直线的倾斜角和斜率直线方程的点斜式直线方程的斜截式
直线的点斜式斜截式方程

9、已知直线l : ( 3a 1) x ( a 2) y 1 0 (1)求证:对a R,l 恒过第一象限 ( 2)若 l 不过第二象限,求 a 的取值范围
10、过点 M (0,1)的直线 l,使它被 直线l1 : x 3 y 10 0, l2 : 2 x y 8 0 所截得的线段恰好被 M平分, 求直线 l 的方程
直线方程的两点式不能 表示哪些直线?
怎么弥补缺陷?
我 们 推 导 两 点 式 是 通点 过斜 式 的 , 还有其他推导方法吗?
利用三点共线,斜率相等 或 共线向量
直线方程的两点式和截 距式
新课
直线的方程—两点式、截距式
直线方程的截距式
特殊地,当直线 l 经过点 A(a ,0),B(0, b) y0 xa 时的方程为 b0 0a
5、ac 0, bc 0, 直线a x by c 0 不通过第( )象限 A 一 B 二 C 三 D 四
6、过点( 5, 2 ),且在x轴上的截距是在 y轴上的 截距的2倍的直线方程
7、证明直线 ax y 5a 2 0(a R)必过定点
8、证明直线 ax by 5a 2b 0 (a , b R且a b 0)必过定点
4、已知点P (6,4),l:y 4 x,点Q在 直线 l上(Q在第一象限)直线 PQ交 x 轴正半轴于点M,要使 OMQ 的面积最小,求点Q 的坐标
复习
直线的方程—一般式
1 、直线的倾斜角、斜率
斜 y1 k ( x x1 ) 2 、直线方程的y 点 式
y y1 x x1 4 、直线方程的两点式 y 2 y1 x 2 x1 x y 5 、直线方程的截 式 距 1 a b
直线的倾斜角和斜率,直线方程

直线的倾斜角和斜率,直线方程一、直线的倾斜角和斜率1.直线的倾斜角概念的注意点:1)注意旋转方向:逆时针2)规定平行x轴(或与x轴重合)的直线倾斜角为0°3)直线倾斜角的范围是0°≤<180°2.直线的倾率:直线的倾斜角的正切值tan(倾斜角不为90°时)。
概念注意点:1)倾斜角为90°的直线无斜率2)斜率k可以是任何实数,每条直线都存在唯一的倾斜角,但不是每条直线都有斜率3)=0°时,k=0;0°<<90°时,k>0;=90°时,k不存在;90°<<180°时,k<0。
3.斜率公式:设直线l的倾斜角为(≠90°),P1(x1,y2),P2(x2,y2)(x1≠x2)是直线l上不同两点,直线l的斜率为k,则:k=tan=,当=90°时,或x1=x2时,直线l垂直于x轴,它的斜率不存在。
例1.求过A(-2,0),B(-5,3)两点的直线的斜率和倾斜角。
解:k==-1,即tan=-1,∵0°≤<180°,∴=135°。
点评:已知直线的斜率,可以直接得出直线的倾斜角,但要注意角的范围。
例2.设直线l的斜率为k,且-1<k<1,求直线倾斜角的范围。
解法1:当-1<k<0时,∈(),则,当k=0时,=0,当0<k<1时,∈(0,),则0<<解法2:作k=tan,∈[0,π)时的图形:由上图可知:-1<k<1时,∈[0,)()。
点评:1、当直线的斜率在某一区间内时,要注意对倾斜角范围的讨论。
2、利用正切函数图像中正切来表示倾斜角和斜率关系也是一种很好的方法。
二、直线方程的四种形式1.两个独立的条件确定一条直线,常见的确定直线的方法有以下两种(1)由一个定点和确定的方向可确定一条直线,这在解析几何中表现为直线的点斜式方程及其特例斜截式方程。
数学高一专题 倾斜角与直线方程

数学高一专系列之 倾斜角与直线方程一、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是k = tanα二、直线的斜率公式:三、直线方程:1.点斜式:11()y y k x x -=-,当l 的90α=时, l 的方程为1.x x =2.斜截式: y kx b =+,其中b 称为直线在y 轴上的截距3.两点式:1112122121(,)y y x x x x y y y y x x --=≠≠-- 注意!①当l 的0α=时,l 的方程为1y y = ②当l 的90α=时, l 的方程为1.x x =4.截距式:1x ya b+= 其中,a b 分别是直线在x 轴和y 轴上的横截距和纵截距,简称截距. 注意!①当l 的a 不存在,b 存在时,l 的方程为y b = ②当l 的b 不存在, a 存在时,l 的方程为x a =③当l 的a 、b 都存在, 且都为零时,l 的方程为y kx =其中k 为直线的斜率. 5.直线方程的一般式:0Ax By C ++=22(0)A B +≠ (1)任何一条直线的方程都是关于x 、y 的一次方程(2)任何关于x 、y 的一次方程0Ax By C ++=22(0)A B +≠表示直线四、求直线方程:题型一:基础题型1.已知A (3,1),B (-1,k ),C (8,11)三点共线,则k 的取值是( )A .-6B .-7C .-8D .-9[答案] B[解析] ∵A ,B ,C 三点共线, ∴k -1-1-3=11-18-3. ∴k =-7.2.如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限[答案] C[解析] 由A ·C <0及B ·C <0,可知A ≠0,B ≠0, 又直线Ax +By +C =0过(-C A ,0),(0,-C B ),且-C A >0,-CB >0,∴直线不过第三象限.变式练习1.光线自点M (2,3)射到N (1,0)后被x 轴反射,则反射光线所在的直线方程为( ) A .y =3x -3 B .y =-3x +3 C .y =-3x -3 D .y =3x +3[答案] B[解析] 点M 关于x 轴的对称点M ′(2,-3),则反射光线即在直线NM ′上,由y -0-3-0=x -12-1,得y =-3x +3. 2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1 D .-2或1 [答案] D[解析] 由题意得a +2=a +2a ,解得a =-2或a =1.3.一条直线l 过点P (1,4),分别交x 轴,y 轴的正半轴于A 、B 两点,O 为原点,则△AOB 的面积最小时直线l 的方程为________.[答案] 4x +y -8=0[解析] 设l :x a +yb =1(a ,b >0).因为点P (1,4)在l 上, 所以1a +4b =1.由1=1a +4b ≥24ab⇒ab ≥16, 所以S △AOB =12ab ≥8.当1a =4b =12, 即a =2,b =8时取等号. 故直线l 的方程为4x +y -8=0.∴直线l 的方程为x -6y +6=0或x -6y -6=0.题型二:能力提升1.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A .13B .-13C .-32D .23[答案] B[解析] 设P (x P ,y P ),由题意及中点坐标公式,得x P +7=2,解得x P =-5, ∴P (-5,1),∴直线l 的斜率k =1-(-1)-5-1=-13.2.设直线l 的方程为x +y cos θ+3=0(θ∈R ),则直线l 的倾斜角α的范围是( ) A .[0,π) B .⎣⎡⎭⎫π4,π2C .⎣⎡⎦⎤π4,3π4 D .⎣⎡⎭⎫π4,π2∪⎝⎛⎦⎤π2,3π4 [答案] C[解析] 当cos θ=0时,方程变为x +3=0,其倾斜角为π2;当cos θ≠0时,由直线方程可得斜率k =-1cos θ.∵cos θ∈[-1,1]且cos θ≠0, ∴k ∈(-∞,-1]∪[1,+∞),即tan α∈(-∞,-1]∪[1,+∞),又α∈[0,π),∴α∈⎣⎡⎭⎫π4,π2∪⎝⎛⎦⎤π2,3π4.综上知倾斜角的范围是⎣⎡⎦⎤π4,3π4,故选C .3.在平面直角坐标系中,如果x 与y 都是整数,就称点(x ,y )为整点.下列命题中正确的是________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点 ②如果k 与b 都是无理数,则直线y =kx +b 不经过任何整点 ③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点④直线y =kx +b 经过无穷多个整点的充分必要条件是:k 与b 都是有理数 ⑤存在恰经过一个整点的直线 [答案] ①③⑤[解析] 对于①,举例:y =2x + 3.故①正确;对于②,举例:y =2x -2,过整点(1,0),故②不正确; 对于③,不妨设两整点(a 1,b 1),(a 2,b 2),(b 1≠b 2),则直线为:y =b 2-b 1a 2-a 1(x -a 1)+b 1,只需x -a 1为a 2-a 1的整数倍.即x -a 1=k (a 2-a 1),(k ∈Z )就可得另外整点.故③正确.对于④,举例:y =x +12,k 与b 均为有理数,但是直线不过任何整点.故④不正确. 变式练习1.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上的截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围. [解析] (1)∵l 在两坐标轴上的截距相等, ∴直线l 的斜率存在,a ≠-1. 令x =0,得y =a -2. 令y =0,得x =a -2a +1.由a -2=a -2a +1,解得a =2,或a =0.∴所求直线l 的方程为3x +y =0,或x +y +2=0. (2)直线l 的方程可化为y =-(a +1)x +a -2.∵l 不经过第二象限,∴⎩⎪⎨⎪⎧-(a +1)≥0,a -2≤0.∴a ≤-1.∴a 的取值范围为(-∞,-1]. 2.已知直线l: kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S ,求S 的最小值并求此时直线l 的方程.[解析] (1)直线l 的方程是:k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧ x +2=01-y =0解之得⎩⎪⎨⎪⎧x =-2y =1.∴无论k 取何值,直线总经过定点(-2,1).(2)由方程知,直线在x 轴上的截距为-1+2kk (k ≠0),在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k <-21+2k ≥1或k =0,解之得k ≥0. (3)由l 的方程得,A (-1+2k k ,0),B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <01+2k >0,,解得k >0. ∵S =12·|OA |·|OB |=12·|1+2kk|·|1+2k |=12·(1+2k )2k =12(4k +1k+4) ≥12(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时l :x -2y +4=0.[点评] 本题证明直线系过定点问题所使用的“分离参数法”是证明曲线系过定点的一般方法课后练习1.过点A (0,2)且倾斜角的正弦值是35的直线方程为( )A .3x -5y +10=0B .3x -4y +8=0C .3x +4y +10=0D .3x -4y +8=0或3x +4y -8=0 [答案] D[解析] 设所求直线的倾斜角为α, 则sin α=35,∴tan α=±34,∴所求直线方程为y =±34x +2,即为3x -4y +8=0或3x +4y -8=0.2.设A ,B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A .x +y -5=0B .2x -y -1=0C .2x -y -4=0D .2x +y -7=0[答案] A[解析] 易知A (-1,0). ∵|P A |=|PB |,∴P 在AB 的中垂线即x =2上. ∴B (5,0).∵P A ,PB 关于直线x =2对称, ∴k PB =-1.∴l PB :y -0=-(x -5),即x +y -5=0.3.已知点M 是直线l :2x -y -4=0与x 轴的交点,把直线l 绕点M 按逆时针方向旋转45°,得到的直线方程是( )A .3x +y -6=0B .3x -y +6=0C .x +y -3=0D .x -3y -2=0 [答案] A[解析] 由题意知M (2,0),设已知直线和所求直线的倾斜角分别为α,β,则β=α+45°且tan α=2,45°<α<90°,tan β=tan(α+45°)=tan α+tan45°1-tan αtan45°=-3,所以所求直线方程为y -0=-3(x -2), 即3x +y -6=0.4.经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l 的方程为________. [答案] 2x +y +2=0或x +2y -2=0[解析] 设所求直线方程为x a +yb=1,由已知可得⎩⎨⎧-2a +2b=1,12|a ||b |=1,解得⎩⎪⎨⎪⎧a =-1,b =-2或⎩⎪⎨⎪⎧a =2,b =1.∴2x +y +2=0或x +2y -2=0为所求.5.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率是( ) A .0 B .33C . 3D .- 3[答案] C[解析] k PQ =-3得直线PQ 的倾斜角为120°,将直线PQ 绕点P 顺时针旋转60°所得直线的倾斜角为60°,∴所得直线的斜率k =tan60°= 3.6.点P (x ,y )在以A (-3,1),B (-1,0),C (-2,0)为顶点的△ABC 的内部运动(不包含边界),则y -2x -1的取值范围是( ) A .⎣⎡⎦⎤12,1 B .⎝⎛⎭⎫12,1 C .⎣⎡⎦⎤14,1 D .⎝⎛⎭⎫14,1 [答案] D[解析] 令k =y -2x -1,则k 可以看成过点D (1,2)和点P (x ,y )的直线斜率,显然k DA 是最小值,k BD 是最大值.由于不包含边界,所以k ∈⎝⎛⎭⎫14,1.7.若经过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是________.[答案] (-2,1)[解析] ∵直线的斜率k =a -1a +2,且直线的倾斜角为钝角,∴a -1a +2<0,解得-2<a <1. 8.直线ax +my -2a =0(m ≠0)过点(1,1),则该直线的倾斜角α为________.[答案] 135°[解析] ∵ax +my -2a =0(m ≠0)过点(1,1), ∴a +m -2a =0. ∴m =A .直线方程为ax +ay -2a =0, 又m =a ≠0,∴直线方程即为x +y -2=0. ∴斜率k =-1,∴倾斜角α=135°.9.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.[解析] (1)设直线l 的方程是y =k (x +3)+4, 它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b , 则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b , 由已知,得|-6b ·b |=6,∴b =±1.。
2018届数学复习第八章平面解析几何第一节直线的倾斜角与斜率、直线方程学案文

错误!错误!1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.2.掌握确定直线位置的几何要素.3.掌握直线方程的几种形式(点斜式,两点式及一般式等),了解斜截式与一次函数的关系.知识点一直线的倾斜角与斜率1.直线的倾斜角(1)定义:当直线l与x轴相交时,我们取x轴作为基准,x轴______与直线l______方向之间所成的角α叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为______.(2)倾斜角的范围为________.2.直线的斜率(1)定义:一条直线的倾斜角α的________叫做这条直线的斜率,斜率常用小写字母k表示,即k=________,倾斜角是90°的直线斜率不存在.(2)过两点的直线的斜率公式经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=________。
答案1.(1)正向向上0°(2)[0°,180°)2.(1)正切值tanα(2)错误!1.直线2x+1=0的倾斜角为________.解析:直线2x+1=0的斜率不存在,倾斜角为90°。
答案:90°2.过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为()A.1 B.4C.1或3 D.1或4解析:由题意知,错误!=1,解得m=1。
答案:A知识点二直线方程1.直线方程的五种形式2。
线段的中点坐标公式若点P1,P2的坐标分别为(x1,y1),(x2,y2),线段P1P2的中点M的坐标为(x,y),则错误!此公式为线段P1P2的中点坐标公式.答案1.y=kx+b y-y0=k(x-x0)错误!=错误!错误!+y b=1 2。
错误! 错误!3.已知直线l 经过点P (-2,5),且斜率为-错误!。
则直线l 的方程为( )A .3x +4y -14=0B .3x -4y +14=0C .4x +3y -14=0D .4x -3y +14=0解析:由点斜式得y -5=-错误!(x +2),即3x +4y -14=0.答案:A4.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1解析:当a =0时,直线方程为y -2=0,不满足题意,所以a ≠0,所以在x 轴上的截距为2+a a ,在y 轴上的截距为2+a ,则由2+a =错误!,得a =-2或a =1。
直线的5种形式

直线的5种形式全文共四篇示例,供读者参考第一篇示例:直线是平面几何中非常基础的概念,它是二维空间中最简单的图形之一。
直线在几何学和数学中有着非常重要的作用,是许多几何问题的基础。
在这篇文章中,我们将会介绍关于直线的五种形式,包括点斜式、截距式、一般式、两点式和向量式。
点斜式是描述直线的一种常用形式,它使用一点和直线的斜率来表示直线。
点斜式的表达形式为y = kx + b,其中k是直线的斜率,b 是直线在y轴上的截距,而(x, y)则是直线上的一个任意点。
通过点斜式,我们可以很容易地确定直线的斜率和截距,从而方便地画出直线的图像。
直线有很多种不同的表示形式,每种形式都有其自身的优势和适用范围。
通过学习不同的直线表示形式,我们可以更深入地理解直线的性质和特点,也可以更有效地应用直线相关的知识解决问题。
希望这篇文章能够帮助您更好地理解直线的五种形式,进一步提高您的几何学和数学水平。
第二篇示例:直线是几何学中最基本的图形之一,它具有无穷长度,但宽度可以忽略不计。
直线在数学、物理学、工程学等领域都有广泛的应用,是研究几何学特性和分析空间关系的基础。
在几何学中,有五种常见的形式来描述直线,分别是点斜式、截距式、一般式、两点式和向量式。
接下来,我们将逐一介绍这五种形式。
第一种形式是点斜式。
点斜式是直线的一种常见表示方法,它通过直线上的一点和直线的斜率来确定直线的方程。
点斜式的一般形式为y=mx+b,其中m为直线的斜率,b为直线在y轴上的截距。
通过给定点和斜率,我们可以方便地确定一条直线的方程。
第三种形式是一般式。
一般式是直线的一种标准表示方法,它通过直线的一般方程Ax+By+C=0来描述。
一般式可以方便地表示直线的方向、位置和关系,是直线方程的标准形式。
通过对一般式的系数进行适当选择,我们可以得到点斜式、截距式等其他形式。
直线可以通过多种形式来描述,每种形式都有其独特的特点和应用范围。
在实际问题中,我们可以根据具体情况选择合适的直线表示方法,以便更好地理解和应用直线的几何特性。
高考数学直线的倾斜角和斜率、直线方程的点斜式、直线方程的斜截式专项训练

高考数学直线的倾斜角和斜率、直线方程的点斜式、直线方程的斜截式专项训练一. 教学内容:直线的倾斜角和斜率、直线方程的点斜式、直线方程的斜截式[知识点]1. 直线的方程和方程的直线: 定义:(1)以一个方程f (x ,y )=0的解为坐标的点都在直线l 上。
(2)直线l 上的点的坐标都是方程f (x ,y )=0的解。
满足(1)(2)的方程f (x ,y )=0是直线l 的方程,同时称直线l 为方程f (x ,y )=0的直线。
2. 直线的倾斜角:定义:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕交点逆时针旋转与直线重合时,所转过的最小正角为直线倾斜角。
规定:当直线与x 轴平行或重合时,倾斜角为0°。
范围:0°≤α<180° 注意:(1)定义分两部分:一部分是与x 轴相交,另一部分与x 轴平行。
(2)与x 轴相交的定义中,应理解三个地方:①x 轴绕交点旋转;②逆时针方向;③最小正角。
(3)应特别注意倾斜角的范围[0,π)。
(4)任何一条直线有唯一倾斜角,表示直线的倾斜程度,但倾斜角为α的直线有无穷多条。
3. 直线的斜率:定义:倾斜角不是90°的直线,其倾斜角的正切,叫做这条直线的斜率。
符号:常用k 表示,即k =tan α。
注意:(1)所有直线都有倾斜角,但不是所有直线都有斜率。
()由正切的单调性可知,单增,,时单增,两个单2απαππ∈⎛⎝ ⎫⎭⎪∈022[)调区间。
(3)当倾斜角为90°时斜率不存在,但直线存在。
4. 过两点的直线斜率公式:公式推导:如图,已知直线l 过两点P 1(x 1,y 1),P 2(x 2,y 2),倾斜角为α,求斜率k 。
yx O α α P 1 P 2yx Oα α P 1 P 2Pyx O α α P 2 P 1yx Oα P 2 P 1P()作或,则,OP P P P P P x x y y →=⎛⎝ ⎫⎭⎪⎪=--→→12211212∴=--=--tan αy y x x y y x x 12122121即:k y y x x y y x x =--=--12122121注意:(1)斜率公式与点的顺序无关。
直线方程的五种形式(包括哪五种)

直线方程的五种形式(包括哪五
种)
大家好,小乐为大家解答以下问题。
很多人不知道线性方程的五种形式,包括哪五种。
现在让我们来看看!
一、直线方程的五种形式
1、1:点斜式:已知直线过点(x0,y0),斜率为k,则直线方程为y-y0=k(x-x0)。
2、2:斜截式:已知直线在y轴上的截距为b,斜率为k,则直线方程为y=kx+b
3、3:两点式:已知一条直线经过P1(x1,y1),P2(x2,y2)两点,则直线方程为x-x1/x2-x1=y-y1/y2-y1,但不包括垂直于坐标轴的直线。
4、4:截距式:已知直线在x轴和y轴上的截距为a,b,则直线方程为x/a+y/b=1
5、5:一般式:任何直线均可写成Ax+By+C=0(A,B不同时为0)的形式。
二、五种形式的注意事项
6、一般式为ax+by+c=0,它的优点就是它可以表示平面上的任意一条直线,仅此而已。
其它式都有特例直线不能表示。
比如:
7、1:斜截式y=kx+b,就不能表示垂直x轴的直线x=a.
8、2:点斜式y-y0=k(x-x0),也不能表示垂直x轴的直线x=a
9、3:两点式(y-y1)/(y2-y1)=(x-x1)/(x2-x1)。
不能表示两点x1=x2或y1=y2时的直线(即垂直或水平直线)
10、4:截距式x/a+y/b=1不能表示截距为0时的直线,比如正比例直线。
本文到此结束,希望对你有所帮助。
高中数学必修2直线方程

一、知识要点: 1. 倾斜角与斜率2. 直线方程式的5种形式:点斜式、斜截式、两点式、截距式、一般式(注意用前四种方程的条件及一般式与其它形式转化的条件)3.两条直线平行、垂直的条件(与斜率及系数的关系)4.距离公式:两点间的距离公式、点到直线的距离公式、两平行直线间的距离公式 5. 对称问题(点对称、轴对称)二、基础知识练习:1. 直线倾斜角的取值范围___________, 过两点P 1(x 1,y 1), P 2(x 2,y 2)的斜率公式______________2.x=1的倾斜角为__________,直线310x +=的倾斜角是__________,90α=时的斜率_________.3. 直线方程的点斜式方程_________________,直线方程的斜截式方程_________________,直线方程的两点式方程_________________,直线方程的截距式方程_________________,直线方程的一般式方程_______________,与x 轴垂直的直线方程___________,与y 轴垂直的直线方程___________.4.已知直线111222:,:l y k x b l y k x b =+=+,若1l ∥2l ,则__________________,若1l ⊥2l ,则______________;已知直线11112222:0,:0l A x B y C l A x B y C ++=++=,若1l ∥2l ,则_________________ ,若1l ⊥2l ,则______________.5. 与:0l Ax By C ++=平行的直线可设为______________ ,与:0l Ax By C ++=垂直的直线可设为____________________.6. 平面上任意两点111222(,),(,)P x y P x y 的距离公式__________________________, 点000(,)P x y 到直线:0l Ax By C ++=的距离d=_________________,两条平行直线1:0l Ax By C ++=与2:0l Ax By C ++=间距离为d=________________.7.两平行直线3x+4y-12=0和6x+8y+6=0间的距离是________________.三、基础应用:1.下列命题正确的有 :①每条直线都有唯一一个倾斜角与之对应,也有唯一一个斜率与之对应; ②倾斜角的范围是:0°≤α<180°,且当倾斜角增大时,斜率也增大; ③过两点A(1,2),B(m,-5)的直线可以用两点式表示; ④过点(1,1),且斜率为1的直线的方程为111y x -=-; ⑤直线Ax+By+C=0(A,B 不同时为零),当A,B,C 中有一个为零时,这个方程不能化为截距式. ⑥若两直线平行,则它们的斜率必相等;⑦若两直线垂直,则它们的斜率相乘必等于-1.2.若直线062:1=++y ax l 与直线01)1(:22=-+-+a y a x l ;21//l l 时,a=__________;这时它们之间的距离是________;21l l ⊥时,a=________ 3.求满足下列条件的直线方程:(1)经过点P(2,-1)且与直线2x+3y+12=0平行; (2)经过点Q(-1,3)且与直线x+2y-1=0垂直; (3)经过点R(-2,3)且在两坐标轴上截距相等;(4)经过点M(1,2)且与点A(2,3)、B(4,-5)距离相等;(5) 经过点N(-1,3)且在x 轴的截距与它在y 轴上的截距的和为零.4.已知直线l 过点(1,2),且与x ,y 轴正半轴分别交于点A 、B 求△AOB 面积为4时l 的方程;四、巩固练习 1.直线,031=-+-k y kx 当k 变动时,所有直线都过定点( )A .(0,0)B .(0,1)C .(3,1)D .(2,1)2.过点(1,3)且与原点距离为1的直线有 ( )A.3条B. 2条C. 1条D. 0条 3.到x 轴、y 轴和直线02=++y x 的距离相等的点有 ( ) A.1个 B.2个 C.3个 D.4个4. 如果直线02=+-y ax 与直线03=--b y x 关于直线0=-y x 对称,则( )A. 31=a , 6=b B. 31=a , 6-=b C. 3=a 2-=b D. 3=a , 6=b5.已知点M (4,2)与N (2,4)关于直线l 对称,则直线l 的方程为 ( )A .06=++y xB .06=-+y xC .0=+y xD .0=-y x6.设三条直线0123201832,06232=+-=+-=++y mx y m x y x 和围成直角三角形,则m 的取值是 ( )A .01或±B .或094-C .941,0或--D .941-或- 7.与两平行直线:1l :;093=+-y x l 2:330x y --=等距离的直线方程为 .8.直线l 方程为08)2()23(=+-++y m x m ,若直线不过第二象限,则m 的取值范围是 . 9.一束光线从点(1,1)A -出发,经x 轴反射到点(2,3)O ,光线经过的最短路程是 ;10.已知132=-n m ,则直线5=+ny mx 必然过定点___________.11.△ABC 中,A (0,1),AB 边上的高线方程为x +2y -4=0,AC 边上的中线方程 为2x +y -3=0,求AB ,BC ,AC 边所在的直线方程.1.直线L :ax+4my+3a=0 (m ≠0)过点(1 , -1),那么L 的斜率为 ( )A .41B .-4C . -41D .4 2.两平行直线分别过(1,5),(-2,1)两点,设两直线间的距离为d ,则( )A .d=3B .d=4C .3≤d ≤4D .0<d ≤53.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( )A.1条 B.2条 C.3条 D.4条4.等腰ABC ∆的三个顶点的坐标是A(-3,4),B(-5,0)C(-1,0),则BC 边的中线AD 的方程( )A. x=-3B.y=-3C.x=-3(40≤≤y )D.y=-3 (51x -≤≤-) 5.如果直线012=-+ay x 与直线01)13(=---ay x a 平行,则a 等于 ( )A .0B .61C .0或1D .0或61 6.已知直线l 过点P(5,10),且原点到它的距离为5,则直线l 的方程为 .7.直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是 .8.经过点(0,1)P -作直线l ,若直线l 与连接(1,2),(2,1)A B -的线段没有公共点,则直线l 的斜率k 的取值范围为 .9.直线01)2(:05)1(:21=-++=+-+my x m l y m mx l 与互相垂直,则m 的值是 . 10.已知直线l 与直线3x+4y -7=0平行,并且与两坐标轴围成的三角形的面积为24,求直线l 的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线的倾斜角和斜率、直线方程的点斜式、直线方程的斜截式一. 教学内容:直线的倾斜角和斜率、直线方程的点斜式、直线方程的斜截式[知识点]1. 直线的方程和方程的直线: 定义:(1)以一个方程f (x ,y )=0的解为坐标的点都在直线l 上。
(2)直线l 上的点的坐标都是方程f (x ,y )=0的解。
满足(1)(2)的方程f (x ,y )=0是直线l 的方程,同时称直线l 为方程f (x ,y )=0的直线。
2. 直线的倾斜角:定义:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕交点逆时针旋转与直线重合时,所转过的最小正角为直线倾斜角。
规定:当直线与x 轴平行或重合时,倾斜角为0°。
范围:0°≤α<180° 注意:(1)定义分两部分:一部分是与x 轴相交,另一部分与x 轴平行。
(2)与x 轴相交的定义中,应理解三个地方:①x 轴绕交点旋转;②逆时针方向;③最小正角。
(3)应特别注意倾斜角的范围[0,π)。
(4)任何一条直线有唯一倾斜角,表示直线的倾斜程度,但倾斜角为α的直线有无穷多条。
3. 直线的斜率:定义:倾斜角不是90°的直线,其倾斜角的正切,叫做这条直线的斜率。
符号:常用k 表示,即k =tan α。
注意:(1)所有直线都有倾斜角,但不是所有直线都有斜率。
()由正切的单调性可知,单增,,时单增,两个单2απαππ∈⎛⎝ ⎫⎭⎪∈022[)调区间。
(3)当倾斜角为90°时斜率不存在,但直线存在。
4. 过两点的直线斜率公式:公式推导:如图,已知直线l 过两点P 1(x 1,y 1),P 2(x 2,y 2),倾斜角为α,求斜率k 。
yx O α α P 1 P 2yx Oα α P 1 P 2PyxO α α P 2 P 1yx Oα P 2 P 1P()作或,则,OP P P P P P x x y y →=⎛⎝ ⎫⎭⎪⎪=--→→12211212∴=--=--tan αy y x x y y x x 12122121即:k y y x x y y x x =--=--12122121注意:(1)斜率公式与点的顺序无关。
(2)由公式可知表示直线倾斜程度,可以由直线上两点确点,无需求倾斜角。
(3)当x 1=x 2,y 1≠y 2时,α=90°没有斜率。
(4)利用公式求斜率时,应注意隐含条件x 1≠x 2。
5. 直线的方向向量:定义:直线上的向量及与之平行的向量都称为直线的方向向量。
P P 12→意义:表示直线的方向。
6. 直线方程的点斜式: (1)方程的推导:略()()方程的形式:2y y k x x -=-11 (3)方程的特殊情况:y =y 1(4)不能用点斜式表示的直线:x =x 1 7. 直线方程的斜截式: (1)方程的推导:(略) (2)截距的概念:(是坐标不是距离)(3)方程的形式:y =kx +b (4)方程的特殊情况:y =0(5)不能用斜截式表示的直线:x =0【典型例题】例1. 已知直线l 的斜率k 满足k>-2,求直线l 的倾斜角的范围。
解:设直线l 的倾斜角为α 由题意知tan α=>-k 2画出且及的图象k k =≤<≠⎛⎝ ⎫⎭⎪=-tan ααπαπ022 由且得:tan ααπαπ=-≤<≠⎛⎝ ⎫⎭⎪202απ=-arctan2由图知,直线倾斜角的范围是或l 022≤<-<<αππαπarctan小结:已知直线l 的斜率的范围,求直线l 的倾斜角的范围时,常先画出函数k =≤<≠⎛⎝ ⎫⎭⎪tan ααπαπ02且的图象,然后再由图象确定倾斜角的范围。
例2. 已知直线的斜率为,直线的倾斜角是直线的倾斜角的一半,AB AB 34l求直线l 的斜率。
解:设直线l 的倾斜角为α,由题意知直线AB 的倾斜角为2αΘtan tan tan 23421342ααα==∴-=k AB ,即:38302tan tan αα+-=解之,得:或tan tan αα==-133Θtan 2002180290ααα>≤<≠,且ooo∴<<∴=04513o o αα,tan∴直线的斜率为l 13小结:由2α的正切值确定α的范围,及由α的范围求α的正切值是本例中易忽略的地方,在解同类型题的过程中应当注意。
例3. 求经过两点P 1(2,1)和P 2(m ,2)(m ∈R )的直线l 的斜率,并且求出l 的倾斜角α及其取值范围。
解:(1)当m =2时,x 1=x 2=2 ∴直线垂直于轴,因此直线的斜率不存在,倾斜角l x απ=2()当时,直线的斜率2212m k m ≠=-l当时,m k >>20∴=-∈⎛⎝ ⎫⎭⎪ααπarctan1202m ,,当时,m k <<20∴=+-∈⎛⎝ ⎫⎭⎪απαππarctan122m ,, 小结:利用斜率公式时,应注意公式的应用范围。
当斜率k ≥0时,直线的倾斜角为arctank ;当k <0时,直线的倾斜角为π+arctank 。
例4. 求证:A (1,-1)、B (-2,-7)、C (0,-3)三点共线。
证法一:∵A (1,-1)、B (-2,-7)、C (0,-3)()()∴=-----==----=k k AB AC 7121231012,∴=k k AB AC∴直线AB 与直线AC 倾角相同且过同一点A ∴直线AB 与直线AC 为同一条直线 故A 、B 、C 三点共线 证法二:∵A (1,-1)、B (-2,-7)、C (0,-3)()()∴=--=--→→AB AC 3612,,,∴=→→AB AC 3ΘAB AC A →→与共线且起点都为故A 、B 、C 三点共线小结:解法一是利用了直线上任意两个不同的点所确定的斜率都应相等这一思想方法。
解法二利用了共线向量定理,此法较简单,此题还有其他一些解法。
例5. 已知两点A (-3,4)、B (3,2),过点P (2,-1)的直线l 与线段AB 有公共点。
(1)求直线l 的斜率k 的取值范围; (2)求直线l 的倾斜角α的取值范围。
解:如图所示,因为直线l 与线段AB 有公共点,所以l 的倾斜角介于直线PB 与直线PA 的倾斜角之间,当l 的倾斜角小于90°时,k ≥k PB ;当l 的倾斜角大于90°时,k ≤k PA 。
()()由已知得:,k k PA PB =----=-=---=4132121323(1)∵l 与线段AB 有公共点 ∴k 的取值范围是k ≤-1或k ≥3。
(2)因为l 的倾斜角介于直线PB 的倾斜角和直线PA 的倾斜角之间,又直线PB 的倾斜角是arctan3,直线PA 的倾斜角是34π∴≤≤arctan 334απ例6. 如图所示,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A k k kB k k k ..123312<<<<C k k kD k k k ..321132<<<<(1995年全国高考题)分析:根据直线的倾斜角与斜率的关系判断。
解:法一根据直线的斜率k 与倾斜角α的关系k =tan α(0≤α<π),由图可见k 2>k 3>0>k 1,故选D 。
法二取特殊值:,,,即可排除、、,从而选。
k k k A B C D 2312131===-例7. 已知直线的倾斜角的取值范围,利用正切函数的性质,讨论直线斜率及其绝对值的变化情况。
(1)0°<α<90°;(2)90°<α<180°。
分析:本题要讨论的问题有两个:第一,直线斜率的变化情况;第二,直线斜率的绝对值的变化情况。
(2)首先要建立斜率k 与倾斜角α之间的关系以及斜率k 的绝对值|k |与倾斜角α之间的关系,然后讨论变化情况,必要时可先画出函数的图象,根据图象指出直线的斜率及其绝对值的变化情况。
(3)用函数的性质或图象知识去讨论。
解:当0°<α<90°时,tan α>0(1)k =tan α,|k |=|tan α|=tan α(0°<α<90°) ∴y =k 与y =|k |的图象相同(如图所示)这时,直线的斜率与直线斜率的绝对值相等,且属于(0,+∞),直线的斜率及其绝对值随着直线倾斜角的增大而增大。
当无限接近于时,直线的斜率及其绝对值无限接近于απ2+∞当90°<α<180°时,k =tan α<0∴=====-y k y k tan |||tan |tan ααα,,它们的图象如图所示:因此,当时,直线的斜率的变化范围是(-,),随着901800oo<<∞αα在开区间,内逐渐增加,直线的斜率从增大而无限接近于。
ππ20⎛⎝ ⎫⎭⎪-∞当0<α<90°时,直线斜率的变化范围是(0,+∞),随着倾斜角在开区间020,内逐渐增大时,直线斜率由增大。
π⎛⎝ ⎫⎭⎪当90°<α<180°时直线斜率绝对值的变化范围是(0,+∞),随着倾斜角在开区间,内逐渐增大时,直线斜率的绝对值从逐渐减少,而无限接近ππ2⎛⎝ ⎫⎭⎪+∞于0。
例8. 已知直线经过点P (3,2),倾斜角是直线x -4y +3=0的倾斜角的2倍,求直线l 的方程。
解:设直线x -4y +3=0的倾斜角为α则易得tan α=14故所求直线的斜率为k ==-=tan tan tan 2218152ααα又直线经过点P (3,2)()∴-=-直线方程为y x 28153整理得:81560x y -+=小结:先求出直线x -4y +3=0的倾斜角,然后求出直线l 的倾斜角,最后代入点P 求出解析式。
例9. 已知直线过点P (-2,3),且与两坐标轴围成的三角形面积为4,求直线的方程。
分析:关键是要求出斜率k 。
解:显然,直线l 与两坐标轴不垂直,设直线的方程为y -3=k (x +2) 令得:x y k ==+023令得:y x k ==--032()于是直线与两坐标轴围成的三角形面积为1223324k k +--⎛⎝ ⎫⎭⎪=()即23328k k ++⎛⎝ ⎫⎭⎪=±()若,则整理得:,无解;2332844902k k k k ++⎛⎝ ⎫⎭⎪=++= ()若,则整理得:23328420902k k k k ++⎛⎝ ⎫⎭⎪=-++=解之得:,k k =-=-1292()()∴-=-+-=-+所求直线的方程为和y x y x 31223922即和x y x y +-=++=24092120例10. 如果AC <0,且BC <0,那么直线Ax +By +C =0不通过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限(1991年全国高考题·文)答案:C分析:先求出直线与两坐标轴的交点,再判断。