解,必须满足三个条件:
(1) (A,B)是稳定的;
(2) R>0且Q-NR-1NT≥0;
1、离散系统线性二次型最优控制原理
假设完全可控离散系统的状态方程为:
•
x(k 1) Ax(k) Bu(k), (k 0,1,, N 1)
要寻求控制向量u (t )使得二次型目标函数 x u J 1 [ T(k)Qx(k) T(k)Ru(k)]
2 k0
为最小。
式中,Q为半正定实对称常数矩阵;R为正定实对称
常数矩阵;Q、R分别为X和U的加权矩阵。
根据极值原理,我们可以导出最优控制律:
u [R BTPB]BTPAx(k) Kx
式中,K为最优反馈增益矩阵;P为常值正定矩阵,必
须满足黎卡夫(Riccati)代数方程PA ATP PBR1BP Q 0
因此,系统设计归结于求解黎卡夫(Riccati)方程 的
一、线性二次型最优控制概述
线性二次型最优控制设计是基于状态空间技术来 设计一个优化的动态控制器。系统模型是用状态空间 形式给出的线性系统,其目标函数是状态和控制输入 的二次型函数。二次型问题就是在线性系统约束条件 下选择控制输入使二次型目标函数达到最小。
线性二次型最优控制一般包括两个方面:线性二 次型最优控制问题(LQ问题),具有状态反馈的线 性最优控制系统;线性二次型Gauss最优控制问题, 一般是针对具体系统噪声和量测噪声的系统,用卡尔 曼滤波器观测系统状态。
线性二次型最优控制器设计

程序运行结果如下: K =0.4142 0.6104 0.1009 同时得到闭环阶跃响应曲线,如图1-2所示。
图1-2 闭环系统阶跃响应曲线 由图1-1和图1-2知,经最优输出反馈后,闭环系统阶跃响应曲线与经最优状态反 馈后的阶跃响应曲线很接近。
三、离散系统线性二次型最优控制
下面对离散系统线性二次型最优控制进行详细介绍。
其中,A为系统的状态矩阵;B为系统的输出矩 阵;Q为给定的半正定实对称常数矩阵;R为给 定的正定实对称常数矩阵;N代表更一般化性 能指标中交叉乘积项的加权矩阵;K为最优反馈 增益矩阵;S为对应Riccati方程的唯一正定解P (若矩阵A-BK是稳定矩阵,则总有正定解P存 在);E为矩阵A-BK的特征值。
1000 Q= 取 0
,R=1。 用MATLAB函数dlqr()来求解最优控制器,给出程序清 单如下: %求解最优控制器 a=2;b=1;c=1;d=0; Q=[1000,0;0,1]; R=1; A=[a,0;-c*a,1]; B=[b;-c*b]; Kx=dlqr(A,B,Q,R) k1=-Kx(2);k2=Kx(1); axc=[(a-b*k2),b*k1;(-c*a+c*b*k2),(1-c*b*k1)]; bxc=[0;1];cxc=[1,0];dxc=0; dstep(axc,bxc,cxc,dxc,1,100)
•
1.LQG最优控制原理 最优控制原理
x(t ) = Ax(t ) + Bu (t ) + Gw(t ) 假设对象模型的状态方程表示为:
y (t ) = Cx(t ) + v(t )
T
式中,ω(t)和ν(t)为白噪声信号,ω(t)为系统干扰噪声,ν(t)为传感器带来的 量测噪声。假设这些信号为零均值的Gauss过程,它们的协方差矩阵为:
离散双线性动态系统二次型最优控制的迭代算法

2005中国控制与决策学术年会论文集824Proceedingsof2005ChinPsPControlandDeci5io"Con,;rP"fP离散双线性动态系统二次型最优控制的迭代算法李俊民,孙云平,刘着(西安电子科技大学应用敷学系陕西西安7]0071)摘要:研究离散时闻双线性动卷系统二次型最优控制的求解问题,构造出一种迭代算法,通过适次逼近方法.得到厚问题曲最优解・结出了该算法的收敛性充分紊件.该算法具有计算筒单.收敛速度快的优点.仿真例子说明了该算法的有效性.关键词:离散时阃厦线性采统}造代算法,收敛性;最优性Convergentiterativealgorithmofoptimalcontrolfordiscretebilinear—quadraticproblemLIJun—min,SUNYun—ping,L1UYun(DepartmentofAppliedMathematics,XidianUniversity.Xi’an710071.China.E—mail;jmli@mail.xidian.edu.on)Abstract:Theproblemofoptimalcontrolfordiscrete—timebilineardynmiealsystemwithquadraticcostisinvestigated.Anoveliterativealgorithmforsolvingtheproblemisconstructed,theoptimalsolutionoftheproblemisobtainedbythesuccessiveapproximationprocedure.Asufficientconditionoftheconvergenceforthealgorithmisalsogiven.Thealgorithmhasadvantagesofcomputationsimplicityandconvergencequickly.Thesimulationexampleshowstheefficiencyofthealgorithm.Keywords:discrete—timebilineardynamicalsystem;iterativealgorithm;convergenceIoptimility1引言某些复杂的工业过程用线性近似动态模型是不适宜的,而且许多对象如工业生产、生态、生物和社会经济等过程可以用双线性模型自然描述,能够在稳态工作点的一个较大领域内描述一大类严重非线性系统的动态特性,描述精度优于传统的线性模型的近似.特别在化工生产过程中,许多控制对象经常用物料流量作为控制变量.这样依据物料和能量平衡原理,描述对象的动态特性的数学模型就出现状态变量(如温度,湿度)为控制变量的乘积项口].在最优化方面,Mohler等人已经证明,双线性系统最优控制比线性情况下有更好的性能[‘].非线性最优控制问题一直是控制理论与应用中很重要的问题之一口1”,人们已经研究出许多算法,其中在实际中比较有效的算法有梯度法、极值变分法、拟线性化方法和微分动态规划法等,但这些算法都有局部局限性[9j.双线性系统本质是非线性系统,而且与线性系统有一定的联系.因此对双线性系统的分析与控制一直是研究热点问题之一口“’】。
线性二次型最优控制问题

2023/12/21
9
对容许控制U(t)和终态X(tf)的说明
(1) 在线性二次型问题的定义中,并没有直接提出对控制 作用U(t)的不等式约束,但这并不等于在物理上不需要对 U(t)进行必要的限制。实际上,用适当选择Q(t)和R(t)数值 比例的方法,同样可以把U(t)的幅值限制在适当的范围之 内。这样,就可以在保持闭环系统线性性质的前提下,实 现对U(t)的限制。
2023/12/21
1
线性二次型最优控制问题是指线性系统具有二次型 性能指标的最优控制问题,它呈现如下重要特性:
性能指标具有鲜明的物理意义。最优解可以写成统一的解 析表达式。所得到的最优控制规律是状态变量的反馈形式, 便于计算和工程实现。
可以兼顾系统性能指标的多方面因素。例如快速性、能量 消耗、终端准确性、灵敏度和稳定性等。
dt
这时问题转化为:用不大的控制量,使系统输出Y(t)紧
紧跟随Yr(t)的变化,故称为跟踪问题。
2023/12/21
13
6.2 有限时间的状态调节器问题
问题6.2.1 给定线性定常系统的状态方程和初始条件
X (t) AX (t) BU (t)
X
(t0 )
X0
(6.2.1)
其 中 X(t) 是 n 维 状 态 变 量 , U(t) 是 m 维 控 制 变 量 , A 是 nn常数矩阵,B是nm常数矩阵。性能指标是
在理论上,线性二次型最优控制问题是其它许多控制问题 的基础,有许多控制问题都可作为线性二次型最优控制问 题来处理。
线性二次型最优控制问题,在实践上得到了广泛而 成功的应用。可以说,线性二次型最优控制问题是 现代控制理论及其应用领域中最富有成果的一部分。
2023/12/21
二次型性能指标的线性系统最优控制

(10-17)
将式(8-12)、式(8-16)代入式(8-17)
(t ) [ P (t ) P(t ) A(t ) P(t ) B(t ) R 1 (t ) B(t ) P(t )]x (t ) (10-18)
将式(8-16)代入式(8-9)
(t ) [Q(t ) AT (t ) P(t )]x (t )
(10-15)
由于横截条件中 x (t f ) 与 (t f ) 存在线性关系,而正则方程又是线 性的。因此可以假设,在任何时刻 x 与 均可以存在如下线性关系;
( t ) P( t ) x ( t )
(10-16)
对式(10-16)求导
(t ) P (t ) x (t ) P(t ) x (t )
1 T e (t )Q (t )e(t ) 代表整个过程中误差 e(t ) 的 2
矩阵 F Q(t ) R(t ) 则是用来权衡各个误差成分及控制分量相对重要 程度的加权阵。这里,Q 及 R 可以是时间函数,以表示在不同时刻 的不以加权。
因此,二次型性能指标的最优控制问题实质上是:要求用较小的控 制能量来获得较小误差的最优控制。
根据等号两边矩阵的对应元素就相等,可得下列方程:
11 1 1 p11 p22 p21 p
2 22 2 p12 p22 p
已知为p 对称矩阵,故 p12 p21 ,上式可变成:
2 11 1 p12 p 12 p11 p12 p22 p 2 22 2 p12 p12 p
最求最优控制 u (t ) ,使性能指标 J 为最小。
解:
本例相应的具有关矩阵为:
0 1 0 A ,B 0 0 1 1 0 F 0, Q ,R 1 0 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散双线性系统二次型最优控制的迭代算
法
离散双线性系统二次型最优控制是一种用于优化离散双线性系统的控制方法。
它的核心思想是通过迭代的方式,求解最优控制参数,从而使系统达到最优的性能。
在离散双线性系统中,假设控制参数为X,则根据控制参数X的变化,可以计算出系统的最优性能值Y。
在Y的计算中,一般包括两部分,一部分是系统的累计损失,另一部分是控制参数X的正则化项。
接着,通过迭代的方式,不断优化控制参数X,使得系统性能值Y 最大化。
在迭代过程中,采用梯度下降法,不断更新控制参数X,使得Y最大化。
每次迭代过程中,可以通过计算梯度的方式,找到控制参数X的最优解。
在计算出最优的控制参数X之后,可以得到离散双线性系统的最优性能值Y。
这样,就可以真正实现系统的最优控制。
综上,离散双线性系统二次型最优控制是一种有效的优化离散双线性系统的控制方法,它将梯度下降法和迭代过程结合起来,使得系统可以达到最优性能,从而实现系统的最优控制。