材料力学概念及基础知识

合集下载

材料力学基本概念及计算公式

材料力学基本概念及计算公式

材料力学基本概念及计算公式材料力学是研究物质在外力作用下的力学性质和变形规律的学科,主要研究物质的力学性质,包括弹性、塑性、稳定性等。

下面将介绍材料力学的基本概念及计算公式。

1.弹性力学:(1) 弹性模量(Young’s modulus):材料承受应力时的应变程度。

计算公式:E = σ / ε,其中 E 为弹性模量,σ 为应力,ε 为应变。

(2) 剪切模量(Shear modulus):材料抵抗剪切变形的能力。

计算公式:G = τ/ γ,其中 G 为剪切模量,τ 为剪切应力,γ 为剪切应变。

(3) 泊松比(Poisson’s ratio):材料在受力作用下沿一方向延伸时,在垂直方向上收缩的比例。

计算公式:ν = -ε_y / ε_x,其中ν 为泊松比,ε_x 为纵向应变,ε_y 为横向应变。

2.稳定性分析:(1) 屈曲载荷(Buckling load):结构在受压作用下失去稳定性的临界载荷。

计算公式:F_cr = π²EI / L²,其中 F_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,L 为结构长度。

(2) 欧拉稳定性理论(Euler’s stability theory):用于分析长杆(例如柱子)的稳定性。

计算公式:P_cr = π²EI / (KL)²,其中P_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,K 为杆件端部支撑系数,L 为杆件长度。

3.塑性力学:(1) 屈服点(yield point):材料开始发生塑性变形的点,也是材料在加强阶段的上线。

计算公式:σ_y = F_y / A_0,其中σ_y 为屈服点应力,F_y 为屈服点力,A_0 为断面积。

(2) 韧性(toughness):材料吸收能量的能力,一般由应力-应变曲线上的面积表示。

计算公式:T = ∫σ dε,其中 T 为韧性,σ 为应力,ε 为应变。

4.疲劳力学:(1) 疲劳极限(fatigue limit):材料在循环应力作用下出现裂纹的最大应力。

材料力学基本概念和公式

材料力学基本概念和公式

材料力学基本概念和公式
材料力学是一门应用物理学,研究的是将外力和结构结合在一起的物
理学问题。

它研究物体的外部力和内部应力、应变之间的关系,并研究这
种关系如何影响物体的力学性能。

材料力学的基本概念与公式包括:(1)力:力是一个向量,表示对物体做了其中一种操作的作用,其
大小决定了物体的变形和变化。

它的单位是牛顿,记作F。

力的方向由它
的向量指示。

例如,F=10N,表示牛顿单位中有10N的力沿着它的方向作用。

(2)应力:应力是物体力的结果,它是由外部力对物体施加的压力,表现为物体表面内的力矩的大小。

由于应力是由外部力引起的,它的单位
也是牛顿,记作σ。

应力的方向依赖于外部力的大小和方向,也可以由
向量表示。

例如,σ=20N,表示牛顿单位中有20N的应力沿着它的方向
施加。

(3)应变:应变是物体因外力的作用而发生变形的程度。

它由物体
表面受力的区域的形状、位置和尺寸来表示,它的单位是厘米,记作ε。

应变的方向与应力的方向是正相关的,也可以由向量表示。

例如,ε=
0.02cm,表示物体表面受力的区域的形状、位置和尺寸变化了0.02cm。

(4)抗压强度:抗压强度是指物体在受到压力的作用时,能承受多
少应力而不发生破坏。

它的单位是牛顿每厘米,记作σ=fp。

材料力学概念及基础知识

材料力学概念及基础知识

材料⼒学概念及基础知识⼀、基本概念1 材料⼒学的任务是:研究构件的强度、刚度、稳定性的问题,解决安全与经济的⽭盾。

2 强度:构件抵抗破坏的能⼒。

3 刚度:构件抵抗变形的能⼒。

4 稳定性:构件保持初始直线平衡形式的能⼒。

5 连续均匀假设:构件内均匀地充满物质。

6 各项同性假设:各个⽅向⼒学性质相同。

7 内⼒:以某个截⾯为分界,构件⼀部分与另⼀部分的相互作⽤⼒。

8 截⾯法:计算内⼒的⽅法,共四个步骤:截、留、代、平。

9 应⼒:在某⾯积上,内⼒分布的集度(或单位⾯积的内⼒值)、单位Pa。

10 正应⼒:垂直于截⾯的应⼒(σ)11 剪应⼒:平⾏于截⾯的应⼒( )12 弹性变形:去掉外⼒后,能够恢复的那部分变形。

13 塑性变形:去掉外⼒后,不能够恢复的那部分变形。

14 四种基本变形:拉伸或压缩、剪切、扭转、弯曲。

⼆、拉压变形15 当外⼒的作⽤线与构件轴线重合时产⽣拉压变形。

16 轴⼒:拉压变形时产⽣的内⼒。

17 计算某个截⾯上轴⼒的⽅法是:某个截⾯上轴⼒的⼤⼩等于该截⾯的⼀侧各个轴向外⼒的代数和,其中离开该截⾯的外⼒取正。

18 画轴⼒图的步骤是:①画⽔平线,为X轴,代表各截⾯位置;②以外⼒的作⽤点为界,将轴线分段;③计算各段上的轴⼒;④在⽔平线上画出对应的轴⼒值。

(包括正负和单位)19 平⾯假设:变形后横截⾯仍保持在⼀个平⾯上。

20 拉(压)时横截⾯的应⼒是正应⼒,σ=N/A21 斜截⾯上的正应⼒:σα=σcos2α22 斜截⾯上的切应⼒:α=σSin2α/223 胡克定律:杆件的变形时与其轴⼒和长度成正⽐,与其截⾯⾯积成反⽐,计算式△L=NL/EA(适⽤范围σ≤σp)24 胡克定律的微观表达式是σ=Eε。

25 弹性模量(E)代表材料抵抗变形的能⼒(单位Pa)。

26 应变:变形量与原长度的⽐值ε=△L/L(⽆单位),表⽰变形的程度。

27 泊松⽐(横向变形与轴向变形之⽐)µ=∣ε1/ε∣28 钢(塑)材拉伸试验的四个过程:⽐例阶段、屈服阶段、强化阶段、劲缩阶段。

材料力学基本概念知识点总结

材料力学基本概念知识点总结

材料力学基本概念知识点总结材料力学是研究物质材料的力学性质和行为的学科,是许多工程学科的基础和核心内容之一。

本文将对材料力学的基本概念进行总结,包括应力、应变、弹性、塑性等方面。

一、应力与应变1.1 应力应力是描述物体内部受力情况的物理量。

一般分为法向应力和切应力两个方向,分别表示作用在物体上的垂直和平行于截面的力。

法向应力可进一步分为压应力和拉应力,分别表示作用在物体上的压缩力和拉伸力。

1.2 应变应变是物体在受力作用下发生形变的度量。

一般分为线性应变和剪切应变两类,分别表示物体长度或体积的变化以及物体形状的变化。

线性应变可进一步分为正应变和负应变,分别表示物体拉伸或压缩时的形变情况。

二、弹性与塑性2.1 弹性弹性是材料的一种特性,指材料在受力作用下能够恢复原先形状和大小的能力。

即当外力停止作用时,材料能够完全恢复到初始状态。

弹性按照应力-应变关系可分为线弹性和非线弹性,前者表示应力与应变之间呈线性关系,后者表示应力与应变之间不呈线性关系。

2.2 塑性塑性是材料的另一种特性,指材料在受力作用下会发生形变并保持在一定程度上的能力。

即当外力停止作用时,材料只能部分恢复到初始状态。

塑性按照塑性变形的特点可分为可逆塑性和不可逆塑性,前者表示形变能够通过去应力恢复到初始状态,后者表示形变无法通过去应力完全恢复。

三、应力-应变关系应力-应变关系是描述材料力学行为的重要概念之一。

在材料的弹性范围内,应力与应变之间满足线性比例关系,也就是胡克定律。

根据胡克定律,应力等于弹性模量与应变的乘积。

四、杨氏模量与剪切模量4.1 杨氏模量杨氏模量是衡量材料抵抗线弹性形变的能力,也叫做弹性模量。

杨氏模量越大,材料的刚性越高,抗拉伸和抗压缩的能力越强。

4.2 剪切模量剪切模量是衡量材料抵抗剪切形变的能力,也叫做切变模量。

剪切模量越大,材料的抗剪强度越高,抗剪形变的能力越强。

五、破坏力学破坏力学是研究材料在外力作用下失效的学科。

材料力学的基本知识与原理解析

材料力学的基本知识与原理解析

材料力学的基本知识与原理解析材料力学是研究材料在外界力作用下的力学性质和变形规律的学科。

它是现代工程学的基础学科之一,对于工程设计、材料选择和结构分析具有重要的意义。

本文将从材料力学的基本概念、应力与应变关系、材料的弹性与塑性行为以及材料失效等方面进行解析。

一、基本概念材料力学研究的对象是材料的内部结构和外部力的相互作用。

材料可以是金属、陶瓷、塑料等各种物质的组合体。

材料力学的基本概念包括应力、应变、弹性模量、屈服强度等。

应力是指单位面积上的力,可以分为正应力和剪应力。

应变是指物体单位长度的变化量,可以分为线性应变和剪切应变。

弹性模量是衡量材料抗拉伸变形能力的指标,屈服强度则是材料开始发生塑性变形的临界点。

二、应力与应变关系应力与应变之间存在一定的关系,这种关系被称为应力-应变关系。

对于线性弹性材料来说,应力与应变之间呈线性关系,可以用胡克定律来描述。

胡克定律表示应力与应变成正比,比例常数为弹性模量。

然而,在材料的应力超过一定临界值后,材料会发生塑性变形,此时应力与应变的关系就不再呈线性关系。

三、材料的弹性与塑性行为材料的弹性行为是指材料在外力作用下能够恢复原状的能力。

弹性行为是材料力学中最基本的性质之一。

当外力作用消失时,材料会恢复到原来的形状和尺寸。

然而,当外力超过材料的屈服强度时,材料会发生塑性变形。

塑性变形是指材料在外力作用下会永久性地改变其形状和尺寸。

塑性变形会导致材料的强度降低和损伤积累,最终可能导致材料的失效。

四、材料失效材料失效是指材料在使用过程中不再满足设计要求或无法继续承受外界力的情况。

材料失效可以分为强度失效和稳定性失效两种。

强度失效是指材料在外力作用下超过其强度极限而发生破坏。

稳定性失效是指材料在长期使用过程中,由于材料的内部缺陷或损伤积累导致材料的性能逐渐下降,最终无法继续使用。

材料失效对于工程结构的安全性和可靠性具有重要影响,因此,对于材料失效机理的研究和预测是材料力学的重要内容之一。

材料力学

材料力学

第一讲第一章材料力学基本知识§1.1 基本概念:理论力学------研究物体(刚体)受力和机械运动一般规律的科学。

材料力学------研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。

4.1 构件的承载能力为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。

因此,构件应当满足以下要求:1、强度要求:即构件在外力作用下应具有足够的抵抗破坏的能力。

在规定的载荷作用下构件当然不应破坏,包括断裂和发生较大的塑性变形。

例如,冲床曲轴不可折断;建筑物的梁和板不应发生较大塑性变形。

强度要求就是指构件在规定的使用条件下不发生意外断裂或显著塑性变形。

2、刚度要求:即构件在外力作用下应具有足够的抵抗变形的能力。

在载荷作用下,构件即使有足够的强度,但若变形过大,仍不能正常工作。

例如,机床主轴的变形过大,将影响加工精度;齿轮轴变形过大将造成齿轮和轴承的不均匀磨损,引起噪音。

刚度要求就是指构件在规定的事业条件下不发生较大的变形。

3、稳定性要求:即构件在外力作用下能保持原有直线平衡状态的能力。

承受压力作用的细长杆,如千斤顶的螺杆、内燃机的挺杆等应始终维持原有的直线平衡状态,保证不被压弯。

稳定性要求就是指构件在规定的使用条件下不产生丧失稳定性破坏。

如果构件的横截面尺寸不足或形状不合理,或材料选用不当,不能满足上述要求,将不能保证工程结构或机械的安全工作。

相反,如果不恰当的加大构件横截面尺寸或选用高强材料,这虽满足了上述要求,却使用了更多的材料和增加了成本,造成浪费。

我们可以作出以下结论:材料力学是研究各类构件(主要是杆件)的强度、刚度和稳定性的学科,它提供了有关的基本理论、计算方法和实验技术,使我们能合理地确定构件的材料和形状尺寸,以达到安全与经济的设计要求。

在工程实际问题中,一般来说,构件都应具有足够的承载能力,即足够的强度、刚度和稳定性,但对具体的构件又有所侧重。

3材料力学基本概念

3材料力学基本概念
将抛掉部分对留下部分的作用用内力代替。 对留下部分用平衡方程求出内力的值。
4、平:
三、应力的概念 平均应力:横截面某范围内单位面积上微内力
的平均集度。
F1
m O点
F微内力
F p A
A微面积 F2
m
一点的应力:当面积趋于零时,平均应力的大小和方
向都将趋于一定极限(即全应力),得到
F dF pm lim A0 A dA
第二节
一、相关概念
杆件变形的基本形式
1. 杆轴线—由杆件各截面的中心(形心)连接而成的线。 2. 等截面杆—各横截面面积相同的杆。
二、杆件变形的基本形式 1. 轴向拉压变形 受力特点: 外力与杆轴线重合。 变形特点:
杆件沿轴线方向伸长或 缩短。
二、杆件变形的基本形式
2. 剪切变形
受力特点:外力与杆轴线垂直。 变形特点:杆件横截面发生相互错对。
1N 1Pa 2 m
1N 1MPa 2 1mm
第四节
变形与应变
一、变形:受力体形状和大小的变化,分为长 度和角度的改变,即线变形和角变形。 1.弹性变形:变形固体在外力去掉后能恢复原 来形状和尺寸的性质。 2.塑性变形:变形固体在外力作用下发生变形, 且去掉外力后不能恢复的变形。 3.理想弹性体:去掉外力后能完全恢复原状的 物体。
3. 扭转变形 受力特点:外力偶与杆轴线垂直。 变形特点:杆件横截面绕杆轴线相对转动 。
4. 弯曲变形 受力特点:外力偶在杆轴线的纵向平面内。 变形特点:杆件由直线变为曲线 。
第三节 内力、截面法、应力
一、内力的概念
无外力
P
P 原有内力 工程力学中
有 外 力 作 用 后
的内力
P+P '

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。

它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域的设计和分析具有重要意义。

以下是对材料力学主要知识点的总结。

一、基本概念1、外力与内力外力是指物体受到的来自外部的作用力,包括集中力、分布力等。

内力则是物体内部各部分之间的相互作用力,当物体受到外力作用时,内力会随之产生以抵抗外力。

2、应力与应变应力是单位面积上的内力,它反映了材料内部受力的强弱程度。

应变是物体在受力作用下形状和尺寸的相对变化,分为线应变和切应变。

3、杆件的基本变形杆件在受力作用下主要有四种基本变形形式:拉伸(压缩)、剪切、扭转和弯曲。

二、拉伸与压缩1、轴力与轴力图轴力是指杆件沿轴线方向的内力。

通过绘制轴力图,可以直观地表示出轴力沿杆件轴线的变化情况。

2、横截面上的应力在拉伸(压缩)情况下,横截面上的应力均匀分布,其大小等于轴力除以横截面面积。

3、材料在拉伸与压缩时的力学性能通过拉伸试验,可以得到材料的强度指标(屈服强度、抗拉强度)和塑性指标(伸长率、断面收缩率)。

不同材料具有不同的力学性能,如低碳钢的屈服和强化阶段,铸铁的脆性等。

4、胡克定律在弹性范围内,应力与应变成正比,即σ =Eε ,其中 E 为弹性模量。

5、拉伸(压缩)时的变形计算根据胡克定律,可以计算杆件在拉伸(压缩)时的变形量。

三、剪切1、剪切内力与剪切应力剪切内力通常用剪力表示,剪切应力则是单位面积上的剪力。

2、剪切实用计算在工程中,通常采用实用计算方法来确定剪切面上的平均应力。

四、扭转1、扭矩与扭矩图扭矩是指杆件在扭转时横截面上的内力偶矩。

扭矩图用于表示扭矩沿杆件轴线的变化。

2、圆轴扭转时的应力与变形圆轴扭转时,横截面上的应力分布呈线性规律,其最大应力发生在圆周处。

扭转角的计算与材料的剪切模量、扭矩和轴的长度等因素有关。

五、弯曲1、剪力与弯矩弯曲内力包括剪力和弯矩,它们的计算和绘制剪力图、弯矩图是弯曲分析的重要内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、基本概念1 材料力学的任务是:研究构件的强度、刚度、稳定性的问题,解决安全与经济的矛盾。

2 强度:构件抵抗破坏的能力。

3 刚度:构件抵抗变形的能力。

4 稳定性:构件保持初始直线平衡形式的能力。

5 连续均匀假设:构件内均匀地充满物质。

6 各项同性假设:各个方向力学性质相同。

7 内力:以某个截面为分界,构件一部分与另一部分的相互作用力。

8 截面法:计算内力的方法,共四个步骤:截、留、代、平。

9 应力:在某面积上,内力分布的集度(或单位面积的内力值)、单位Pa。

10 正应力:垂直于截面的应力(σ)11 剪应力:平行于截面的应力()12 弹性变形:去掉外力后,能够恢复的那部分变形。

13 塑性变形:去掉外力后,不能够恢复的那部分变形。

14 四种基本变形:拉伸或压缩、剪切、扭转、弯曲。

二、拉压变形15 当外力的作用线与构件轴线重合时产生拉压变形。

16 轴力:拉压变形时产生的内力。

17 计算某个截面上轴力的方法是:某个截面上轴力的大小等于该截面的一侧各个轴向外力的代数和,其中离开该截面的外力取正。

18 画轴力图的步骤是:①画水平线,为X轴,代表各截面位置;②以外力的作用点为界,将轴线分段;③计算各段上的轴力;④在水平线上画出对应的轴力值。

(包括正负和单位)19 平面假设:变形后横截面仍保持在一个平面上。

20 拉(压)时横截面的应力是正应力,σ=N/A21 斜截面上的正应力:σα=σcos²α22 斜截面上的切应力:α=σSin2α/223 胡克定律:杆件的变形时与其轴力和长度成正比,与其截面面积成反比,计算式△L=NL/EA(适用范围σ≤σp)24 胡克定律的微观表达式是σ=Eε。

25 弹性模量(E)代表材料抵抗变形的能力(单位Pa)。

26 应变:变形量与原长度的比值ε=△L/L(无单位),表示变形的程度。

27 泊松比(横向变形与轴向变形之比)μ=∣ε1/ε∣28 钢(塑)材拉伸试验的四个过程:比例阶段、屈服阶段、强化阶段、劲缩阶段。

29 比例极限σp :比例阶段的最大应力值。

30 屈服极限σs :屈服阶段的最小应力值。

31 强化极限σb :断裂前能承担的最大应力值。

32 脆、塑材料的比较:①脆材无塑性变形,抗压不抗拉;塑材抗拉也抗压。

②脆材对应力的集中的反应敏感,塑材不敏感。

33 应力集中:在形状变化处,应力特别大的现象。

34 延伸率:拉断后,变形量与原长的比值(δ=△L1/L,≥5%为塑材)35 冷作硬化:进入强化阶段后,卸载再重新加载,比例极限增大的现象。

38 极限应力σjx:失去承载能力时的应力39 许用应力〔σ〕:保证安全允许达到的最大应力。

42 计算思路:外力内力应力。

43 超静定问题:未知力多于平衡方程个数的问题(用平衡方程不能或不能全部计算出构件的外力)。

44 计算超静定问题:除平衡方程以外,更需依据变形实际建立补充方程。

45 剪力:平行于截面的内力(Q),该截面称作剪切面。

46 单剪:每个钉有一个剪切面。

双剪:每个钉有两个剪切面。

48 挤压力:两构件相互接触面所承受的压力。

三、扭转1 外力偶矩的矢量方向与杆件的轴线重合时杆件发生(扭转)变形。

杆件的两个相邻截面发生绕轴线的相对转动。

2 传动轴所传递的功P(kw),转速n(r/min),则此外力偶矩为Me=9.549P/n(N*m)。

3 扭转变形时,杆件横截面上的内力称扭矩。

表示各截面上扭矩大小的图形,称作扭矩图。

4 两正交线之间的直角的改变量(),称为剪应变。

表示剪切变形的严重程度。

5 剪切胡克定律τ=G,式中G称为材料剪切弹性模量。

6 薄壁扭转构件横截面上某点的剪应力n δ,式中为圆形横截面包围的面积,δ为该点处的壁厚。

7 Ip=∫Aρ²dA称为截面的极惯性矩。

四、弯曲应力:1 梁弯曲时,作用线与横截面平行的内力,称为剪力。

数值上等于该截面之左侧或右侧梁上各个横向外力的代数和,绕截面顺转的力为正。

2 梁弯曲时,作用面垂直于轴线的内力偶矩,称为弯矩。

数值上等于该截面之左侧或右侧梁上各个外力(包括力偶)对截面力矩的代数和,使截面处产生凹变形的力矩为正。

3 无均布载荷梁段,剪力为水平直线。

无剪力(零)的梁段,弯矩为水平直线。

在集中力作用的截面,剪力图上发生转折,在集中力偶作用的截面,弯矩图上发生跃变。

在剪力为零的截面,弯矩有极大值。

最大弯矩发生在Q=0 ,集中力偶两侧、悬臂梁根部和集中力的截面上。

Iz=∫Ay²dA称为截面的轴惯性矩。

式中y是微面积dA到中性轴的距离。

中性轴通过截面的形心,是拉压区的分界线。

五、弯曲时的位移1 挠度是梁弯曲时横截面的形心在垂直于梁轴线方向的位移。

2 转角是梁变形时横截面绕其中性轴旋转的角度。

六、超静定问题1 使用静力平衡方程不能求出结构或构件全部约束力或内力的问题。

2 多余约束力解除维持构件平衡的多余约束后,以力代替该约束对构件的作用力。

变形协调方程多余约束力与基本力共同作用的变形满足梁的约束条件。

七、应力状态和强度理论1 应力状态:受力构件内部一点处不同方位截面应力的集合。

单元体:围绕构件内一点处边长为无穷小的立方体。

主平面:单元体上剪力为零的截面4 截面核心:压力作用线通过此区域,受压杆横截面上无拉应力。

5 弯矩扭合构件选用空心圆形截面比较合理。

九、压杆稳定1 稳定性:受压杆件保持原有直线平衡形式的能力。

2 临界力Pcr:受压杆件能保持稳定的最大压力。

9 提高稳定措施:①环形截面;②减小长度;③固定牢固。

冷拉是在常温条件下,以超过原来钢筋屈服点强度的拉应力,强行拉伸钢筋,使钢筋产生塑性变形以达到提高钢筋屈服点强度和节约钢材为目的。

冷拔-是材料的一种加工工艺,对于金属材料,冷拔指的是为了达到一定的形状和一定的力学性能,而在材料处于常温的条件下进行拉拔。

冷拔的产品较之于热成型有:尺寸精度高和表面光洁度好的优点。

第一章绪论§1.1 材料力学的任务二、基本概念1、构件:工程结构或机械的每一组成部分。

(例如:行车结构中的横梁、吊索等)材料力学—研究变形体,研究力与变形的关系。

2、变形:在外力作用下,固体内各点相对位置的改变。

(宏观上看就是物体尺寸和形状的改变)弹性变形—随外力解除而消失塑性变形(残余变形)—外力解除后不能消失刚度:在载荷作用下,构件抵抗变形的能力3、内力:构件内由于发生变形而产生的相互作用力。

(内力随外力的增大而增大)强度:在载荷作用下,构件抵抗破坏的能力。

4、稳定性:在载荷作用下,构件保持原有平衡状态的能力。

强度、刚度、稳定性是衡量构件承载能力的三个方面,材料力学就是研究构件承载能力的一门科学。

三、材料力学的任务材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全的构件,提供必要的理论基础和计算方法研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。

因此在进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和手段。

四、材料力学的研究对象构件的分类:杆件、板壳*、块体*材料力学主要研究杆件﹜直杆——轴线为直线的杆曲杆——轴线为曲线的杆等截面杆——横截面的大小形状不变的杆变截面杆——横截面的大小或形状变化的杆等截面直杆——等直杆§1.2 变形固体的基本假设在外力作用下,一切固体都将发生变形,故称为变形固体。

在材料力学中,对变形固体作如下假设:1、连续性假设:认为整个物体体积内毫无空隙地充满物质灰口铸铁的显微组织球墨铸铁的显微组织2、均匀性假设:认为物体内的任何部分,其力学性能相同普通钢材的显微组织优质钢材的显微组织3、各向同性假设:认为在物体内各个不同方向的力学性能相同(沿不同方向力学性能不同的材料称为各向异性材料。

如木材、胶合板、纤维增强材料等)4、小变形与线弹性范围:认为构件的变形极其微小,比构件本身尺寸要小得多。

如右图,δ远小于构件的最小尺寸,所以通过节点平衡求各杆内力时,把支架的变形略去不计。

计算得到很大的简化。

§1.3 外力及其分类外力:来自构件外部的力(载荷、约束反力)按外力作用的方式分类体积力:连续分布于物体内部各点的力。

如重力和惯性力表面力:分布力:连续分布于物体表面上的力。

如油缸内壁的压力,水坝受到的水压力等均为分布力集中力:若外力作用面积远小于物体表面的尺寸,可作为作用于一点的集中力。

按外力与时间的关系分类静载:载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著,称为静载动载:载荷随时间而变化。

如交变载荷和冲击载荷§1.4 内力、截面法和应力的概念内力:外力作用引起构件内部的附加相互作用力。

求内力的方法—截面法(1)假想沿m-m横截面将杆切开(2)留下左半段或右半段(3)将弃去部分对留下部分的作用用内力代替(4)对留下部分写平衡方程,求出内力的值。

§1.4 内力、截面法和应力的概念为了表示内力在一点处的强度,引入内力集度,即应力的概念。

§1.5 变形与应变1.位移:MM' 刚性位移;变形位移。

2.变形:物体内任意两点的相对位置发生变化。

取一微正六面体两种基本变形:线变形——线段长度的变化角变形——线段间夹角的变化3.应变正应变(线应变)x方向的平均应变:切应变(角应变)杆件的基本变形:拉伸(压缩)、剪切、扭转、弯曲第二章拉伸、压缩与剪切(1)§2.1 轴向拉伸与压缩的概念和实例受力特点与变形特点:作用在杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。

§2.2 轴向拉伸或压缩时横截面上的内力和应力2、轴力:截面上的内力由于外力的作用线与杆件的轴线重合,内力的作用线也与杆件的轴线重合。

所以称为轴力。

4、轴力图:轴力沿杆件轴线的变化杆件的强度不仅与轴力有关,还与横截面面积有关。

必须用应力来比较和判断杆件的强度。

在拉(压)杆的横截面上,与轴力FN对应的应力是正应力。

根据连续性假设,横截面上到处都存在着内力。

观察变形:平面假设—变形前原为平面的横截面,变形后仍保持为平面且仍垂直于轴线。

从平面假设可以判断:(1)所有纵向纤维伸长相等(2)因材料均匀,故各纤维受力相等(3)内力均匀分布,各点正应力相等,为常量§2.3 直杆轴向拉伸或压缩时斜截面上的应力实验表明:拉(压)杆的破坏并不总是沿横截面发生,有时却是沿斜截面发生的§2.4 材料拉伸时的力学性能一试件和实验条件:常温、静载二低碳钢的拉伸明显的四个阶段1、弹性阶段ob2、屈服阶段bc(失去抵抗变形的能力)3、强化阶段ce(恢复抵抗变形的能力)4、局部径缩阶段ef两个塑性指标: 断后伸长率断面收缩率δ>5%为塑性材料δ<5%为脆性材料低碳钢的S≈20-30% ψ≈60%为塑性材料三卸载定律及冷作硬化1、弹性范围内卸载、再加载2、过弹性范围卸载、再加载材料在卸载过程中应力和应变是线性关系,这就是卸载定律。

相关文档
最新文档