浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习
浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习

函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势;

函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。

一、函数与几何综合题例析

(一)“几函”问题:

1、线段与线段之间的函数关系:

由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分

线段成比例定理及其推论、相似三角形的性质、圆的基本性质、圆中的比例线段等等)找

出几何元素之间的联系,最后将它们的联系用数学式子表示出来,并整理成函数关系式,

在此函数关系式的基础上再来解决其它的问题;解决此类问题时,要特别注意自变量的

取值范围。

例1 如图,AB 是半圆的直径,O 为圆心

AB=6,延长BA 到F ,使FA=AB ,若P 为线段 AF 上的一个动点(不与A 重合),过P 点作半

圆的切线,切点为C ,过B 点作BE ⊥PC 交PC

的延长线于E ,设AC=x ,AC+BE=y ,求y 与x

的函数关系式及x 的取值范围。(2003年山东省烟台市中考题)

评析:这是一道集圆、直角三角形、相似三角形与函数的综合题,由于已知条件中有

切线,因此可以联想切线的性质、切割线定理、弦切角定理、切线长定理;又因为有直径

这一已知条件,又可联想构造直径所对的圆周角。 因此,连结BC ,构造出“双直角三角

形”和弦切角定理的典型图形,然后利用两对相似三角形中的一对建立比例式,再结合勾

股定理解决问题。

解:连结BC ,∵AB 是⊙O 的直径,∠ACB=90°,∴BC 2=36-x 2

又∵PC 切⊙O 于C ,∠ECB=∠BCA ;

O A

P F

B

由BE ⊥PC 于E 可知,∠ACB=∠CEB=90°,∴ΔACB∽ΔCEB;

BE

BC BC AB =,即6622x AB BC BE -== ∴662++-=x x y ; 当P 点与A 点重合时,AC=0最小,但P 点与A 点不重合, ∴x >0;

当P 点与F 点重合时,x=AC 最大,此时有PC 2=PA·PB=6×12, ∴26=PC

又∠P=∠P ,∠PCA=∠PBC ∴ΔPCA∽ΔPBC

12

26==∴BC AC PB PC CB AC 即 ∴BC=AC 2 由勾股定理得,()36222=+AC AC ,32=∴AC

函数关系式为:

=y 2 要注意到以下两点:(1 例2点开始在线段AO 上以每秒3

秒1个单位长度的速度向上平移(即EF∥x轴),并且分别与y轴、线段AB交于E、F点,连结FP,设动点P与动直线EF同时出发,运动时间为t秒。

(1)当t=1时,求梯形OPFE的面积。t为何值时,梯形OPFE的面积最大,最大面积是多少?

(2)当梯形OPFE的面积等于三角形APF的面积时,求线段PF的长。

(3)设t的值分别取t

1、t

2

时,(t

1

≠t

2

),所对应的三角形分别是Δ AF

1

P

1

和Δ AF

2

P

2

试判断这两个三角形是否相似;请证明你的判断。

(2003年广西南宁市中考题)

评析:这是一道综合性较强的中考压轴题,它将几何与代数“相邀”于平面直角坐标系中,使“数”与“形”、“动”与“静”相互转化,综合考查了梯形面积计算、勾股定理、相似三角形、二次函数的性质等多个知识点,同时利用图形的变化,渗透数形结合的数学思想、函数的思想、方程的思想;第(1)小题中前面的“静”为后面的“动”作准备,而后面的“动”是前面的“静”的升华,让学生懂得静止是相对的而运动是绝对的,在“动”中求“静”,在考题中向学生渗透辩证唯物主义思想,从而不被“动”所迷惑;第(2)小题在第(1)小题的基础上,首先建立梯形、三角形面积与t的函数关系式,再利用方程的思想解决,考查了学生的知识迁移能力;在求得t值后,要决定取舍,考查了学生思维的批判性;第(3)小题是一个探索性问题,考查了学生的探索能力。象这种计算量小、坡度较缓、综合性强、能力要求高的“双动”问题是今后各地中考命题的一大趋势。

解:(1) A(28,0),B(0,28),∴OA=28,OB=28,∴Δ AOB是等腰直角三

角形;

当t=1秒时, OE=1,AP=3;∴OP=28-3=25,BE=28-1=27;

又∴EF ∥OA ,∴ ΔBEF∽Δ BOA,∴ΔBEF 也是等腰直角三角形;

∴EF=EB=27; ()()262

127252=?+=+=∴OE PF OP S OPFE 梯形 因此,当t=7秒时,梯形OPFE 的面积最大,最大面积为98。

(2)t t S OPFE 2822+-=梯形 而2

3232t t t S AFP =?=? 解之:t 1=8(秒)t 2=0(舍去)

过F 点作FH ⊥AO 垂足为H ,

∠OAB=45°,∴AH=FH=8,∴16883=-?=PH ;

在Rt Δ FHP 中,581682222=+=+=PH FH FP

(3)当运动时间为t 秒时,过P 点作PG ⊥OA 于G ,则FG=GA=t ,

由勾股定理得:t FA 2=,AP=3t ,FA ∶AP=3∶2为一定值,

而 ∠FAP=45°, ∴ Δ AF 1P 1 ∽ ΔAF 2P 2

( 二)“函几”问题:

纵观历年各地的中考试题,几乎无一例外地出现函数中的几何问题,这些题目从难度

上来看大多数是难题,少数属于中档题,在题型上来看,绝大多数是探索题,只有少数是

计算题,在设计方法上都注重创新,都注重在初中数学主干知识的交汇处进行命题,在考

查意图上,都突出对数学思想方法和能力(特别是对思维能力、探究能力、创新能力、综合运用知识能力)的考查;因此在解决这类问题时要灵活运用函数的有关知识,并注意挖掘题目中的一些隐藏条件,注意数形结合、数学建模、分类讨论等数学思想的运用;下面谈一谈这类问题的分类及其解法。

1、三类基本初等函数中的图形面积问题:

解决这类问题时,通常要将坐标系中的图形进行分割,一般情况是将它分割成一些两边(或三边)在坐标轴上或者两边(或三边)平行于坐标轴的三角形(或梯形、矩形)等;同时要注意点到坐标轴的距离与点的坐标间的区别,正确利用点的坐标来表示线段的长度。

例3如图,直线OC、BC的函数关系式分别为 y=x和 y=-2x+6,动点P(x,0)在OB上移动(0<x<3),过点P作直线与x轴垂直。

(1)求点C的坐标;

(2)设?OBC中位于直线左侧部分的面积为s,写出s与x之间的函数关系式;

(3)在直角坐标系中画出(2)中函数的图象;

(4)当x为何值时,直线平分?OBC的面积?

(2003年常州市中考题)

评析:这是以函数为主要背景的几何综合题,由于两直线的解析式已知,所以只须联立两个解析式就可以求出第(1)问中C点的坐标;在第二问中,由于ΔOBC位于直线左边的部分的形状有两种情况:当直线在C点左边时,左边的部分为三角形;当直线在C点右边时,左边的部分为一不规则的四边形,因此在解决此问题时要分两种情况讨论,由于(2)

中的函数是一个分段函数,所以在解决第(3)问时画图也要分两部分来画;在解决第(4)问时,首先要对直线l 平分ΔOBC 的面积时,直线是在点C 的左边还是在右边作出判断,

解:(1) ???+-==62x y x y 解之得???==22

y x ,

点C 的坐标为(2,2)

(2)作CD ⊥轴于点D ,则D (2,0)

①当0<x≤2时,设直线l 与OC 交于点Q ,则Q (x ,x ),

∴2

21x S =

②当2<x <3时,设直线与OB 交于点Q ,则此时的Q 的坐标为(x ,6-x )

而点B (3,0)∴S ΔBQP =()()()2

326321x x x -=--?

∴S=3-(3-x )2, 即S=-x 2+6x-6

(3)略

(4)由于(2)中ΔODC 的面积大于ΔBDC 的面积,则直线l 要平分ΔOBC 的面

积,则点P 只能在线段OD 上,即0<x <2,由于ΔOBC 的面积为3,

∴2

3212 x ,解之得x=3(负值舍去);显然,0<3<2; ∴l 平分ΔOBC 的面积时,相应的x 值为3。

2、三类基本初等函数中的三角形、四边形、圆的问题:

这类题目一般由1~3问组成,第一问往往是求函数的解析式,然后在此基础上再与几

何中的三角形(全等、相似或特殊三角形是否存在等问题)四边形(面积的函数关系式、

特殊四边形是否存在)和圆(直线与圆的位置关系的判断、圆中的比例式是否成立)结合

起来,利用初中的主干知识全面考查学生综合运用所学知识解决问题的能力;解决这类综

合性问题时要注意以下几个问题:(1)注意弄清题目中所涉及的概念,熟悉与之相关的定

理、公式、技巧和方法;(2)注意剖析综合问题的结构,弄清知识点之间的联系,善于把

一个综合题分成若干个基本题,各个知识点之间的结合部,往往是由一个基本问题转化到

另一个基本问题的关键;(3)注意从不同的角度来探索解题的途径,注意运用“从已知看

可知”,“从结论看需知”等综合法与分析法来沟通已知条件与结论。

例4 已知二次函数的图象如图所示,

(1)求二次函数的解析式及抛物线的顶点M 的坐标 ;

(2)若点N 为线段BM 上的一点,过点N 作x 轴的垂线,垂足为点Q ,当点N 在线段BM

上运动时(点N 不与点B 、点M 重合),设NQ 的长为t ,四边形NQAC 的面积为S ,求S 与

t 之间的函数关系式及自变量t 的取值范围;

(3)在对称轴右侧的抛物线上是否存在点P ,使ΔPAC 为直角三角形?若存在,求出

所有符合条件的点P 的坐标;若不存在,请说明理由;

(4)将ΔOAC补成矩形,使ΔOAC的两个顶点成为矩形一

边的两个顶点,第三个顶点落在矩形这边的对边上,试直接写

出矩形的未知顶点的坐标(不需要计算过程)。

(2003年黄冈市中考试

题)

评析:该综合题有4个大问题共7个基本问题,其问题之多、考查的知识点之多、考查的数学思想方法之多、分值之大(满分16分)在全国各地的中考题中屈指可数;该题中的4个大问题难度依次增加,这就要求考生在遇到此问题时要有“攻书莫畏难”的勇气;解决第(1)个问题时,关键是要学生认真观察函数的图象,弄清楚点的坐标的含义,正确地确定A、B、C三点的坐标,然后再利用待定系数法求出二次函数的解析式,在正确确定解析式的基础上,利用配方法或抛物线的顶点坐标公式求出顶点M的坐标;在解决第(2)个问题时,由于四边形NQAC是由一个直角三角形AOC与一个直角梯形组成的图形,而直角三角形AOC的面积是不变的,因此要解决此问题,关键是用含t的代数式表示直角梯形NQOA 的面积,而该直角梯形的两底OC、NQ的长分别为2和t,因此要解决梯形的面积问题,就要想法求出梯形的高(即OQ的长,它等于点N的横坐标),而点Q的纵坐标是-t(而不是t,这一点学生最容易弄错),且点Q在两已知点B、C决定的线段CB上运动,因此求点Q 的横坐标的问题就转化成求直线BC的解析式的问题,有了直线BC的解析式问题便迎刃而解;第(3)问是一个探索性的问题,既可以用分析法解决,也可以用综合法来解决;但要注意分∠PAC=90°、∠ACP=90°、∠APC=90°三种情况来讨论;无论是∠PAC=90°还是∠ACP=90°,在分别过A点和C点作AC的垂线后,都出现了几何中常见的“双垂直”的典型图形,利用相似三角形的性质(或直接利用射影定理)可求出直线AP与y轴或直线CP与x轴的交点坐标,然后再求出直线AP或CP的解析式,再利用方程的思想求出合条件的点P 的坐标;由于以AC为斜边的直角三角形的直角顶点一定在以AC为直径的圆上(A、C除外)观察图形可知,以点P为直角顶点的直角三角形不存在;在解决第(4)时要求学生一定要认真审题,弄清题目的要求,并且要求学生的思维严密,多方面考虑点D存在的各种可能性,只有这样才能得出完整的结论;(解答此处略)

例5已知二次函数y=x2+bx+c的顶点在直线y=-4x上,并且图象经

过点A(-1,0)。

(1)求这个二次函数的解析式;

(2)设此二次函数与x轴的另一个交点为B,与y轴的交点为C,求经过M、 B、C三点的⊙O′的直径长;

(3)设⊙O′与y轴的另一个交点为N,经过P(-2,0)、 N两点的直线为l,则圆心O′是否在直线l上,请说明理由请说明理由;

(2003年成都市中考试题)

评析:这也是一个“函几问题”,由于二次函数的解析式中两个待定的系数,而大前提中又有两个独立的已知条件,因此解决问题(1)的的关键是如何使用顶点在直线y=-4x 上这一已知条件:可以用抛物线的顶点公式,也可以先设顶点的坐标为(m,-4m),然后用二次函数的顶点式来求解;在第(2)问中,由于要求⊙O′的直径,而⊙O′的由B、M、C三点确定的圆,因此要首先求出点C、M、B的坐标,然后求出线段CB、BM、CM的长,从它们的长度关系中发现三角形BMC是直角三角形,这是解决这一问题的关键,抓住了这一关键,问题(2)便迎刃而解;在第(3)问中,要判断圆心O′中否在直线PN上,关键是求直线PN的解析式和圆心O′的坐标,由于点M、B的坐标都已知,又知BM是圆的直径,因此点O′是线段BM的中点,所O′点的坐标不难求出;而要求直线PN的解析式,关键是求点N的纵坐标,此时可以过点O′作y轴的垂线,利用垂径定理结合点到坐标轴的距离的有关知识可以求出点N的坐标;(解答此处略)

二、函数与几何综合题的解题策略:

“函几问题”与“几函问题”涉及的知识面广、知识跨度大、综合性强,应用数学方法多、纵横联系较复杂、结构新颖灵活、注重基础能力、探索创新和数学思想方法,它要求学生有良好的心理素质和过硬的数学基本功,能从已知所提供的信息中提炼出数学问题,从而灵活地运用所学知识和掌握的基本技能创造性的解决问题,正因如此,解决这类问题时,要注意解决问题的策略,常用的解题策略一般有以下几种:

1、综合使用分析法和综合法。就是从条件与结论出发进行联想、推理,“由已知得可知”,“从要求到需求”,通过对问题的“两边夹击”,使它们在中间的某个环节上产生联系,从而使问

题得以解决。如本文例5中的第(2)、(3)问的解答就使用了此种方法;

2、运用方程的思想。就是寻找要解决的问题中量与量之间的等量关系,建立已知量与未知量间的方程,通过解方程从而使问题得到解决;在运用这种思想时,要注意充分挖掘问题的的隐藏条件,寻找等量关系建立方程或方程组;如本文例2中的第(2)个问题的解决就用到了此种思想;

3、注意使用分类讨论的思想。函数与几何结合的综合题中往往注意考查学生的分类讨论的数学思想,因此在解决这类问题时,一定要多一个心眼儿,多从侧面进行缜密地思考,用分类讨论的思想探讨出现结论的一切可能性,从而使问题的解答完整无遗。如本文例4中的第(2)、(3)问,要从直角的顶点的位置、矩形的第四个顶点的位置进行讨论,例3第(2)问中,求面积S与x间的函数关系式时,也要分直线l在点C的左边和右边两种情况来讨论,千万不能一蹴而就;

4、运用数形结合的思想。在中学数学中,“数”与“形”不是孤立的,它们的辩证统一表现在:“数”可以准确地澄清“形”的模糊,而“形”能直观地启迪“数”的计算;使用数形结合的思想来解决问题时,要时刻注意由图形联想其性质,由性质联想相应的图形,从而使问题得以简化;如本文中的例1,在解决y与x间的函数关系时,首先根据图形的性质,建立起线段间的关系式,然后再利用线段间的关系,建立y与x间的函数关系;

在求自变量x的取值范围时,把自变量所对应的几何元素推到两个极端的位置,求出相应的值,再结合几何量的实际意义和题目中的已知条件加以确定;

5、运用转化的思想。转化的数学思想是解决数学问题的核心思想,由于函数与几何结合的问题都具有较强的综合性,因此在解决这类问题时,要善于把“新知识”转化为“旧知识”,把“未知”化为“已知”,把“抽象”的问题转化为“具体”的问题,把“复杂”的问题转化为“简单”的问题,上面所有各例,都用到了转化的数学思想,可以大胆地说,不掌握转化的数学思想,就很难正确而全面地解决函数与几何结合的综合问题;

三、函数与几何综合题复习的几点建议:

从以上的评析可以感觉到,函数与几何结合的综合问题都比较抽象,一些隐藏条件不易发现,有些思路、方法具有特殊性,对基础知识和基本技能要求既有广度又有深度,对逻辑思维能力、联想能力、都有较高的要求,要想让学生能熟练地掌握其解法,在平时的教学中应注意以下几点:

1、在复习过程中,要对近几年各地的中考试题进行归类、整理,将类型相同或相似的题目的精华浓缩于一个题目中进行分析、讲解,提高复习效率。笔者对近三年各地的中试题进行研究发现,有很多地方的中考数学试题都有惊人的相似之处,如山西省2003年中考数学试卷中的第27题与孝感市2002年的压轴题完全相似,只不过改变了提问的方式,使问题略有一点探索性;而2003年孝感市的压轴题与2002年南京市中考数学试卷第八题中的已知条件完全一样,要解决的问题也几乎一样,2003年黄冈市的压轴题与2002年哈尔滨市中考数学压轴题的已知条件和图形都极其相似,问题只有第(3)问不一样(没有第四问),……,因此深入研究各地的中考试题,将它们进行归类进行复习,可以节约大量的时间。

2、在复习过程中,对例题的讲解要注意引导分析,解完题后要注意对解题过程作更深入、更广阔的反思,总结那些比解题更重要的东西——规律,如解决坐标系中的面积问题,通常要将不规则的图形转化为规则的图形,而转化的方法通常是过图形的顶点作坐标轴的

垂线,将求不规则图形的面积问题转化为两边(或三边)垂直于(或平行于)坐标轴的基本图形的面积问题;又如,求动态几何中的函数关系式中自变量的取值范围时,可以把自变量所代表的几何量推到两个极端位置,求出相应值,再结合几何量的实际意义加以确定;如果我们在复习过程中不注意总结解决问题的规律,讲得再多,练习得再多,也只能的“题海”中打转,很难进入“举一反三”、“触类旁通”的境界,遇到新的问题,也就很难产生灵感,找到思路;

3、在复习过程中,要注意挖掘课本例、习题和各地中考成题中的潜在结论,变化出新的综合题,以开阔学生的思路,培养学生分析问题、解决问题的能力;如2002年孝感市的压轴题就是将初中《几何》课本P182的“做一做”改编而成,2002年襄樊市的阅读理解题就是根据初二《代数》课本P38中的“读一读”的内容改编而成,而太原市2003年的中考压轴题是由《几何》第三册P79例2改编、深化而成,嘉兴市2003年中考数学试卷中的第24题、厦门市第28题都是由《代数》第三册P126面的第4题和P72面的第7题改编而成;因此,在复习过程中,一定要注重课本,千万不能以练代讲,以资料代替课本。 下面从近几年各地的中考题中略选几例,供各位教师复习时参考:

1 已知:如图(1),E 、F 、G 、H 按照AE=CG ,BF=DH ,BF=nAE (n 是正整数)的关系,分别在两邻边长a 、na 的矩形ABCD 各边上运动。设AE=x ,四边形EFGH 的面积为S 。 ⑴当n=1,2时,如图(2)、(3),观察运动情况,写出四边形EFGH 各顶点运动到

何位置,使S=2

1S 矩形ABCD ? ⑵当n=3时,如图(4),求S 与x 之间的函数关系式(写出自变量x 的取值范围)

探索S 随x 增大而变化的规律;猜想四边形EFGH 各点运动到何位置,使S=2

1S 矩形ABCD ? ⑶当n=k (k≥1)时,你所得到的规律和猜想是否成立?请说明理由。

2 如图,在平面直角坐标系中,B

()

0,13+ 点A 在第一象限内,且∠AOB=60°, ∠ABO=45°

(1)求点A 的坐标;

(2)求过点A 、O 、B 三点的抛物线解析式;

(3)动点P 从O 点出发,以每秒2个单位的速度沿OA 运动到点

A 止;①若ΔPO

B 的面积为S ,写出S 与时间t (秒)的函数关系式。

②是否存在t ,使ΔPOB 的外心在x 轴上,若不存在,说明理由;若存在,

请求出t 的值。

3、已知:一次函数124

3--=x y 的图象分别交x 轴、y 轴于A 、C 两点, (1)求A 、C 两点的坐标;

(2)若x 轴上有一点B ,使ΔACB∽ΔAOB,且抛物线过A 、B 、C

三点,求抛物线的解析式;

(3)在(2)的条件下,设动点P 、Q 分别从A 、B 两点同时出发,以相同的速度沿AC 、BA 向C 、A 运动,连结PQ ,设AP=m ,是否存在m 的值,使以A 、P 、Q 为顶点的三角形与ΔABC 相似;若存在,求出所有的m 值;若不存在,请说明理由。

4、如图,直线22

1+=x y 分别与x 轴、y 轴相交于A 、C 两点,P 是该直线上在第一象限内的一点,PB⊥x 轴于点B ,且S ΔABP =9。

(1)求点P 的坐标;

(2)设点R 与点P 在同一个反比例函数的图象上,且点R 在直线PB

的右侧,作RT ⊥x 轴于点T ,当ΔBRT 与ΔAOC 相似时,求R 点的坐标。

5、已知:如图,二次函数y=2x 2-2的图象与x 轴相交于A 、B 两点

(点A 在点B 的左边),与y 轴交于点C ,直线x=m (m >1)与x

轴交于点D ,

(1)求A 、B 、C 三点的坐标;

(2)在直线x=m (m >1)上有一点P (点P 在第一象限内),

使得以P 、D 、B 为顶点的三角形与以B 、C 、O 为顶点的三角形

相似,求P 点有坐标(用含m 的代数式表示);

(3)在(2)的条件下,试问:抛物线y=2x 2-2上是否存在

一点Q ,使得四边形ABPQ 是平行四边形?如果存在这样的点Q ,请求出m 的值;如果不存在,请简要说明理由。

小学数学常用解题技巧(解几何题技巧)

小学数学常用解题技巧:解几何题技巧 解几何题技巧 1.等分图形 【均分整体】有些几何问题,只要把大图形均分为若干个小图形,就能找到问题的答案。 例如,下面两图中的正方形分别内接于同一个等腰直角三角形(内接指四个顶点全在三角形的边上)。已知左图(图4.11)中正方形面积为72平方厘米,求右图( 4.12)中正方形的面积。 由于左右两个三角形完全相同,我们不妨把这两个图形进行等分,看看这两个正方形分别与同一个等腰直角三角 形有什么样的关系。等分后的情况见图 4.13和图 4.14。 积是 图4.12的正方形面积是 【均分局部】有些几何问题,整体的均分不太方便,或不能够办到,这时可以考虑把它的局部去均分,然后从整 体上去观察,往往也能使问题获得解决。 例如图 4.15,在正方形ABCD中,画有甲、乙、丙三个小正方形。问:乙、丙面积之和与甲相比,哪一个大些? 大家由前面的“均分整体”已经知道,像甲、乙这样的两个正方形,面积不是相等的。如图 4.16,经过等分,正方形甲的面积等于△ABC面积的一半;正方形丙的面积等于△EDF的一半,正方形乙的面积等于梯形ACFE面积的一半。这样,一个大正方形ABCD,就划分成了三个局部:等腰直角△ABC;等腰梯形ACFE;等腰直角△EDF。其中甲、乙、丙的面积分别为各自所在图形的一半,而△EDF的面积加梯形ACFE的面积等于△ADC的面积,即等于△ABC的面积。所以,乙、丙面积之和等于甲的面积。

2.平移变换 【平移线段】有些几何问题,通过线段的上、下、左、右平移以后,能使问题很快地得到正确的解答。 例如,下面的两个图形(图 4.17和图4.18)的周长是否相等? 单凭眼睛观察,似乎图 4.18的周长比图 4.17的要长一些。但把有关线段平移以后,图 4.18就变成了图 4.19,其中的线段,有的上移,有的左移,有的右移,它可移成一个正方形。于是,不难发现两图周长是相等的。 【平移空白或阴影部分】有些求阴影部分或空白部分面积的几何题,采用平移空白部分或平移阴影部分的办法, 往往能化难为易,很快使问题求得解答。例如,计算图 4.20中阴影部分的面积。 圆面积”,然后相加,得整个阴影部分的面积。这显然是很费时费力的。但认真观察一下就会发现,图 4.20左半左上部的空白部分,与右半左上部的阴影部分大小一样,只需将右半左上部的阴影部分,平移到左半左上部的空白部分,所 有的阴影部分便构成一个正方形了(如图 4.21)。所以,阴影部分的面积很快就可求得为5×5=25。 又如,一块长30米,宽24米的草地,中间有两条宽2米的走道,把草地分为四块,求草地的面积(如图 4.22)。 这只要把丙向甲平移靠拢,把丁向乙平移靠拢,题目也就很快能解答出来了。(具体解法略) 3.旋转变换 【旋转成定角】例如下面的题目: “在图 4.23中,半径为8厘米的圆的内外各有一个正方形,圆内正方形顶点都在圆周上,圆外正方形四条边与圆 都只有一个接触点。问:“大正方形的面积比小正方形的面积大多少?”

中考复习:二次函数题型分类总结

【二次函数的定义】 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x2-4x+1;②y=2x2;③y=2x2+4x;④y=-3x; ⑤y=-2x-1;⑥y=mx2+nx+p;⑦y =(4,x) ;⑧y=-5x。 2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t=4 秒时,该物体所经过的路程为。 3、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围为。 4、若函数y=(m-2)x m -2+5x+1是关于x的二次函数,则m的值为。 6、已知函数y=(m-1)x m2 +1+5x-3是二次函数,求m的值。 【二次函数的对称轴、顶点、最值】 (技法:如果解析式为顶点式y=a(x-h)2+k,则最值为k; 如果解析式为一般式y=ax2+bx+c,则最值为4ac-b2 4a 1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。 2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b=,c= . 3.抛物线y=x2+3x的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y=ax2-6x经过点(2,0),则抛物线顶点到坐标原点的距离为( ) B. 5.若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( ) A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴 C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴 6.已知抛物线y=x2+(m-1)x-1 4 的顶点的横坐标是2,则m的值是_ . 7.抛物线y=x2+2x-3的对称轴是。 8.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m=。 9.当n=______,m=______时,函数y=(m+n)x n+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________.

二次函数与几何综合压轴题题型归纳88728

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此 抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:

已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解? ?? ?==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。 (3)如图,B A 、是直线l 同旁的两个定点,线段a ,在直线l 上确定两点E 、F (E 在F 的左侧 ),使得四边形AEFB 的周长最小。 8、在平面直角坐标系中求面积的方法:直接用公式、割补法 三角形的面积求解常用方法:如右图,S △PAB =1/2 ·PM ·△x=1/2 ·AN ·△y 9、函数的交点问题:二次函数(c bx ax y ++=2 )与一次函数(h kx y +=) (1)解方程组???h kx y c bx ax y +=++= 2可求出两个图象交点的坐标。 (2)解方程组???h kx y c bx ax y +=++= 2,即()02 =-+-+h c x k b ax ,通过?可判断两个图象的交点 的个数 有两个交点 ? 0>?

数学几何解题技巧

初中数学教学中几何解题思路分析 【摘要】平面几何在初中数学中一直占据着很重要的位置。而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。 【关键词】初中数学;教学;几何;解题思路; 对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。只有思维能力得到提高,才能更好地掌握解题技巧与规律。下面我们通过具体的实例进行详细分析初中数学几何题的解题思路, 一、初中数学几何的解题技巧 1、对常见的题型与解题方法进行归纳总结 初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。对线段的关系的证明通常包括相等及其和差关系等的证明。在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。对常见技巧进行掌握,能有效提高学生的解题效率。 2、注意对辅助线进行添加和使用 在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。对常见技巧进行掌握,能有效提高学生的解题效率。下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧: 如下图所示,已知:在ABC ?中,?=∠90C ,BC AC =,DB AD =,BF AE =,求证:DF DE =,

二次函数综合题类型

二次函数综合题常见题型 一、线段最值 1、如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5). (1)求直线BC与抛物线的解析式; (2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值; (3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.

7),且顶点C的横坐标为4,该图象在x 轴上截2、如图,二次函数的图象经过点D(0,3 9 得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

3、如图,已知直线 1 1 2 y x =+与y轴交于点A,与x轴交于点D,抛物线2 1 2 y x bx c =++与直 线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。 ⑴求该抛物线的解析式; ⑵动点P在轴上移动,当△PAE是直角三角形时,求点P的坐标P。 ⑶在抛物线的对称轴上找一点M,使|| AM MC -的值最大,求出点M的坐标。

4、如图,已知ABC =,点A、C在x轴上,点B坐标 ∠=?,AC BC ACB ?为直角三角形,90 为(3,m)(0 m>),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示); (2)求抛物线的解析式; (3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ Array并延长交AC于点F,试证明:() FC AC EC +为定值.

二次函数与几何综合(习题及答案)

二次函数与几何综合(习题) ?例题示范 例1:如图,抛物线y=ax2+2ax-3a 与x 轴交于A,B 两点(点 A 在点 B 的左侧),与y 轴交于点C,且OA=OC,连接AC. (1)求抛物线的解析式. (2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值. (3)若点E 在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由. 第一问:研究背景图形 【思路分析】 读题标注,注意到题中给出的表达式中各项系数都只含有字母a,可以求解A(-3,0),B(1,0),对称轴为直线x=-1;结合题中给出的OA=OC,可得C(0,-3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】 解:(1)由y=ax2+2ax-3a=a(x+3)(x-1) 可知A(-3,0),B(1,0), ∵OA=OC, ∴C(0,-3), 将C(0,-3)代入y=ax2+2ax-3a, 解得,a=1, ∴y=x2+2x-3. 1

△ 第二问:铅垂法求面积 【思路分析】 (1) 整合信息,分析特征: 由所求的目标入手分析,目标为 S △ACP 的最大值,分析 A ,C 为定点,P 为动点且 P 在直线 AC 下方的抛物线上运动,即 -3<x P <0; (2) 设计方案: 注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达 S △ACP . 【过程示范】 如图,过点 P 作 PQ ∥y 轴,交 AC 于点 Q , 易得 l AC :y =-x -3 设点 P 的横坐标为 t ,则 P (t ,t 2+2t -3), ∵PQ ∥y 轴, ∴Q (t ,-t -3), ∴PQ =y Q -y P =-t -3-(t 2+2t -3)=-t 2-3t (-3<t <0), ∴ S = 1 PQ ? (x - x ) = - 3 t 2 - 9 t (-3<t <0) △ ACP 2 C A 2 2 ∵ - 3 < 0 , 2 ∴抛物线开口向下,且对称轴为直线t = - 3 , 2 ∴当t = - 3 时,S ACP 最大,为 27 . 2 8 第三问:平行四边形的存在性 【思路分析】 分析不变特征: 以 A ,B ,E ,F 为顶点的四边形中,A ,B 为定点,E ,F 为动点,定点 A ,B 连接成为定线段 AB . 分析形成因素: 要使这个四边形为平行四边形.首先考虑 AB 在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则 AB 既可以作边,也可以作对角线. 画图求解: 先根据平行四边形的判定来确定 EF 和 AB 之间应满足的条 2

浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习 函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势; 函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。 一、函数与几何综合题例析 (一)“几函”问题: 1、线段与线段之间的函数关系: 由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分

初二数学几何解题技巧

初二数学几何解题技巧 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【专题三】证明线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) (二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

重庆市中考数学题型复习 题型八 二次函数综合题 类型一 线段、周长最值问题练习

类型一线段、周长最值问题 1. 如图,抛物线y=-x2-2x+3交x轴于A,C两点(点A在C的左边),抛物线交y轴于点B,点D是抛物线的顶点. (1)求线段AB的长; (2)点P是直线AB上方的抛物线上一点(不与A,B重合),过点P作x轴的垂线,交x轴于点H,交直线AB于点F,作PG⊥AB于点G,求出△PFG周长的最大值; 2. 已知二次函数y=x2-x-2的图象和x轴相交于点A、B,与y轴交于点C,过直线BC

的下方抛物线上一动点P作PQ∥AC交线段BC于点Q,再过P作PE⊥x轴于点E,交BC于点D. (1)求直线AC的解析式; (2)求△PQD周长的最大值; (3)当△PQD的周长最大值时,在y轴上有两个动点M、N(M在N的上方),若MN=1,求PN +MN+AM的最小值. 第2题图 3. (2017重庆大渡口二模)如图,抛物线y=x2-2x-3与x轴交于A、B两点(点A在点B

的左侧),与y轴交于点C,该抛物线的顶点为D,对称轴交x轴于H. (1)求A、B两点的坐标; (2)设点P在x轴下方的抛物线上,当∠ABP=∠CDB时,求出点P的坐标; (3)以OB为边在第四象限内作等边△OBM,设点E为x轴正半轴上一动点(OE>OH),连接ME,把线段ME绕点M旋转60°得MF,求线段DF的长的最小值. 第3题图 4. (2017遵义改编)如图,抛物线y=ax2+bx-a-b(a<0,a、b为常数)与x轴交于A、C

两点,与y 轴交于B 点,直线AB 的函数关系式为y =89x +16 3. (1)求该抛物线的函数关系式与C 点坐标; (2)已知点M (m ,0)是线段OA 上的一个动点,过点M 作x 轴的垂线l 分别与直线AB 和抛物线交于D 、E 两点.当△BDE 恰好是以DE 为底边的等腰三角形时,动点M 相应位置记为点M ′,将OM ′绕原点O 顺时针旋转得到ON (旋转角在0°到90°之间); ⅰ:探究:线段OB 上是否存在定点P (P 不与O 、B 重合),无论ON 如何旋转,NP NB 始终保持 不变,若存在,试求出P 点坐标;若不存在,请说明理由; ⅱ:试求出此旋转过程中,(NA +3 4 NB )的最小值. 第4题图 5. (2016重庆渝中区校级二模)如图①,在平面直角坐标系中,已知抛物线y =- 33 x 2 -3

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

初中数学代数几何解题技巧

如何用好题目中的条件暗示 有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。 【例1】直线与x轴、y轴分别交于B、A两点,如图1。 图1 (1)求B、A两点的坐标; (2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。求D点的坐标。 解析:(1)容易求得,A(0,1)。 (2)如图2, 图2 ∵,A(0,1), ∴OB=,OA=1。 ∴在Rt△AOB中,容易求得∠OBA=30° ∵把△AOB以直线AB为轴翻折, ∴∠OBC=2∠OBA=60°,BO=BC。 ∴△OBC是等边三角形 以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。 反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。 图3 (1)求三解形ABC的面积。 (2)证明不论a取任何实数,三角形BOP的面积是一个常数; (3)要使得△ABC和△ABP的面积相等,求实数a的值。 解析:(1)容易求得:A(,0),B(0,1), ∴。 (2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。 图4 (3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得: ∴, ∵,

二次函数中考复习(题型分类练习)

二次函数题型分析练习 题型一:二次函数对称轴及顶点坐标的应用 1.(2015?兰州)在下列二次函数中,其图象对称轴为x =﹣2的是( ) A . y =(x +2)2 B .y =2x 2﹣2 C .y =﹣2x 2﹣2 D .y =2(x ﹣2)2 2.(2014?浙江)已知点A (a ﹣2b ,2﹣4ab )在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称 点坐标为( ) A.(﹣3,7) B.(﹣1,7) C.(﹣4,10) D.(0,10) 3.在同一坐标系中,图像与y=2x 2 的图像关于x 轴对称的函数是( ) A.212y x = B.212y x =- C.22y x =- D.2y x =- 4.二次函数 无论k 取何值,其图象的顶点都在( ) A.直线 上 B.直线 上 C.x 轴上 D.y 轴上 5.(2012?烟台)已知二次函数y=2(x ﹣3)2 +1.下列说法:①其图象的开口向下;②其图象的对称轴为直 线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( ) A .1个 B .2个 C .3个 D .4个 6.(2014?扬州)如图,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线,若点 P (4,0)在该抛物线上,则4a ﹣2b +c 的值为 . 7.已知二次函数 ,当 取 , ( ≠ )时,函数值相等,则当 取 时,函数值为 ( ) A. B . C. D.c 8.如图所示,已知二次函数 的图象经过(-1,0)和(0,-1)两点,则化简代数式 = . 题型二:平移

一次函数与几何图形综合题

一次函数与几何图形 1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m 的值是多少? 2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。 3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。 4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C 在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。 5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大

值为多少? 6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。 7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。 8、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0), (1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积; (2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。

9、在平面直角坐标系中,一次函数y=kx+b(b 小于0)的图像分别与x 轴、y 轴和直线x=4交于A 、B 、C ,直线x=4与x 轴交于点D ,四边形OBCD 的面积为10,若A 的横坐标为-1/2,求此一次函数的关系式 10、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式 11、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6. 求:(1)△COP 的面积 (2)求点A 的坐标及m 的值; (3)若S BOP =S DOP ,求直线BD 的解析式 12、一次函数y=- 3 3x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC

中考数学几何型综合题解题技巧及分类训练(一)

中考数学几何型综合题 解题技巧和题型训练(一)几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识。主要研究图形中的数量关系、位置关系、几何计算以及图形的运动和变化等规律。大体可以分为几何综合计算和几何综合论证两类。在近几年的考题中,常以阅读探究性问题、图形变化间题、操作探究问题等形式出现。这类题涉及知识点比较多,题设和结论比较隐蔽、常常需要添加辅助线解答。 解中考几何型综合题技能: 解答几何综合题,关键是要抓住基本图形(相似模型、全等模型等),在复杂的几何图形中辨认、分解岀基本几何图形、或者添加辅助线构造基本图形。需要注意以下几点: 1、注意题目的直观提示,比如我们可以通过测量观察判断线段的数量和位置关系,一些比较隐蔽的数量关系,我们可以通过图形变化的特殊情况寻找关系。 2、注意分析题目的隐含条件,比如看到中点,你就要想想我们初中数学与中点相关的那四种情况,加以分析。简单的说,就是看到什么样的条件要有联想。 解中考几何型综合题类型和技巧: 1、阅读探究型问题 阅读探究型问题一般篇幅较长,解题时要读懂题意,对材料中给出的解题思路提栋解题思维,再理解的基础上分析问题与阅读材料的相关点,用模仿、类比或转化的方法解决问题

2、图形变化问题 图形变化问题的探究往往涉及到作图(这个不难),关键是把我图形运动、变化过程中始终不变的几何量或性质,对于变化的量要分析它的运动状态,注意是否需要分类讨论,分析变化量与不变量之间可能有什么关系,如何建立这种关系。 3、操作探究问题 在操作过程中提炼信息,分析操作步骤与目的,在特例解决的过程中提炼思维,并类比发散解决一般性结论,并借助图形变化帮助我们更有效地找到解题思路。

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

二次函数题型分类总结(学生版)

二次函数的定义 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x 2-4x+1; ②y=2x 2; ③y=2x 2 +4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2 +nx+p ; ⑦y =(4,x) ; ⑧y=-5x 。 2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2 +2t ,则t =4秒时,该物体所经过的路程为 。 3、若函数y=(m 2+2m -7)x 2 +4x+5是关于x 的二次函数,则m 的取值范围为 。 4、若函数y=(m -2)x m -2 +5x+1是关于x 的二次函数,则m 的值为 。 6、已知函数y=(m -1)x m2 +1 +5x -3是二次函数,求m 的值。 二次函数的对称轴、顶点、最值 (技法:如果解析式为顶点式y=a(x -h)2 +k ,则最值为k ;如果解析式为一般式y=ax 2 +bx+c 则最值为4ac-b 2 4a 1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。 2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2 +3x 的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y =ax 2 -6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) 5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2 +bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知抛物线y =x 2 +(m -1)x -14 的顶点的横坐标是2,则m 的值是_ . 7.抛物线y=x 2 +2x -3的对称轴是 。 8.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。 9.当n =______,m =______时,函数y =(m +n)x n +(m -n)x 的图象是抛物线,且其顶点在原点,此抛物线的开口________. 10.已知二次函数y=x 2-2ax+2a+3,当a= 时,该函数y 的最小值为0. 11.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。 12.已知二次函数y=x 2-4x+m -3的最小值为3,则m = 。 函数y=ax 2 +bx+c 的图象和性质 1.抛物线y=x 2 +4x+9的对称轴是 。 2.抛物线y=2x 2 -12x+25的开口方向是 ,顶点坐标是 。 3.试写出一个开口方向向上,对称轴为直线x =-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 。 4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)y=12 x 2-2x+1 ; (2)y=-3x 2 +8x -2; (3)y=-14 x 2+x -4 5.把抛物线y=x 2+bx+c 的图象向右平移3个单位,在向下平移2个单位,所得图象的解析式是y=x 2 -3x+5,试求b 、c 的值。

浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习 Last revision on 21 December 2020

浅说函数与几何综合题的解题策略及复习 函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势; 函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。 一、函数与几何综合题例析 (一)“几函”问题: 1、线段与线段之间的函数关系: 由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分线段成比例定理及其推论、相似三角形的性质、圆的基本性质、圆中的比例线段等等)找出几何元素之间的联系,最后将它们的联系用数学式子表示出来,并整理成函数关系式,在此函数关系式的基础上再来解决其它的问题;解决此类问题时,要特别注意自变量的 取值范围。 例1 如图,AB是半圆的直径,O为圆心 AB=6,延长BA到F,使FA=AB,若P为线段 AF上的一个动点(不与A重合),过P点作半 圆的切线,切点为C,过B点作BE⊥PC交PC 的延长线于E,设AC=x,AC+BE=y,求y与x 的函数关系式及x的取值范围。(2003年山东省烟台市中考题)O

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

相关文档
最新文档