直线的倾斜角和斜率
直线的倾斜角和斜率 课件

【解析】 (3)∵l 与 x 轴交于点 P,且倾斜角为 α,∴0°< α<180°.
又∵逆时针旋转后得到倾斜角为 α+45°, ∴0°≤α+45°<180°. 综上:00°°<≤αα<+18405°°,<180°,解得 0°<α<135°. 【答案】 (1)B (2)90° (3)0°<α<135°
【思路分析】 直接用斜率公式去求. 【解析】 (1)kPQ=--21--11=32. (2)∵x1=x2,∴斜率不存在. (3)当 m=2 时,斜率不存在; 当 m≠2 时,kPQ=m2--12=m-1 2.
题型三 直线的倾斜角与斜率的关系
例 3 (1)已知过点 A(2m,3),B(2,-1)的直线的倾斜角为 45°,求实数 m 的值;
题型二 直线的斜率的求法
例 2 如图,已知 A(3,2),B(-4,1),C(0,-1),求直线 AB,BC,CA 的斜率,并判断这些直线的倾斜角是锐角还是钝角.
【思路分析】 由题目可获取以下主要信息:①已知三点 A、 B、C 的坐标;②通过斜率判断直线 AB,BC,CA 的倾斜角.
解答本题可通过斜率的定义,求出直线的斜率,根据斜率的 正、负确定直线倾斜角是锐角还是钝角.
(2)数形结合是一种常用的方法. (3)直线逆时针旋转,k 变大,顺时针旋转,k 变小.
思考题 4 经过点 P(0,-1)作直线 l,若直线 l 与连接 A(2,
1),B(2,-3)的线段总有公共点,求直线的倾斜角与斜率的取值 范围.
【解析】 连接 PA,PB,kPA=1-2(--01)=1,α1=45°, kPB=-3-2- (0-1)=-1,α2=135°,
探究 2 根据斜率与倾斜角的关系(即当倾斜角 0°≤α< 90°时,斜率是非负的;当倾斜角 90°<α<180°时,斜率是负 的)来解答直线的倾斜角是锐角还是钝角问题.
直线的倾斜角和斜率,直线方程

直线的倾斜角和斜率,直线方程一、直线的倾斜角和斜率1.直线的倾斜角概念的注意点:1)注意旋转方向:逆时针2)规定平行x轴(或与x轴重合)的直线倾斜角为0°3)直线倾斜角的范围是0°≤<180°2.直线的倾率:直线的倾斜角的正切值tan(倾斜角不为90°时)。
概念注意点:1)倾斜角为90°的直线无斜率2)斜率k可以是任何实数,每条直线都存在唯一的倾斜角,但不是每条直线都有斜率3)=0°时,k=0;0°<<90°时,k>0;=90°时,k不存在;90°<<180°时,k<0。
3.斜率公式:设直线l的倾斜角为(≠90°),P1(x1,y2),P2(x2,y2)(x1≠x2)是直线l上不同两点,直线l的斜率为k,则:k=tan=,当=90°时,或x1=x2时,直线l垂直于x轴,它的斜率不存在。
例1.求过A(-2,0),B(-5,3)两点的直线的斜率和倾斜角。
解:k==-1,即tan=-1,∵0°≤<180°,∴=135°。
点评:已知直线的斜率,可以直接得出直线的倾斜角,但要注意角的范围。
例2.设直线l的斜率为k,且-1<k<1,求直线倾斜角的范围。
解法1:当-1<k<0时,∈(),则,当k=0时,=0,当0<k<1时,∈(0,),则0<<解法2:作k=tan,∈[0,π)时的图形:由上图可知:-1<k<1时,∈[0,)()。
点评:1、当直线的斜率在某一区间内时,要注意对倾斜角范围的讨论。
2、利用正切函数图像中正切来表示倾斜角和斜率关系也是一种很好的方法。
二、直线方程的四种形式1.两个独立的条件确定一条直线,常见的确定直线的方法有以下两种(1)由一个定点和确定的方向可确定一条直线,这在解析几何中表现为直线的点斜式方程及其特例斜截式方程。
直线的倾斜角与斜率

直线的倾斜角与斜率直线的倾斜角与斜率1. 斜率的定义斜率是平面直角坐标系中一条直线倾斜程度的度量。
斜率可以帮助我们理解直线的倾斜程度以及方向。
在数学中,斜率通常用m表示,它表示一条直线在水平方向的单位偏移所对应的垂直方向的单位偏移的比值。
也可以理解为直线上两点之间的垂直高度差与水平距离的比率。
假设一条直线上有两个点P(x1, y1)和Q(x2, y2),那么这条直线的斜率就可以表示为:m = (y2 - y1) / (x2 - x1)2. 直线的倾斜角度直线的倾斜角度也叫直线的斜率角,可以帮助我们更直观地理解一条直线的倾斜程度和方向。
与斜率相比,倾斜角度更易于理解和使用,尤其是在实际测量和应用中。
直线的倾斜角通常用θ表示,计算公式如下:tan(θ) = m其中tan(θ)表示正切函数,它可以是斜率m的反函数。
因此,直线的倾斜角通常可以表示为:θ = atan(m)而atan表示反正切函数,它可以将斜率转化为对应的弧度角,从而帮助我们更好地理解直线的方向和倾斜程度。
3. 应用举例下面通过一个具体的应用举例来理解斜率和倾斜角度的概念。
假设我们需要计算一条直线的倾斜角度和斜率,该直线穿过两个点P(3, 4)和Q(5, 8)。
首先,我们需要计算该直线的斜率:m = (8 - 4) / (5 - 3) = 2然后,我们可以将该斜率转化为对应的倾斜角度:θ = atan(2) = 1.107 rad也就是说,该直线的倾斜角度是1.107弧度,约等于63.43度。
这意味着,在平面坐标系上,该直线与水平方向的夹角为63.43度。
可以看出,倾斜角度可以帮助我们更直观地理解直线的倾斜程度和方向,从而更方便地进行测量和计算。
4. 总结斜率和倾斜角度是描述一条直线倾斜程度和方向的重要概念。
它们可以帮助我们更直观地理解一条直线的特性,并且在测量和计算中有广泛的应用。
需要注意的是,在实际应用中,我们需要根据具体情况选择使用斜率或倾斜角度,以获得更准确的结果。
直线的倾斜角、斜率及直线的方程ppt

点斜式方程的局限性
点斜式方程只适用于已知一点和 斜率的直线,对于其他情况需要
使用其他形式的直线方程。
当直线与x轴垂直时,斜率不存 在,点斜式方程不适用。
在实际应用中,需要根据具体情 况选择合适的直线方程形式。
05 直线的两点式方程与斜率 的关系
点斜式方程
01
点斜式方程是直线方程的一种形 式,它表示通过一个固定点(x1, y1)和斜率m的直线。
02
点斜式方程可以用来求解直线的 方程,特别是当已知直线上的一 点和斜率时。
两点式方程
两点式方程是直线方程的另一种形式, 它表示通过两点(x1, y1)和(x2, y2)的 直线。
两点式方程也可以用来验证两点是否 在同一直线上。
整理得到$y - y_1 = m(x - x_1)$,其中$m$为直线斜率。
因此,点斜式方程为$y - y_1 = m(x - x_1)$,它是通过直线上两点坐标推导出来的。
斜率在点斜式方程中的应用
斜率$m$表示直线在坐标系上的倾斜程度,当$m > 0$时, 直线从左下到右上倾斜;当$m < 0$时,直线从左上到右下 倾斜;当$m = 0$时,直线与x轴平行。
两点式方程仅适用于已知两点坐标的情 况,对于其他情况可能不适用。
当两点坐标相同时,即直线过一个点时, 另外,当直线与坐标轴平行或重合时,
两点式方程将失去意义。
斜率不存在,此时两点式方程也无法表
示直线。
06 直线的方程在实际问题中 的应用
利用直线方程解决几何问题
确定两点间的直线方程
已知两点坐标,利用直线方程求解直线方程。
推导过程中,利用了直线上两点间斜率相等的性质,即斜率是固定的值。
高中数学——直线的倾斜角和斜率

()
课堂小结
1. 直线的倾斜角和斜率的概念; 2. 根据倾斜角和斜率的概念解决
相关问题; 3. 利用斜率公式解决问题; 4. 数形结合思想,函数思想.
课后作业
作业:P76习题2-1 1,2, 3.
谢谢
知识回顾 Knowledge Review
祝您成功!
说法是正确的( D,F )
A.任一条直线都有倾斜角,也都有斜率; B.直线的倾斜角越大,它的斜率就越大; C.平行于x轴的直线的倾斜角是0或π; D.两直线的斜率相等,它们的倾斜角相等; E.两直线的倾斜角相等,它们的斜率相等; F.直线斜率的范围是(-∞,+∞).
例题解析
例3. 如图,直线l1 的倾斜角α1=300,
解:设该直线的斜率为k, 倾斜角为
则由斜率公式得k tan 3 0 1 5 (2)
0。 180。 135。 综上可知:直线的斜率为 1,倾斜角135。
例题解析
例5. 直线 l1、 l2、 l3的斜率分别是k1、 k2、 k3,
试比较斜率的大小.
l1
l2
l3
k1 k3 k2
y y y y
tan 2 1 2 1
x1 x2 x2 x1
直线的斜率计算公式:
y
P2(x2,y2)
P
P1(x1,y1)
O
x
y y
即 k 2 1
x2 x1
例题解析
例1.直线l的倾斜角为45°,则斜率k为 1
直线l的倾斜角为120°,则斜率k为 3 例2. 关于直线的倾斜角和斜率,下列哪些
O
x
(2)
y
0。
k值不存在
k 0
O
x
(3)
直线的倾斜角与斜率

求P 点坐标.
思考: 已知a,b,c ? R + , 且a
b,求证 a+c > a . b+ c b
小结:
1。正确理解直线方程与方程的直线概念
2。
直线的倾斜角
定义
三要素
取值范围 0,180
斜率 K
K tan
K ,
斜率公式
K y2 y1 x2 x1
K ,
P.89习题3.1 A组 1,2, 3,4,5
坡度(比)
升高量 前进量
升
高
量
前进量
1、直线斜率的定义: a 我们把一条直线的倾斜角 的正切值叫做这
条直线的斜率。
用小写字母 k 表示,即:
k tan a
(1)是否每条直线都有倾斜角? (2)是否每条直线都有斜率?
2、探究:由两点确定的直线的斜率
设直线l经过两点P1(x1, y1), P2(x2, y2), 求此直线的斜率.
综上所述,我们得到经过两点P1(x1, y1), P2 (x2, y2 ) (x1 x2 )的直线的斜率公式:
k = y2 - y1 x2 - x1
例1:
(1)直线l1的倾斜角a1=30o, 直线l1与l2垂直 求l1与l2的斜率.
(2)已知直线l经过点A(0,1),B(
1 sinq
,2),
求l的倾斜角的取值范围.
例2 : 已知直线l过原点O,且与线段MN相交,又 M(-2,4),N(3,2)
(1)求直线OM ,ON,MN的斜率.
(2)设M, N , P(4,a)三点共线, 求a的值.
(3)求直线l的斜率的取值范ቤተ መጻሕፍቲ ባይዱ.
(4)若MN
与l交与点P(x,y),求
直线的斜率与倾斜角(精讲) 讲义

直线的斜率与倾斜角1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)范围:直线l 倾斜角的范围是[0,π).2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan_α.(2)P1(x1,y1),P2(x2,y2)在直线l 上,且x1≠x2,则l 的斜率k =y2-y1x2-x1.3.两条直线的位置关系①两条直线平行:(ⅰ)对于两条不重合的直线l1、l2,若其斜率分别为k1、k2,则有l1∥l2⇔k1=k2. (ⅱ)当直线l1、l2不重合且斜率都不存在时,l1∥l2. ②两条直线垂直:(ⅰ)如果两条直线l1、l2的斜率存在,设为k1、k2,则有l1⊥l2⇔k1·k2=-1. (ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l1⊥l2. 【题型精讲】考点一 倾斜角【例1】(1)(2020·四川高一期末)直线l x+y ﹣3=0的倾斜角为( )A .30°B .60°C .120°D .90° (2)(2020·全国高二课时练习)l 经过第二、四象限,则直线l 的倾斜角α的范围是( ) A .0°≤α<90° B .90°≤α<180° C .90°<α<180° D .0°<α<180° 【玩转跟踪】1.(2020·科尔沁左翼后旗甘旗卡第二高级中学高一期末)直线310x -=的倾斜角α为( ). A .30︒B .60︒C .120︒D .150︒2.(2020·广东高一期末)直线y 2-的倾斜角是( )A .3πB .4πC .6πD .56π 考点二 斜率【例2】(2020·全国高二课时练习)过点(A )与点(B )的直线的倾斜角为( )A .45︒B .135︒C .45︒或135︒D .60︒2 / 4【玩转跟踪】1.(2020·全国高二课时练习)如果过P (-2,m ),Q (m ,4)两点的直线的斜率为1,那么m 的值是() A .1 B .4 C .1或3 D .1或4 2.(2020·湖南天心.长郡中学高一月考)直线l 经过()2,1A ,()2(,)1B m m R ∈两点,那么直线l 的倾斜角的取值范围为( )A .0,B .30,,44πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦C .0,4⎡⎤⎢⎥⎣⎦πD .0,,42πππ⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭ 3.(2020·浙江下城.杭州高级中学高二期中)若直线l 的倾斜角α满足203πα<<,且2πα≠,则其斜率k 满足( )A .0k <<B .k >C .0k >或k <D .0k >或k <考点三 倾斜角与斜率综合运用【例3】(2020·江苏省海头高级中学高一月考)已知点(2,1),(3,)A B m -,若13m ⎡⎤∈--⎢⎥⎣⎦,则直线AB 的倾斜角的取值范围为( )A .5,36ππ⎡⎤⎢⎥⎣⎦ B .50,,36πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭ C .5,,3226ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦ D .5,,326ππππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ 【玩转跟踪】1.(2020·全国高二课时练习)直线l 过点()1,0P ,且与以()2,1A ,(B 为端点的线段有公共点,求直线l 的斜率和倾斜角的取值范围.tan θ.2.(2020·全国高二课时练习)已知直线l 过点()1,1M m m +-,()2,1N m .(1)当m 为何值时,直线l 的斜率是1? (2)当m 为何值时,直线l 的倾斜角为90︒?3.(2020·哈尔滨市第一中学校高一期末)已知直线l 过点(1,0)P 且与以(2,1)A ,(4,3)B -为端点的线段AB 有公共点,则直线l 倾斜角的取值范围为_______.考点四 直线平行【例4】(2020·四川达州.高三其他(文))直线12:0l ax y a ++=与直线20:2l x ay a +-=互相平行,则实数a =( ) A .4- B .4 C .2- D .2【玩转跟踪】 1.(2020·黑龙江高一期末)若直线2x+(a+2)y+4=0与直线(a ﹣1)x+2y+2=0平行,则实数a 的值为( )A .﹣3B .2C .2或﹣3D .23-2.(2020·江苏淮安。
倾斜角与斜率

《倾斜角与斜率》xx年xx月xx日contents •倾斜角概述•斜率及其计算方法•倾斜角与斜率的关系•倾斜角和斜率的应用•倾斜角和斜率的特殊情况•倾斜角和斜率的实际应用案例目录01倾斜角概述定义倾斜角是指直线与x轴之间的夹角,通常用α表示。
性质倾斜角是一个锐角或钝角,其取值范围在0°到180°之间。
定义与性质方向倾斜角的方向与直线的斜率密切相关。
变化当直线向上倾斜时,倾斜角为锐角,斜率为正;当直线向下倾斜时,倾斜角为钝角,斜率为负。
倾斜角与直线方向根据上述性质,倾斜角的取值范围在0°到180°之间。
范围当直线与x轴垂直时,倾斜角为90°,斜率不存在;当直线与x轴平行时,倾斜角为0°,斜率为0。
特殊情况倾斜角的取值范围02斜率及其计算方法斜率是直线与x轴夹角的正切值,表示直线相对于水平线的倾斜程度。
斜率通常用小写字母m表示,也可以用其他字母表示。
斜率的定义斜率的计算方法公式为:m = tan(α),其中α为直线的倾斜角。
当α为锐角时,m为正数;当α为直角时,m为无穷大;当α为钝角时,m为负数。
利用直线的倾斜角和正切函数计算斜率。
1斜率的取值范围23斜率的取值范围是实数集,可以取任意实数。
斜率的取值与直线的倾斜角有关,而倾斜角可以取0到180度之间的任意值。
当斜率为0时,表示直线与x轴平行;当斜率无穷大时,表示直线与x轴垂直。
03倾斜角与斜率的关系直线斜率计算公式$k = \tan(\alpha)$,其中$\alpha$为直线的倾斜角,$k$为直线的斜率。
说明直线的斜率与倾斜角成正比,即倾斜角越大,斜率越大;倾斜角越小,斜率越小。
直线斜率的计算公式01直线斜率变化不同倾斜角下的直线斜率变化021. 当倾斜角$\alpha$从$0^{\circ}$增大到$90^{\circ}$时,斜率$k$从0逐渐增大到正无穷大。
032. 当倾斜角$\alpha$从$90^{\circ}$减小到$180^{\circ}$时,斜率$k$从正无穷大逐渐减小到0。