材料力学的基本概念
材料力学概述与基本概念

材料力学概述与基本概念材料力学是一个研究材料内部结构、性质和行为的学科,它是材料科学与工程学的基础。
本文将对材料力学的概述和基本概念进行探讨。
一、材料力学的概述材料力学是研究固体材料的力学性能的科学。
它主要研究材料的力学性质,包括力学行为、应力应变关系、破坏行为等。
材料力学的研究对象涉及各种材料,包括金属、陶瓷、聚合物等。
材料力学的发展旨在揭示材料的力学行为规律,为材料设计和工程应用提供基础。
二、基本概念1. 应力(Stress)在材料力学中,应力是指力对单位面积的作用。
它可以描述材料内部分子间的相互作用力,常用符号为σ。
应力的单位为帕斯卡(Pa)或兆帕(MPa)。
应力可分为正应力、剪应力等。
2. 应变(Strain)应变是材料在受力作用下产生的变形程度。
它衡量了材料单位长度或单位体积的形变程度,常用符号为ε。
应变的单位为无量纲。
3. 弹性模量(Elastic Modulus)弹性模量是衡量材料恢复力的能力。
它表示材料在受到外力作用后,恢复到原来形状的能力。
常见的弹性模量有杨氏模量、剪切模量等。
4. 屈服强度(Yield Strength)屈服强度是材料在受到外力作用下开始产生塑性变形的应力值。
如果超过屈服强度,材料将会产生可见的塑性变形。
屈服强度可以用来评估材料的韧性和可塑性。
5. 断裂强度(Fracture Strength)断裂强度是材料在受到外力作用下发生断裂的应力值。
它是衡量材料抵抗断裂的能力的重要指标。
6. 破坏韧性(Fracture Toughness)破裂韧性是指材料抵抗裂纹扩展和破坏的能力。
它是衡量材料抗破坏能力的重要参数。
7. 应力-应变曲线(Stress-Strain Curve)应力-应变曲线是描述材料应力和应变关系的图表。
它可以用来分析材料的强度、韧性、刚性等性能。
总结:材料力学是材料科学与工程学中的核心学科之一,它的发展和应用为材料设计和工程应用提供了重要理论基础。
基本概念如应力、应变、弹性模量、屈服强度、断裂强度、破坏韧性等,是分析和评价材料性能的重要依据。
材料力学基本概念及计算公式

材料力学基本概念及计算公式材料力学是研究物质在外力作用下的力学性质和变形规律的学科,主要研究物质的力学性质,包括弹性、塑性、稳定性等。
下面将介绍材料力学的基本概念及计算公式。
1.弹性力学:(1) 弹性模量(Young’s modulus):材料承受应力时的应变程度。
计算公式:E = σ / ε,其中 E 为弹性模量,σ 为应力,ε 为应变。
(2) 剪切模量(Shear modulus):材料抵抗剪切变形的能力。
计算公式:G = τ/ γ,其中 G 为剪切模量,τ 为剪切应力,γ 为剪切应变。
(3) 泊松比(Poisson’s ratio):材料在受力作用下沿一方向延伸时,在垂直方向上收缩的比例。
计算公式:ν = -ε_y / ε_x,其中ν 为泊松比,ε_x 为纵向应变,ε_y 为横向应变。
2.稳定性分析:(1) 屈曲载荷(Buckling load):结构在受压作用下失去稳定性的临界载荷。
计算公式:F_cr = π²EI / L²,其中 F_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,L 为结构长度。
(2) 欧拉稳定性理论(Euler’s stability theory):用于分析长杆(例如柱子)的稳定性。
计算公式:P_cr = π²EI / (KL)²,其中P_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,K 为杆件端部支撑系数,L 为杆件长度。
3.塑性力学:(1) 屈服点(yield point):材料开始发生塑性变形的点,也是材料在加强阶段的上线。
计算公式:σ_y = F_y / A_0,其中σ_y 为屈服点应力,F_y 为屈服点力,A_0 为断面积。
(2) 韧性(toughness):材料吸收能量的能力,一般由应力-应变曲线上的面积表示。
计算公式:T = ∫σ dε,其中 T 为韧性,σ 为应力,ε 为应变。
4.疲劳力学:(1) 疲劳极限(fatigue limit):材料在循环应力作用下出现裂纹的最大应力。
工程力学——材料力学的基本概念

(3) 平衡:列左段的平衡方程
FP=0 FN+5 FP=0
得
FN=-5 FPቤተ መጻሕፍቲ ባይዱ
求 1-1 截面的内力,也
可通过取右段为研究对象(如
图 6.1(c)所示),求解,由平 衡方程 2FP-7FP-FN = 0 得 FN = 2FP-7FP =-5FP
(c)
图6.1
6.2.3 应力
我们把内力在截面上的分部集度称为应力,即单 位面积上产生的内力。它的方向由内力的方向决定。如 果应力方向与截面垂直,称为正应力,其符号为σ;如果 应力方向与截面方向相切,称切应力,其符号为τ。如图 6.2所示。
第6章 材料力学的基本概念
第6章 材料力学的基本概念
6.1 变形固体的基本假设 6.2 内力、截面法、应力 6.3 杆件变形的基本形式
6.1 变形固体的基本假设
1. 均匀连续性假设 认为整个物体充满了物质,没有任何空隙存在,同时 还认为物体在任何部分的性质是完全相同的。 2. 各向同性假设 认为材料在不同的方向具有相同的力学性质。 3. 小变形假设 指构件在外力作用下发生的变形与原尺寸相比非常微 小,在计算时可忽略不计。 在材料力学中,杆件变形分为弹性变形和塑性变形。 弹性变形:外力卸除后,能够消失的变形。 塑性变形:外力卸除后,残留下来不能消失的变形。
6.2.2 截面法
截面法是材料力学求内力的方法,其步骤为: (1) 截开:沿物体所要求的内力截面假想的截分为 两部分,任取一部分为研究对象; (2) 代替:用作用于该截面上的内力代替另一部分 对被研究部分的作用; (3) 平衡:对所研究部分建立平衡方程,从而确定 截面上内力的大小和方向。
现以拉杆为例,如图6.1(a)所示,求1-1截面上的 内力。
材料力学基本概念和公式

材料力学基本概念和公式
材料力学是一门应用物理学,研究的是将外力和结构结合在一起的物
理学问题。
它研究物体的外部力和内部应力、应变之间的关系,并研究这
种关系如何影响物体的力学性能。
材料力学的基本概念与公式包括:(1)力:力是一个向量,表示对物体做了其中一种操作的作用,其
大小决定了物体的变形和变化。
它的单位是牛顿,记作F。
力的方向由它
的向量指示。
例如,F=10N,表示牛顿单位中有10N的力沿着它的方向作用。
(2)应力:应力是物体力的结果,它是由外部力对物体施加的压力,表现为物体表面内的力矩的大小。
由于应力是由外部力引起的,它的单位
也是牛顿,记作σ。
应力的方向依赖于外部力的大小和方向,也可以由
向量表示。
例如,σ=20N,表示牛顿单位中有20N的应力沿着它的方向
施加。
(3)应变:应变是物体因外力的作用而发生变形的程度。
它由物体
表面受力的区域的形状、位置和尺寸来表示,它的单位是厘米,记作ε。
应变的方向与应力的方向是正相关的,也可以由向量表示。
例如,ε=
0.02cm,表示物体表面受力的区域的形状、位置和尺寸变化了0.02cm。
(4)抗压强度:抗压强度是指物体在受到压力的作用时,能承受多
少应力而不发生破坏。
它的单位是牛顿每厘米,记作σ=fp。
材料力学的基本概念

6
二、线应变和切应变 1.线应变 若围绕受力杆件中任意点截取一个微小 正六面体,( ,(当六面体的边长趋于无限小 正六面体,(当六面体的边长趋于无限小 时称之为单元体),变形前, ),变形前 时称之为单元体),变形前,六面体的棱 边边长分别为 ∆x ∆y、Δz。 、 变形后,六面体的边长以及棱边间的夹角一般都发生变化。单位 变形后,六面体的边长以及棱边间的夹角一般都发生变化。 长度的伸长或缩短称为线应变。变形前长为Δ 的线段, 长度的伸长或缩短称为线应变。变形前长为Δx 的线段,变形后长度为 +Δu,平均线应变: Δx+Δu,平均线应变:
4
第三节 杆件的基本变形和应变
一、杆件的基本变形 杆件在不同形式的外力作用下, 杆件在不同形式的外力作用下,对应的变 形的形式不同。杆的基本变形可分为四种。 形的形式不同。杆的基本变形可分为四种。 1.轴向拉伸或压缩 直杆受到作用线与其轴线重合的外力作用时, 直杆受到作用线与其轴线重合的外力作用时, 杆件的主要变形是轴线方向的伸长或缩短, 杆件的主要变形是轴线方向的伸长或缩短,主要 产生拉伸(压缩)变形的杆件称为拉( 产生拉伸(压缩)变形的杆件称为拉(压)杆。 2.剪切 杆件受到一对大小相等、方向相反、 杆件受到一对大小相等、方向相反、作用线相 互平行且相距很近的外力作用时, 互平行且相距很近的外力作用时,杆件的主要变形 是两力之间的受剪面在外力作用方向上产生相对错 机械中常用的联接件,如螺栓、 动。机械中常用的联接件,如螺栓、键、销钉等的 变形,以剪切为主要变形。 变形,以剪切为主要变形。
8
小结
变形固体假设: 变形固体假设: 连续性假设 均匀性假设 杆件的应力: 杆件的应力: 正应力切应力 杆件的基本变形: 杆件的基本变形: 轴向拉伸或压缩 杆件的应变: 杆件的应变: 线应变和切应变 胡克定律: 胡克定律: 剪切 扭转 弯曲 各向同性假设 小变形假设
材料力学的基本知识及其应用领域

材料力学的基本知识及其应用领域材料力学是研究材料在外力作用下的力学性能和变形行为的学科。
它是工程学和科学研究中的重要分支,对于材料的设计、制备和应用具有重要的意义。
本文将介绍材料力学的基本知识以及其在不同应用领域中的重要性。
一、材料力学的基本概念1. 应力和应变应力是指物体受到的单位面积上的力,通常用符号σ表示。
应变是物体在外力作用下发生的形变,通常用符号ε表示。
材料力学研究的重点是材料在不同应力下的应变情况,从而揭示材料的力学性能。
2. 弹性和塑性弹性是指材料在外力作用下发生形变后能够恢复原状的性质。
当应力作用消失时,材料能够完全恢复到初始状态。
塑性是指材料在外力作用下发生形变后无法完全恢复原状的性质。
塑性材料在受力后会发生永久性变形。
3. 强度和韧性强度是指材料能够承受的最大应力。
韧性是指材料在破坏之前能够吸收的能量。
强度和韧性是材料力学中两个重要的指标,对于材料的设计和选择具有重要意义。
二、材料力学的应用领域1. 结构工程结构工程是材料力学最广泛应用的领域之一。
材料力学的知识可以用于设计和分析各种建筑、桥梁、航空器等工程结构的强度和稳定性。
通过对材料的力学性能进行研究,可以确保结构的安全性和可靠性。
2. 材料设计与制备材料力学对于材料的设计和制备也具有重要的指导意义。
通过研究材料的力学行为,可以选择合适的材料成分和工艺参数,从而提高材料的性能和品质。
例如,在金属材料的设计中,可以通过调整合金元素的含量和热处理工艺来改善材料的强度和韧性。
3. 材料性能评价材料力学的研究还可以用于对材料性能进行评价。
通过实验和数值模拟,可以获得材料在不同应力下的应变曲线和破坏行为。
这些数据可以用于评估材料的强度、韧性和耐久性,为材料的选择和应用提供依据。
4. 新材料研究材料力学的知识对于新材料的研究和开发也具有重要的作用。
通过对新材料的力学性能进行分析,可以了解其优势和局限性,为新材料的应用提供理论基础。
例如,碳纳米管是一种具有优异力学性能的新材料,通过研究其力学行为,可以为其在纳米电子器件和复合材料中的应用提供指导。
材料力学概述

二、填空题 1、当杆内的轴力FN不超过某一限度时,杆的绝对 变形△L与轴力FN及杆长L成正比,与杆的横 截面积成反比。 2、在胡克定律中,应力未超过一定限度时,应力 和应变成正比关系。 3、杆件变形基本形式有4类。 4、在材料力学中,当材料在应力变化不大而应变 显著增加的现象称为材料屈服,相应点的应 力称为材料的屈服极限σs。
L L1 L
L 称为杆件的绝对变形。 对于拉杆L为正值,对于压杆 L 为负值。
绝对变形只表示杆件变形的大小,但不能表示杆件 变形的程度。通常以单位原长的变形来度量杆的变形程 度,因此可将 L 除以L所得的商称为杆件的相对变形:
对于拉杆
L L
式中ε称为杆件的线应变,简称应变。
解:(1)以AB梁为研究对象, 列平衡方程,画受力图,求 解支座反力: 均布载荷的合力Fq=q ×L =40KN,作用在梁的中点。 ∑FX=0 ,FAX=0
F
∑FY=0 ,FAY+F−Fq=0 FAY=−20KN,方向向下
F
∑MA(F)=0 MA+F∙L−Fq∙L/2=0 MA=−F· L+Fq· L/2=−60×1+40×0.5=−40KN∙M, 方向与假设相反 (2)计算截面弯矩,绘弯矩图 A截面(取右端为研究对象): MWA=F∙L−Fq∙L/2=60×1−40×0.5=40KN· M B截面(取右端为研究对象):MWB=0 M 25kn∙m 0 X 1
∑FY=0
FA+FB − Fq − F=0
FB=F+Fq − FA=40+60 − 65=35KN
(2)计算截面弯矩,绘弯矩图,取B点为坐标原点 B截面(取右端为研究对象):x=0, MWB=0
F作用截面(取右端为研究对象):x=1m MWF=FB ×L − q ×L ×L∕2=35 ×1 − 20 ×1 ×0.5=25KN∙M
材料力学基本概念知识点总结

材料力学基本概念知识点总结材料力学是研究物质材料的力学性质和行为的学科,是许多工程学科的基础和核心内容之一。
本文将对材料力学的基本概念进行总结,包括应力、应变、弹性、塑性等方面。
一、应力与应变1.1 应力应力是描述物体内部受力情况的物理量。
一般分为法向应力和切应力两个方向,分别表示作用在物体上的垂直和平行于截面的力。
法向应力可进一步分为压应力和拉应力,分别表示作用在物体上的压缩力和拉伸力。
1.2 应变应变是物体在受力作用下发生形变的度量。
一般分为线性应变和剪切应变两类,分别表示物体长度或体积的变化以及物体形状的变化。
线性应变可进一步分为正应变和负应变,分别表示物体拉伸或压缩时的形变情况。
二、弹性与塑性2.1 弹性弹性是材料的一种特性,指材料在受力作用下能够恢复原先形状和大小的能力。
即当外力停止作用时,材料能够完全恢复到初始状态。
弹性按照应力-应变关系可分为线弹性和非线弹性,前者表示应力与应变之间呈线性关系,后者表示应力与应变之间不呈线性关系。
2.2 塑性塑性是材料的另一种特性,指材料在受力作用下会发生形变并保持在一定程度上的能力。
即当外力停止作用时,材料只能部分恢复到初始状态。
塑性按照塑性变形的特点可分为可逆塑性和不可逆塑性,前者表示形变能够通过去应力恢复到初始状态,后者表示形变无法通过去应力完全恢复。
三、应力-应变关系应力-应变关系是描述材料力学行为的重要概念之一。
在材料的弹性范围内,应力与应变之间满足线性比例关系,也就是胡克定律。
根据胡克定律,应力等于弹性模量与应变的乘积。
四、杨氏模量与剪切模量4.1 杨氏模量杨氏模量是衡量材料抵抗线弹性形变的能力,也叫做弹性模量。
杨氏模量越大,材料的刚性越高,抗拉伸和抗压缩的能力越强。
4.2 剪切模量剪切模量是衡量材料抵抗剪切形变的能力,也叫做切变模量。
剪切模量越大,材料的抗剪强度越高,抗剪形变的能力越强。
五、破坏力学破坏力学是研究材料在外力作用下失效的学科。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章材料力学的基本概念
3.1 变形固体及其基本假设
3.1.1 变形固体
土木工程中,结构或构件及其所用的材料,虽然其物质结构和性质是多种多样的,但都具有一个共同的特点,即它们都是固体,如钢、铸铁、木材、混凝土等,在静力学中,曾把固体(物体)看成是刚体,即考虑固体在外力作用下其大小和形状都不发生变化。
但实际上,自然界中刚体是不存在的,这些物体在外力的作用下或多或少的都会产生变形。
在外力作用下,产生变形的固体材料称为变形固体。
静力学中,力作用下物体的平衡是主要的研究问题。
物体的微小变形对研究平衡影响很小,因此,可以认为外力作用下,物体的大小和形状都不会发生变化,此时把物体视为刚体进行分析可以简化计算。
而在材料力学中,主要研究的却是构件在外力作用下的强度、刚度和稳定性问题。
对于这类问题,微小的变形往往也是主要的影响因素之一,如果忽略,将会导致严重的后果。
因此,在材料力学中,组成构件的各种固体都应该视为变形体来对待。
变形固体在外力作用下产生的变形有两类:一类是弹性变形,这种变形会随着外力的消失而消失;另一类是塑性变形(或称为残余变形),这种变形是外力消失时不能消失以变形。
一般的变形固体变形时,既有弹性又有塑性。
但工程中常用的材料,如果作用的外力不超过一定范围时,此时塑性变形很小,就可以把物体看作只有弹性变形而没有塑性变形,只有弹性变形的物体称为理想弹性体,引起弹性变形的外力范围称为弹性范围。
材料力学主要是研究物体在弹性范围内的变形及受力。
3.1.2变形固体的基本假设
对于用变形固体材料做成的构件进行强度、刚度和稳定性计算时,由于其组成和性质十分复杂,为了便于研究,使问题得到简化,经常略去一些次要性质,将它们抽象为一种理想模型,然后再进行理论分析。
根据其主要性质,对变形固体作如下基本假设:
1.均匀连续性假设
即认为变形固体在其整个体积内都毫无空隙地充满物质,并且各部分的材料性质完全相同。
实际上变形固体是由许许多多的微粒或晶体组成的,而粒子或晶体之间存在着空隙,材料在一定程度上沿各方向的力学性能都会有所不同,由于这些空隙与构件尺寸相比是极其微小的,因此这些空隙的存在
以及由此而引起性质上的差异,在研究构件受力和变形时都可以略去不计。
2.各向同性假设
认为无论从物体的任何部位取出任一部分,不计其体积大小如何,其在各个方向上的力学性能都是完全一样的。
实际上,组成固体的微粒或晶体在不同方向上有着不同的性质,但构件所包含的晶体数量极多,且晶粒的排列也是没有任何规律的,变形固体的性质就是这些晶粒性质的平均值。
这样就可以把构件看成是各向同性的。
工程中常使用的建筑材料,如浇筑好的混凝土、钢材等,都可以认为是各向同性材料;但是也有一些材料,如木材、一些复合材料等,沿其各方向的力学性能显然是不同的,则称为各向异性材料。
3.小变形假设
一般物体变形时的变形量远小于构件的几何尺寸,在研究构件的平衡和运动规律时,不需要考虑物体的变形,可按变形前的原始尺寸和形状进行计算。
这样可使计算工作大为简化,而又不影响计算结果的精度。
总之,材料力学是将实际材料看作是均匀、连续、各向同性的变形固体,且限于小变形范围。
3.2 杆件变形的基本形式
所谓杆件,就是某一方面的尺寸(长度)远大于其他两个方向(横截面)尺寸的构件。
杆件在外力作用下会产生各种各样的变形,但不管这些变形如何复杂,归纳起来有以下四种或者是这四种基本变形的组合。
3.2.1 轴向拉伸和压缩
在一对作用线与杆轴线重合,且大小相等、方向相反的外力作用下,杆件的主要变形足长度的改变。
这种变形称为轴向拉伸[图3.1(a)]或轴向压缩[图3.1(b)],如简单桁架在荷载作用下,有些杆件发生轴向拉伸,有些杆件发生轴向压缩。
3.2.2 剪切
在一对相距很近的大小相等、指向相反的横向外力作用下杆件的主要变形是通个相邻横截面沿外力作用线方向发生错动,这种变形形式称为剪切[图3.1(c)],通常它多于其他变形共同存在。
3.2.3 扭转
在一对大小相等、转向相反、作用在横截面上的外力偶作用下,杆的任意两个横截面将绕轴线发生相对转动,而轴线仍维持直线,这种变形称为扭转[3.1(d)]。
3.2.4 弯曲
在一对大小相等、转向相反、作用在杆的纵向平面的外力偶作用下,杆的相邻两个横截面将绕垂直于杆轴线的轴发生相对转动,变形后的杆轴将弯成曲线,这种变形形式称为纯弯曲[图3.1(e)]。
实践中,杆件可能同时承受不同形式的荷载而发生复杂的变形,通过分析,都可以看成是上述基本变形的组合。
由两种或两种以上基本变
形组合而成的变形称为组合变形.。