人教版七年级数学上册课本全部内容
人教版新版教材初中七年级上册数学课本目录

人教版新版教材初中七年级上册数学课本目
录
目录
第一章有理数
1.1 正负数
1.2 相反数和绝对值
1.3 有理数的比较
1.4 有理数的加减
1.5 有理数的乘法
1.6 有理数的除法
第二章代数式
2.1 代数式的概念
2.2 代数式的展开和化简
2.3 多项式和单项式
2.4 单项式的加减
2.5 一元二次方程
第三章整式的乘法与因式分解
3.1 整式的乘法
3.2 因式分解公式的应用
3.3 取整与判定约数
第四章方程与不等式
4.1 方程的概念
4.2 一元一次方程的解法
4.3 不等式的概念
4.4 一元一次不等式的解法
第五章平面图形的初步认识5.1 线段、射线和直线
5.2 角的概念
5.3 角的分类与角度的度量
5.4 特殊角的性质
5.5 三角形的概念
第六章三角形
6.1 直角三角形的性质
6.2 三角形的角平分线
6.3 三角形的内心、外心、垂心和重心6.4 三角形的相似
6.5 三角形的面积公式
第七章数据与概率
7.1 平均数
7.2 中位数和众数
7.3 数据的图示表示
7.4 概率的概念和基本事件
附录
习题答案
常用数学符号表。
七年级上册数学人教版

七年级上册数学人教版
一、数的认识与运算本部分主要介绍了整数、分数、小数的概念与运算。
其中,整数的四则运算、分数的加减乘除、小数的四则运算以及各种数的转化都被详细地描述了。
二、代数式与方程式本部分主要介绍了代数式、多项式、方程式的概念以及运算法则。
此外,还介绍了一元一次方程的解法和应用。
三、几何图形与运算本部分主要介绍了点、线、面的概念以及各种几何图形的特性和运算法则。
特别是对于平面图形的面积和周长的计算方法都被详细地讲解了。
四、比例与相似本部分主要介绍了比例与相似的概念、判定与运算法则。
通过学习本部分,学生可以掌握比例和相似图形的求解方法。
五、数的统计与概率本部分主要介绍了统计学的基本概念和方法,包括频率分布、中心与离散程度的计算和图形展示等。
此外,还涉及了概率的基本概念和运算,包括事件的概率、随机变量和分布等方面的知识。
六、函数本部分主要介绍了函数的概念、性质、图像和应用方面的知识。
学生通过学习本部分,可以深入了解函数的概念,进一步提高数学应用能力。
七、立体几何本部分主要介绍了立体图形的概念、特性和运算法则,包括立方体、长方体、球的表面积和体积等方面的知识。
综上所述,七年级上册数学课本人教版电子课本是一本详细全面的数学学习资料,对于学生的学习十分有帮助。
人教版七年级数学上册电子课本(全册)

人教版七年级数学上册电子课本(全册)本文档旨在为用户提供人教版七年级数学上册电子课本的全册内容。
以下是每个单元的简要概述。
第一单元:整数本单元介绍了整数的概念和表示方法,以及整数的加法和减法运算。
还包括整数的乘法和除法,以及负数的概念和运算规则。
第二单元:分数本单元主要讲解分数的定义和分数的基本运算,如分数的加减乘除。
同时,介绍了分数的化简和比较大小的方法。
第三单元:代数式本单元引入了代数式的概念,并讲解了代数式的运算法则。
包括常数、变量、系数和指数的概念,以及代数式的加减乘除运算。
第四单元:方程与不等式本单元介绍了一元一次方程和一元一次不等式的概念和解法。
还包括方程与不等式的实际应用,以及方程与不等式的图示表示。
第五单元:比例与相似本单元主要讲解比例的概念和比例的运算法则。
包括比例的简化、扩大和倒数,以及比例的应用问题。
同时,介绍了相似的概念和相似图形的性质。
第六单元:图形的初步认识本单元介绍了点、线、面和图形的基本概念,以及几何图形的分类和性质。
包括直线、射线、线段、角和三角形的概念和特征。
第七单元:计算器的使用本单元讲解了如何正确使用计算器进行数学计算。
包括计算器的基本操作方法,如加减乘除、分数运算和开平方等。
第八单元:统计图本单元介绍了各种常见的统计图形,并讲解了统计图的绘制方法和数据的解读。
包括条形图、折线图、饼图和散点图等。
第九单元:坐标直角坐标系本单元引入了坐标直角坐标系的概念,并讲解了坐标的表示方法和坐标图形的绘制。
同时,介绍了平面中点的概念和距离的计算方法。
第十单元:三角形本单元主要讲解三角形的概念和三角形的性质。
包括三角形的分类、角度和边长的关系,以及三角形的内外角和三角形的直角判定。
第十一单元:作图本单元介绍了几何作图的基本方法和步骤,并讲解了如何用尺规作图和圆规作图解决几何问题。
此文档总结了人教版七年级数学上册电子课本的各个单元内容,希望对用户有所帮助。
如需详细内容,请查阅原版电子课本。
七年级数学上册课本内容

七年级数学上册课本内容第一章数的开端1.1 正数和负数1.1.1 正数和负数的概念正数是大于零的数,负数是小于零的数。
正数和负数统称为实数。
实数可以分为有理数和无理数两类。
1.1.2 正数和负数的表示正数和负数可以用小数、分数和整数来表示。
正数和负数的表示方法有:(1)小数表示法:将数表示为小数形式,如2.5、3.14等。
(2)分数表示法:将数表示为分数形式,如1/2、3/4等。
(3)整数表示法:将数表示为整数形式,如3、5等。
1.1.3 正数和负数的运算(1)同号相加,异号相减。
(2)同号相乘或相除,结果为正数。
(3)异号相乘或相除,结果为负数。
1.2 整数1.2.1 整数的概念整数是正整数、零和负整数的总称。
整数可以分为奇数和偶数两类。
1.2.2 整数的表示整数可以用小数、分数和整数来表示。
整数的表示方法有:(1)小数表示法:将整数表示为小数形式,如2.0、3.0等。
(2)分数表示法:将整数表示为分数形式,如2/1、3/1等。
(3)整数表示法:将整数表示为整数形式,如2、3等。
1.2.3 整数的运算(1)加法:同号相加,异号相减。
(2)减法:减去一个数相当于加上它的相反数。
(3)乘法:同号相乘,异号相乘,结果为负数。
(4)除法:同号相除,异号相除,结果为负数。
1.3 分数1.3.1 分数的概念分数是表示部分数量的数,由分子和分母组成。
分数可以分为真分数和假分数两类。
1.3.2 分数的表示分数可以用小数、分数和整数来表示。
分数的表示方法有:(1)小数表示法:将分数表示为小数形式,如1/2、3/4等。
(2)分数表示法:将分数表示为分数形式,如1/2、3/4等。
(3)整数表示法:将分数表示为整数形式,如2/1、3/1等。
1.3.3 分数的运算(1)加法:同分母相加,异分母先通分再相加。
(2)减法:同分母相减,异分母先通分再相减。
(3)乘法:分子相乘,分母相乘。
(4)除法:分子相除,分母相除。
第二章代数初步2.1 代数式的概念代数式是由数字、字母和运算符号组成的式子。
人教版七年级数学上册课本目录

人教版七年级数学上册课本目录人教版七年级数学上册课本目录为题《人教版七年级数学上册》是一本应用性很强的数学教材。
它的目标是培养学生的数学思维和数学解决问题的能力。
这套教材将数学知识与实际生活相结合,注重学生的理解和综合应用能力的培养。
下面将以这本课本的目录为题,来介绍一下《人教版七年级数学上册》这本书。
【目录】第一单元数与代数初步第一课自然数第二课算术整体图第三课命题第四课数字之间的关系第五课代数式第六课代数式第七课代数式第八课面积问题第二单元图形初步第九课什么是几何第十课实际问题与图形第十一课图形的初步认识第十二课二维图形的初步认识第十三课四边形第十四课正方形和长方形第十五课三角形第十六课直角三角形第三单元数与式第十七课式子的值第十八课式子的值与计算第十九课用文字表示式子第二十课计算第四单元分数第二十一课单位分数第二十二课分数的大小比较第二十三课分数加减法第五单元基本图形初步第二十四课空间几何初步第二十五课立体图形初步第六单元称量第二十六课重量的认识与重量的比较第二十七课重量的加减法第二十八课长度的认识与长度的比较第二十九课长度的加减法......《人教版七年级数学上册》共分为六个单元,囊括了许多基础的数学知识和技能。
第一个单元是数与代数初步,从自然数的概念开始介绍,并逐渐引入了算术整体图、命题、数字关系以及代数式等内容。
第二个单元是图形初步,帮助学生认识几何图形及其性质,包括实际问题与图形、二维图形的初步认识、四边形、正方形和长方形以及直角三角形等。
第三个单元是数与式,学习如何计算代数式的值、文字表示式子以及基本计算等内容。
接着是第四个单元分数,学习单位分数、分数的大小比较以及分数的加减法。
第五个单元是基本图形初步,了解空间几何和立体图形的基本知识。
第六个单元是称量,重点介绍了重量和长度的认识、比较以及加减法。
此外,课本还包括关于图形的初步认识、解题方法、代数练习、倍数和公倍数、角的概念和角的比较、使用Pi值进行计算等内容。
(完整版)最新人教版七年级数学上册目录及知识点汇总

人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
人教版七年级数学上册目录及知识点汇总

人教版七年级数学上册目录及知识点汇总集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
人教版七年级数学上册课本 全部内容

6、如图所示,点A、B在数轴上对应的 实数分别为m、n,则A、B间的距离 是________.(用含m、n的式子表示)
7、 与纽约的时差为-13(负号表示同一时刻纽约时间比北京时间 晚).如果现在北京时间是15:00,那么纽约时间是_________.
8、 若|x-2|+|y+3|=0,则x=_____,y=_____.当x=_____时,1+|x+1|的 最小值是________.
第六讲 有理数的加减(1)
探索【1】计算:
(1)
(2)
(3)
(4)
探索【2】计算: (1) (2) (3) (4)
探索【3】计算: (1) (2)
练习: 1、 计算: 2、 计算:
3、计算: 4、 计算:
第七讲 有理数的加减(2)
探索【1】计算:
探索【2】在数的前面分别添加“+”或“-”,使它们的和为1. 你能想出多 少种方法?
练习: 1、 计算:
2、 计算:
3、 潜水艇原来在水下200米处.若它下潜50米,接着又上浮130米, 问这时潜水艇在水下多少米处?
4、 数轴上点A表示,将A点向左移动3个单位后又向右移动8个单 位,求此时A点表示的数是多少?
5、 判断题: (1)若两个数的和为负数,则这两个数都是负数. ( ) (2)若两个数的差为正数,则这两个数都是正数. ( ) (3)减去一个数,等于加上这个数的相反数. ( ) (4)零减去一个有理数,差必为负数. ( ) (5)如果两个数互为相反数,则它们的差为0. ( ) 6、出租车司机小王,某天下午的营运全在东西走向的人民路上.如果规 定向东为正,向西为负,这天下午他行车里程(单位:千米)如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎪⎩⎪⎨⎧---...5.351...2.03121321.0...321.,,负分数:如,,,正分数:如分数,,负整数:如,,,正整数:如整数数理有⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧与有理数的关有---画法---单位长度正方向原点定义---数轴第一讲 有理数概念图1、 像5,1,2,21,…这样的数叫做正数,它们都比0大,为了突出数的符号,可以在正数前面加“+”号,如+5,+1.2 2、 在正数前面加上“—”号的数叫做负数,如-10,- 3,… 3、 0既不是正数也不是负数. 4、 整数和分数统称为有理数. 第二讲 数轴概念图:1、 数轴:规定了原点、正方向和单位长度的直线.2、 数轴的三要素:原点、正方向、单位长度.3、 所有的有理数都可以用数轴上的点表示.4、 相反数:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴;1、数轴的三要素:原点、正方向、单位长度。
2、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度); 四标(标数字)。
⎪⎪⎪⎩⎪⎪⎪⎨⎧--⎩⎨⎧有理数大小比较非负性性质代数意义几何意义意义绝对值)(0a )0a ()0a (a 0a|a |<=>⎪⎩⎪⎨⎧-=3、性质: ① 在数轴上表示的两个数,右边的数总比左边的数大;② 正数都大于0,负数都小于0,正数大于一切负数; ③ 所有有理数都可以用数轴上的点表示。
第三讲 绝对值 概念图:1、 在数轴上表示数a 的点与原点的距离叫做数a 的绝对 值,记作|a|.2、 一个正数的绝对值是它本身,零的绝对值是零,一个负数的绝对值是它的相反数,可表示为第四讲 有理数的加法概念图1、 同号两数相加,取相同的符号,并把绝对值相加;2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3、 一个数同0相加,仍得这个数.4、 有理数加法的运算律:(1) 加法的交换律:a+b=b+a(2) 加法的结合律:(a+b )+c=a+(b+c )第六讲第七讲有理数的加减⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧律合结律换交运算律一个数与零相加异号两数相加同号两数相加则法法加的数理有正分数负分数正整数0负整数第八讲第九讲 绝对值的进一步介绍第十讲 一元一次方程3.1.1一元一次方程1、含有未知数的等式是方程。
(列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程。
)2、只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
4、列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。
5.求出使方程左右两边的值相等的未知数的值,叫做方程的解。
6.求方程的解的过程,叫做解方程。
3.1.2等式的性质1、用等号“=”表示相等关系的式子叫做等式。
2、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c=b±c.3、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
如果a=b,那么ac=bc;如果a=b且c≠0,那么 .4运用等式的性质时要注意三点:①等式两边都要参加运算,并且是作同一种运算;②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;③等式两边不能都除以0,即0不能作除数或分母。
3.2解一元一次方程(一)——合并同类项与移项1、合并同类项的依据:乘法分配律。
合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近x=a(a是常数)的形式。
2、把等式一边的某项变号后移到另一边,叫做移项。
3.移项依据:等式的性质 1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a(a是常数)的形式。
3.3解一元一次方程(二)——去括号与去分母1、方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。
2、顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。
3、工作总量=工作效率×工作时间。
4、工作量=人均效率×人数×时间。
3.4实际问题与一元一次方程1、售价指商品卖出去时的的实际售价。
2、进价指的是商家从批发部或厂家批发来的价格。
进价指商品的买入价,也称成本价。
3、标价指的是商家所标出的每件物品的原价。
它与售价不同,它指的是原价。
4、打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。
5、盈亏问题:利润=售价-成本;售价=进价+利润;售价=进价+进价×利润率;6、产油量=油菜籽亩产量×含油率×种植面积。
7、应用:行程问题:路程=时间×速度;工程问题:工作总量=工作效率×时间;储蓄利润问题:利息=本金×利率×时间;本息和=本金+利息。
第十一讲第十二讲二元一次方程组1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。
方程,一般形式是 ax+by=c(a≠0,b≠0)。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
EBCDA本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法. 重点:二元一次方程组的解法,列二元一次方程组解决实际问题. 难点:二元一次方程组解决实际问题第十三讲 二元一次方程组的应用探索【1】 已知二元一次方程02,03,042=-+=+-=-+k y x y x y x 有公共解。
求k 的值。
探索【2】 若|4|-+y x 与2)72(+-y x 的值互为相反数,试求x 与y 的值。
探索【3】 一个两位数,十位数字与个位数字的和是8。
这个两位数除以十位数字与个位数字的差,所得的商是11,余数是5。
求这个两位数。
第十四讲 线段和角探索【1】数一数图14-1中共有多少条线段?E D C B AO D F C B E A B E DC AO 图14-1你能数出图14-2中共有多少条线段吗?A nA 1A 2A 3A 0....图 14-2探索【2】如图14-3所示,五条射线OA 、OB 、OC 、OD 、OE 组成的图形,小于平角的角有几个?如果从O 点处引n 条射线,能组成多少个小于平角的角?(其中最大角小于平角)图 14-3 探索【3】已知如图14-4,线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 的中点,求EF 。
图14-4探索【4】如图14-5所示,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线。
(1) 如果∠AOB=130°,那么∠COE 是多少度?(2) 在(1)问的基础上,如果∠COD=20°,那么∠BOE 是多少度?图14-5第十五讲 三角形的内角和第十六讲 整式整式加减 去括号 合并同类项知识梳理:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧多项式的系数多项式的次数多项式的定义多项式单项式的系数单项式的次数单项式的定义单项式整式 单项式是指数字与字母的乘积,单独的数字和字母也是单项式。
单项式前面的数字(连同符号)叫做单项式的系数,所有字母的指数和是单项式的次数。
多项式是指几个单项式的和,组成多项式的各个单项式叫多项式的项,其中次数最高的项的次数是多项式的次数。
多项式和单项式统称为整式。
探索【1】下列各式是否是单项式,如果是,指出它的系数和次数;如果不是,说明理由。
(1)x +3;(2)x 1;(3)3r π;(4)2221b a -;(5)21-;(6)xy ;(7)abc -;(8)32xy -探索【2】指出下列多项式的项和次数。
(1)3a +b a 22ab -+3b ;(2)33n +22n 1-探索【3】把多项式5x +5y 343y x -433y x -+222y x x -+y +1重新排列:(1)按x 的升幂排列;(2)按x 的降幂排列。
探索【4】若单项式n m y x 121+的次数是5,且m 为正整数,n 为质数,求m ,n 的值。
第十七讲 整式的加减一、知识梳理:二、例题精讲探索【1】计算:(1).7,)1(5)6(3)45(2=+--+--x x x x x 其中 (2).21,1,21),()()(-===-++--z y x yz xz xy yz xz xy 其中探索【2】1345345-++-x x x x 与多项式C 的差是54322345+-+-+-x x x x x ,求C.探索【3】已知代数式1322++a a 的值是6,求代数式5962++a a 的值是多少?探索【4】已知)4()223(322,1,3xy y x x y xy y x xy xy y x ++--+-++-==-)求(的值.第十八讲 同底数幂的乘法知识梳理:⎪⎩⎪⎨⎧=⋅+),(为正整数公式:相加法则:底数不变,指数同底数幂相乘n m a a a nm n m例题精讲:探索【1】判断下列格式是否正确。
(1) 3332a a a =⋅ ( )(2) 55x x x =⋅ ( ) (3) 555)(ab b a =+ ( ) (4) 532y y y y =⋅⋅ ( ) (5) 1025x x x =⋅ ( )第十九讲 幂的乘方与积的乘方知识梳理:⎪⎩⎪⎨⎧=),()(为正整数公式:相乘法则:底数不变,指数幂的乘方n m a a mnn m积的乘方⎪⎩⎪⎨⎧=)(为正整数)公式:(乘方再把幂相乘法则:积中各因式分别n b a ab nn n第二十讲 同底数幂的除法知识梳理⎪⎪⎪⎩⎪⎪⎪⎨⎧≠=≠=≠=÷--),0(1)0(1)0,(0是正整数负指数幂:零指数幂:为正整数,公式:底数不变,指数相减法则:同底数幂相除,同底数幂除法p a a a a a a n m a a a p p n m n m 例题精讲探索【1】计算(1)58)()(x x -÷- (2)3252)()(b a b a -÷-(3)n n xy xy 223)()(-÷+(n 为正整数) (4)67)()(x y y x -÷-(5)2032005-⨯ (6)022)3(3)2(4-÷----。