直线的斜率与倾斜角
直线的倾斜角、斜率及方程知识点总结

直线的倾斜角、斜率及方程知识点总结
一、倾斜角:
重点:取值范围:0≤a<180°
二、斜率k:
1、当a≠90°时,斜率k=tana;
2、当a=90°时,斜率k不存在;(联系正切函数的定义域去理解)
3、两点P1(x1,y1),P2(x2,y2)间的斜率公式:
理解:
①两点间斜率要求x1≠x2,因为当x1=x2时,直线垂直于x轴,倾斜角为90°,斜率k不存在;
②当x1≠x2且y1=y2时,直线垂直于y轴,倾斜角为0°,斜率k=0
三、各表达式之间的区别与联系:
四、斜率k与截距b对直线位置的影响:
1、k对直线位置的影响:
①当k>0时,直线向右上方倾斜;
②当k<0时,直线向右下方倾斜;
③当k=0时,此时倾斜角为0,直线平行与x轴;
④当k不存在时,此时倾斜角为90°,直线与y轴平行。
2、b对直线位置的影响:
①当b>0时,直线与y轴正半轴相交;
②当b<0时,直线与y轴负半轴相交;
③当b=0时,直线过原点。
高中数学-直线斜率与倾斜角

法是正确的( D, F )
A.任一条直线都有倾斜角,也都有斜率; B.直线的倾斜角越大,它的斜率就越大; C.平行于x轴的直线的倾斜角是0或π; D.两直线的斜率相等,它们的倾斜角相等; E.两直线的倾斜角相等,它们的斜率相等; F.直线斜率的范围是(-∞,+∞).
直线的倾斜角
▪ 倾斜角的取值范围是
0。 180。
y
l
x o
▪ 坐标平面上的任何一条直线都有唯一 的倾斜角;而每一个倾斜角都能确定 一条直线的方向.
▪ 倾斜角直观地表示直线对x轴正方向的 倾斜程度.
日常生活中表示倾斜程度的量?
日 常 生 活 中 , 我 们 经 常用 “ 升 高 量 与 前 进 量 的比 ” 表 示 倾 斜 面 的 “ 坡 度 ”( 倾 斜 程 度 ) , 即
举例
例3 如图,直线l1 的倾斜角α1=300,直
线l2⊥l1,求l1,l2 的斜率.
y
解:
l1的斜率k1
tan
1
tan
30。
3 3
l2
1
l2的倾斜角2 90。 30。 120。 O
l1
2 x
l
的斜
2
率k
2
tan
120。
tan( 180。
60。)
tan 60。 3
举例
例4 求过A(-2,0),B(-5,3)两 点的直线的倾斜角和斜率.
1且0。
。
180
45。
当k
1时 ,tan
1且0。
。
180
135。
所 求 直 线 的 倾 斜 角 为45。或135。
再见
y y
直线的倾斜角和斜率 课件

【解析】 (3)∵l 与 x 轴交于点 P,且倾斜角为 α,∴0°< α<180°.
又∵逆时针旋转后得到倾斜角为 α+45°, ∴0°≤α+45°<180°. 综上:00°°<≤αα<+18405°°,<180°,解得 0°<α<135°. 【答案】 (1)B (2)90° (3)0°<α<135°
【思路分析】 直接用斜率公式去求. 【解析】 (1)kPQ=--21--11=32. (2)∵x1=x2,∴斜率不存在. (3)当 m=2 时,斜率不存在; 当 m≠2 时,kPQ=m2--12=m-1 2.
题型三 直线的倾斜角与斜率的关系
例 3 (1)已知过点 A(2m,3),B(2,-1)的直线的倾斜角为 45°,求实数 m 的值;
题型二 直线的斜率的求法
例 2 如图,已知 A(3,2),B(-4,1),C(0,-1),求直线 AB,BC,CA 的斜率,并判断这些直线的倾斜角是锐角还是钝角.
【思路分析】 由题目可获取以下主要信息:①已知三点 A、 B、C 的坐标;②通过斜率判断直线 AB,BC,CA 的倾斜角.
解答本题可通过斜率的定义,求出直线的斜率,根据斜率的 正、负确定直线倾斜角是锐角还是钝角.
(2)数形结合是一种常用的方法. (3)直线逆时针旋转,k 变大,顺时针旋转,k 变小.
思考题 4 经过点 P(0,-1)作直线 l,若直线 l 与连接 A(2,
1),B(2,-3)的线段总有公共点,求直线的倾斜角与斜率的取值 范围.
【解析】 连接 PA,PB,kPA=1-2(--01)=1,α1=45°, kPB=-3-2- (0-1)=-1,α2=135°,
探究 2 根据斜率与倾斜角的关系(即当倾斜角 0°≤α< 90°时,斜率是非负的;当倾斜角 90°<α<180°时,斜率是负 的)来解答直线的倾斜角是锐角还是钝角问题.
直线的倾斜角和斜率,直线方程

直线的倾斜角和斜率,直线方程一、直线的倾斜角和斜率1.直线的倾斜角概念的注意点:1)注意旋转方向:逆时针2)规定平行x轴(或与x轴重合)的直线倾斜角为0°3)直线倾斜角的范围是0°≤<180°2.直线的倾率:直线的倾斜角的正切值tan(倾斜角不为90°时)。
概念注意点:1)倾斜角为90°的直线无斜率2)斜率k可以是任何实数,每条直线都存在唯一的倾斜角,但不是每条直线都有斜率3)=0°时,k=0;0°<<90°时,k>0;=90°时,k不存在;90°<<180°时,k<0。
3.斜率公式:设直线l的倾斜角为(≠90°),P1(x1,y2),P2(x2,y2)(x1≠x2)是直线l上不同两点,直线l的斜率为k,则:k=tan=,当=90°时,或x1=x2时,直线l垂直于x轴,它的斜率不存在。
例1.求过A(-2,0),B(-5,3)两点的直线的斜率和倾斜角。
解:k==-1,即tan=-1,∵0°≤<180°,∴=135°。
点评:已知直线的斜率,可以直接得出直线的倾斜角,但要注意角的范围。
例2.设直线l的斜率为k,且-1<k<1,求直线倾斜角的范围。
解法1:当-1<k<0时,∈(),则,当k=0时,=0,当0<k<1时,∈(0,),则0<<解法2:作k=tan,∈[0,π)时的图形:由上图可知:-1<k<1时,∈[0,)()。
点评:1、当直线的斜率在某一区间内时,要注意对倾斜角范围的讨论。
2、利用正切函数图像中正切来表示倾斜角和斜率关系也是一种很好的方法。
二、直线方程的四种形式1.两个独立的条件确定一条直线,常见的确定直线的方法有以下两种(1)由一个定点和确定的方向可确定一条直线,这在解析几何中表现为直线的点斜式方程及其特例斜截式方程。
直线的倾斜角、斜率及方程知识点总结

直线的倾斜角、斜率及方程知识点总结一、倾斜角:重点:取值范围:0≤a <180° 二、斜率k :1、当a ≠90°时,斜率k=tana ;2、当a=90°时,斜率k 不存在;(联系正切函数的定义域去理解)3、两点P1(x1,y1),P2(x2,y2)间的斜率公式:)间的斜率公式:k=y 2-y 1/x 2-x 1理解:①两点间斜率要求x 1≠x 2,因为当x 1=x 2时,直线垂直于x 轴,倾斜角为90°,斜率k 不存在;在;②当x 1≠x 2且y 1=y 2时,直线垂直于y 轴,倾斜角为0°,斜率k=0 三、各表达式之间的区别与联系:名称名称公式公式备注备注点斜式点斜式y-y 0=k(x-x 0)1、联系斜率公式进行理解联系斜率公式进行理解2、已知一定点P 0(x 0,y 0)和斜率k ; 斜截式斜截式 y=kx+b 1、 联系点斜式进行理解;联系点斜式进行理解;2、 此时是已知一定点P (0,b )和斜率k ; 3、 b 表示直线在y 轴上的截距轴上的截距 两点式两点式y-y 1/y 2-y 1=x-x 1/x 2-x 11、 两点式要求x 1≠x 2且y 1≠y 2;2、 当x 1=x 2且y 1≠y 2时,直线垂直于x轴;轴; 3、 当x 1≠x 2且y 1=y 2时,直线垂直于y 轴。
轴。
截距式截距式 x/a+y/b=1 1、 联系两点式进行理解;联系两点式进行理解;2、 点P 1(a ,0),P 2(0,b )分别为直线与坐标轴的交点坐标;线与坐标轴的交点坐标; 一般式一般式Ax+By+C=0(A 、B 不同时为零)不同时为零)1、 联系二元一次方程组的相关知识点理解;理解;2、 熟练掌握A 、B 、C 对直线位置的影响作用。
响作用。
四、斜率k与截距b对直线位置的影响:1、k对直线位置的影响:对直线位置的影响:时,直线向右上方倾斜;①当k>0时,直线向右上方倾斜;时,直线向右下方倾斜;②当k<0时,直线向右下方倾斜;轴;③当k=0时,此时倾斜角为0,直线平行与x轴;轴平行。
必修二第三章直线倾斜角与斜率

y
l
x
直线的倾斜角
y y y y
a
锐角 直角
x x
a
x
零度角
直线的倾斜角是由x轴按逆时针方向转动所形成 的角。
α 的范围: [0,180 )
当直线l与x轴平行或重合时,它的倾斜角等于 0°;
x
o
o
o
o
钝角
直线的倾斜角
确定直线的要素:
确定平面直角坐标系中一条直线位置的几何要素 是: (1)直线上的一个定点以及它的倾斜角; (2)直线上的两点;
公式的特点:
(1)成立的条件: x1=x2; (2)公式表明,直线对于x轴的倾斜度,可以 通过直线上任意两点的坐标来表示,而 不需要求出直线的倾斜角;
(3)当x1=x2时,公式不适用, K不存在,此时
倾斜角为α =90°,直线与x轴垂直;
(4)同一直线上的任何两点所确定的斜都相 等;
(5)若两条直线关于某条垂直与x轴的直线对
P 2Q y 2 y1 tana1 P1Q x 2 x1 y 2 y1 tana tan 180 - a1) ( x 2 x1
斜率公式:
经过两点P ( x1 , y1 ), P2 ( x2 , y2 )的直线的斜率公式: 1 y2 y1 k ( x1 x2 ) x2 x1
数;
③倾斜角不同,斜率也不同;
④当α 为钝角时,tanα =-tan
(180°α );
直线的斜率
• • • • • 理解: 1、斜率可看成关于倾斜角的函数 k=tanα . 2、直线的斜率可取一切实数. 3、任何直线都有倾斜角,但是不一定有斜率! 所以要注意垂直于x轴和不垂直于x轴两种情况讨 论. • 4、倾斜角侧重于几何直观来刻画直线的方向; • 而斜率侧重于代数表示来刻画直线的方向.
直线的倾斜角与斜率

依题意得,
PA
=(x0,-1),
PQ'
=(2,-4),由两向量共线得-4x0+2=0,解得x0=
1 2
,
∴A
1 2
,0
.
答案
(1)
29 4
,
35 4
(2)
1 2
,0
两条直线垂直的判定与应用
判断两条直线是否垂直的两种方法 1.利用直线的斜率判断: (1)在两条直线斜率都存在的前提下,只需看它们的斜率之积是否等于-1即可; (2)一条直线的斜率不存在,另一条直线的斜率为0时,这两条直线也垂直. 2.利用直线的方向向量判断: 设直线l1的方向向量为n,直线l2的方向向量为m,则l1⊥l2⇔n⊥m⇔n·m=0.
1-(-2) 3 -1-(-2)
所以 y 3 的最大值为8,最小值为 4 .
x2
3
2.1.2 两条直线平行和垂直的判定
1.理解两条直线平行的条件及两条直线垂直的条件. 2.能根据直线的斜率判断两条直线平行或垂直. 3.能应用两条直线平行或垂直解决相关问题,理解用代数法解决几何问题.
两条直线(不重合)平行的判定
两条直线平行的判定与应用
判断两条不重合的直线是否平行的两种方法 1.利用直线的斜率判断,其方法步骤是:
2.利用直线的方向向量判断:求出两直线的方向向量,通过判断两向量是否共线,进而判断两 直线是否平行.
(1)已知平行四边形ABCD的三个顶点的坐标分别为A
13 4
,
51 4
、B
-
5 4
,-
3 4
∴点D的坐标为
29 4
,
35
4.
(2)解法一:Q(2,3)关于x轴的对称点为Q'(2,-3),设A(x0,0),
直线的倾斜角与斜率、直线的方程

[变式探究 2] 若将本例(2)的条件改为“经过 P(0,-1)作直线 l,若直线 l 与连 接 A(1,-2),B(2,1)的线段总有公共点”,求直线 l 的倾斜角 α 的取 值范围.
解析:如图所示,
kPA=-21--0-1=-1,kPB=1-2--01=1, 由图可得,直线 l 的倾斜角 α 的取值范围是0,π4∪34π,π.
答案:2x-3y=0 或 x+y-5=0 解析:点 A、B 的中点为(3,2),当直线过原点时,方程为 y=23x, 即 2x-3y=0. 当直线不过原点时,设直线的方程为 x+y=k,把中点(3,2)代入得 k=5, 故直线方程为 x+y-5=0. 综上,所求直线的方程为 2x-3y=0 或 x+y-5=0.
解析:由题意知直线 l1,l2 恒过定点 P(2,2),直线 l1 在 y 轴上的截 距为 2-a>0,直线 l2 在 x 轴上的截距为 a2+2,所以四边形的面积 S =12×2×(2-a)+12×2×(a2+2)=a2-a+4=a-122+145,当 a=12时, 四边形的面积最小.
5.已知两点
A(-1,2),B(m,3),且
m∈-
33-1,
3-1,则直
线 AB 的倾斜角 α 的取值范围是( )
A.π6,π2 B.π2,23π C.π6,π2∪π2,23π D.π6,23π
答案:D 解析:
①当 m=-1 时,α=π2; ②当 m≠-1 时,
∵k=m+1 1∈(-∞,-
3)∪
y2-y1
(2)P1(x1,y1),P2(x2,y2)在直线 l 上且 x1≠x2,则 l 的斜率 k= x2-x1 .
3.直线方程的五种形式
名称 点斜式 斜截式
两点式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线的斜率与倾斜角
直线是几何中最基本的元素之一,我们常常需要研究直线的性质和
特点。
其中,斜率和倾斜角是描述直线斜率的两个重要概念。
在本文中,我们将深入探讨直线的斜率和倾斜角,并讨论它们之间的关系。
一、直线的斜率
直线的斜率可以简单地理解为在直角坐标系中,直线沿着x轴或y
轴方向的增长速率。
斜率通常用字母“m”表示,其定义可以通过直线上
两个点的坐标来确定。
设直线上两个点的坐标分别为(x1, y1)和(x2, y2),则斜率可以通过以下公式计算:
m = (y2 - y1)/(x2 - x1)
这个公式的分子表示y轴的增量,分母表示x轴的增量。
斜率的值
可以正数、负数或零。
当斜率为正数时,表示直线向上倾斜;当斜率
为负数时,表示直线向下倾斜;当斜率为零时,表示直线平行于x轴。
斜率的绝对值越大,说明直线越陡峭;斜率的绝对值越小,说明直
线越平缓。
斜率为正无穷大或负无穷大时,表示直线为垂直于x轴或y
轴的竖直线。
二、直线的倾斜角
直线的倾斜角是直线相对于正x轴的夹角,用字母“θ”表示。
倾斜角的取值范围是0°到90°。
当直线与正x轴的夹角为0°时,表示直线与x
轴平行;当直线与正x轴的夹角为90°时,表示直线与x轴垂直。
为了计算直线的倾斜角,我们可以利用斜率与三角函数之间的关系。
设直线的斜率为m,则直线的倾斜角可以通过以下公式计算:θ = arctan(m)
其中,arctan函数是反三角函数中的一种,可以通过计算机或科学
计算器进行计算。
倾斜角的计算结果通常以弧度或角度表示。
三、斜率与倾斜角的关系
斜率和倾斜角之间存在着紧密的联系。
当我们知道直线的斜率时,
可以通过斜率的正负性来判断直线的倾斜方向。
当斜率为正数时,直
线向上倾斜;当斜率为负数时,直线向下倾斜。
同时,斜率的绝对值
可以用来计算直线的倾斜角。
具体地说,当斜率为m时,倾斜角θ可以通过以下公式计算:
θ = arctan(|m|)
这个公式告诉我们,倾斜角的值等于斜率绝对值的反三角函数值。
通过这个公式,我们可以根据已知的斜率求得直线的倾斜角。
总结:
本文介绍了直线的斜率和倾斜角的概念,并探讨了它们之间的关系。
斜率是直线在直角坐标系中的增长速率,而倾斜角是直线与正x轴的
夹角。
斜率可以通过直线上两点坐标的差值计算,而倾斜角可以通过
斜率的反三角函数计算。
斜率和倾斜角是描述直线性质的重要指标,
对于研究直线的性质和特点有着重要的意义。
了解直线的斜率和倾斜角不仅可以帮助我们理解直线的几何特性,还可以应用到更广泛的数学和物理问题中,例如求解直线的方程、计算物体运动的速度和加速度等。
通过深入了解和研究,我们可以更好地掌握直线的性质,并将其应用到实际问题中。