概率论与数理统计模拟试题
概率论与数理统计模拟试题&参考答案

练习题一一、填空题。
1、已知P(A)=0.3,P(A+B)=0.6,则当A 、B 互不相容时,P(B)=___________,而当A 、B 相互独立时,P(B)=__________。
2、已知X ~),(p n B ,且8E X =, 4.8D X =, 则n =__________,X 的最可能值为__________。
3、若)(~λP X ,则=EX ,=DX 。
4、二维离散型随机变量),(ηξ的分布律为:则η的边缘分布_____________,ξ,η是否独立?_____________(填独立或不独立)。
5、设12(,,,)n X X X 是来自正态总体2(,)N μσ的一组简单随机样本,则样本均值11()n X X X n=++ 服从__________。
6、设一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的次品率依次为0.1, 0.2, 0.3, 从这10箱中任取一箱,再从这箱中任取一件,则这件产品为次品的概率为 。
7、设连续型随机变量ξ的概率密度为1 -1 ()1 010 x xx x x ϕ+≤<⎧⎪=-≤≤⎨⎪⎩其它,则E ξ=__________。
二、判断题。
1、服从二元正态分布的随机变量),(ηξ,它们独立的充要条件是ξ与η的相关系数0ρ=。
( )2、设12(,,,)n X X X 是来自正态总体2(,)N μσ的样本,S 是样本方差,则222(1)~()n Sn χσ-。
( )3、随机变量Y X ,相互独立必推出Y X ,不相关。
( )4、已知θ 是θ的无偏估计,则2θ 一定是2θ的无偏估计。
( )5、在5把钥匙中,有2把能打开门,现逐把试开,则第3把能打开门的概率为0.4。
( )三、选择题。
1、某元件寿命ξ服从参数为λ(11000λ-=小时)的指数分布。
3个这样的元件使用1000小时后,都没有损坏的概率是 (A )1e -; (B )3e -(C )31e --(D )13e -2、设X 的分布函数为)(x F ,则13+=X Y 的分布函数()y G 为(A )()3131-y F (B )()13+y F (C )1)(3+y F (D )⎪⎭⎫⎝⎛-3131y F3、设随机变量(3,4)N ξ ,且()()P c P c ξξ≤=>,则c 的取值为() (A )0; (B )3; (C )-3; (D )24、设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是()。
概率论与数理统计模拟题训练

X1, X 2 , , X n 为来自总体 X 的样本,求θ 的最大似然估计量。
四、应用题 1.一食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一只蛋糕的价格是一个随机变量,
它取 1 元,2 元,3 元,各个值的概率别为 0.3, 0.4, 0.3 ,某天售出 250 只蛋糕,试用中心极限定理求这天
(B) T = X − µ S2 / n
5.在假设检验问题中,检验水平α 的意义是(
(C) T = X − µ S3 / n
)
(D) T = X − µ S4 / n
(A) 原假设 H0 成立,经检验被拒绝的概率;
(B) 原假设 H0 成立,经检验不能被拒绝的概率;
(C) 原假设 H0 不成立,经检验被拒绝的概率; (D) 原假设 H0 不成立,经检验不能被拒绝的概率;
P{X
≥
500}
=1−
P{X
<
500}
=1−
⎧ P⎨
X
−
500
<
500
−
500 ⎫ ⎬
⎩ 150
150 ⎭
=
1−
P
⎧ ⎨
X
−
500
<
⎫ 0⎬
=
1−
Φ(0)
=
0.5
⎩ 150 ⎭
2.
解: X
~
σ2 N (66.5, )
n
,设 H 0 : X = 70 , H1 : X ≠ 70 ,
则
T
=
X S
−
µ
~
t(n
10、10 个乒乓球中有 6 个新球,4 个旧球,从中任取两个,已知所取的两个球中有一个是旧球,则另一个
概率论与数理统计模拟试题集(6套,含详细答案)

《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。
正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。
三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。
江西理工大学概率论与数理统计考试模拟试题

江西理工大学概率论与数理统计考试模拟试题第一部分:选择题1. 某班级有60名学生,其中30人喜欢蓝色,25人喜欢红色,20人既喜欢蓝色又喜欢红色。
则该班级中至少喜欢蓝色或红色的学生人数是多少?A. 35人B. 45人C. 50人D. 55人2. 随机变量X服从均匀分布U(4, 8),则P(X ≤ 5)的值是多少?A. 1/2B. 1/4C. 3/8D. 1/83. 一批共100件产品,其中有10件次品。
从中任取两件进行检验,设X为两件中次品的件数,X服从的概率分布是:A. 二项分布B(2, 0.1)B. 二项分布B(2, 0.9)C. 泊松分布P(10)D. 正态分布N(2, 10)4. 已知随机变量X的概率密度函数为f(x) = { kx, 0 < x < 1; 0, 其他若P(X < 0.25) = 0.0625,则常数k的值是多少?A. 1B. 4C. 8D. 165. 设二维随机变量(X, Y)服从联合概率密度函数f(x, y) = { c(x^2 +y^2), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1; 0, 其他则常数c的值是多少?A. 1/4B. 1/3C. 1/2D. 1第二部分:计算题1. 设A,B是两个相互独立的事件,已知P(A) = 0.4,P(B) = 0.6,请计算P(A ∪ B)。
2. 设X为随机变量,服从正态分布N(48, 16^2),求P(44 ≤ X ≤ 52)。
3. 设随机变量X的概率密度函数为f(x) = { cx^2, 0 < x < 2; 0, 其他请计算常数c的值。
4. 一批钢筋的长度服从均值为10cm,标准差为0.2cm的正态分布。
若随机抽取10根钢筋,求其平均长度大于10.1cm的概率。
5. 已知随机变量X和Y相互独立,X为正态分布N(4, 1),Y为正态分布N(5, 4)。
求X + Y的概率密度函数。
第三部分:证明题证明:二项分布的期望值和方差分别为np和npq,其中p为成功概率,q为失败概率,n为试验次数。
概率论与数理统计期末考试模拟检测题03(含答案)

概率论与数理统计期末考试模拟检测题03(含答案)一、填空题(每题5分)1、甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6,0.5。
现已知目标被命中,则它是甲射中的概率为( )。
2、设随机事件,A B 及其和事件A B ⋃的概率分别为0.4,0.3和0.6。
若B 表示B 的对立事件,那么积事件AB 的概率()P AB 为( )。
3、已知连续随机变量X 的概率密度函数为2211()xx f x e π-+-=,则X 的数学期望为( ),X 的方差( )。
4、若随机变量X 服从均值为2,方差为2σ的正态分布,且{24}0.3P X <<=,则{0}P X <=( )。
5、设由来自正态总体2(,0.9)XN μ容量为9的简单随机样本得样本得样本均值5X =,则未知参数μ的置信度为0.95的置信区间是( )。
二、选择题(单选,每题5分)1、对于任意二事件,A B ,同时出现的概率()0P AB =,则( ) (A ),A B 不相容(相斥) (B )AB 是不可能事件 (C )AB 未必是不可能事件 (D )()0,()0P A P B ==或2、设A,B 为两随机事件,且B A ⊂,则下列式子正确的是( ) (A )()()P A B P A += (B )()()P AB P A =(C )()()P B A P B = (D )()()()P B A P B P A -=-3、已知随机变量X 服从二项分布,且 2.4, 1.44EX DX ==,则二项分布的参数,,n p 的值为( )(A )4,0.6n p == (B )6,0.4n p == (C )8,0.3n p == (D )24,0.1n p ==4、对于任意两个随机变量,X Y ,若()E XY EX EY =⋅,则( ) (A )()D XY DX DY =⋅ (B )()D X Y DX DY +=+ (C ),X Y 独立 (D ),X Y 不独立5、设随机变量X 的概率密度为()x ϕ,且()()x x ϕϕ-=,()F x 是X 的分布函数,则对任意实数a ,有( )(A )0()1()aF a x dx ϕ-=-⎰ (B )01()()2aF a x dx ϕ-=-⎰(C )()()F a F a -= (D )()2()1F a F a -=-三、计算题(每题10分)1、已知离散随机变量X 的概率分布为:{1}0.2,{2}0.3,{3}0.5P X P X P X ======。
概率论与数理统计模拟试题

选择题1.设h⑴,卩2。
)为两个分布函数,苴相应的概率密度/i(X),/2(尤〕是连续函数,则必为概率密度的是(D)A /1U)/2WB 2f2W F lWD fiMF2W + /2(尤)耳002.设随机变量X飞(0,1), Y~N (1,4)且相关系数二1,则(D)A P(Y=-2X-1)=1B P(Y=2X-1)=1C P(Y=-2X+1)=1D P(Y=2X+1)=13.已知概率论的期末考试成绩服从正态分布,从这个总体中随机抽取n二36的样本,并计算得英平均分为79,标准差为9,那么下列成绩不在这次考试中全体考生成绩均值卩的的宜信区间之内的有(),并且当置信度增大时,置信区间长度()。
已知:Z005 = 1.645,减小,减小,增大,增大答案:D解析:由题知,cr=9, n=36, X =79当 & 二时,1-—=2所以Z% 二Z。
®二—(J9X- — S =79 _ -— xl.645 = 76.5325yjn 亠J36—c9X+ —Za/9 =79 +^=x 1.645 =81.4675yjn〜J36即卩的的置信区间为(,)且当u的置信度1-a增大时,置信区间的长度也增大。
故,答案为D.4・下列选项中可以正确表示为分布函数F(x)或连续性随机变量的概率密度函数f(x)的是答案:B.解析:考点1.分布函数要满足右连续。
A 不满足右连续考点2.连续性随机变量的概率密度函数的X 范I 期为(-8,*0),且在这个范|刑上积分和为.为,D 为(-1)。
故C, D 错误5.设随机变MX,r 服从正态分布N(—1,2),“(1,2),并且X, Y 不相关,aX + Y 与X +bY 亦不相关,则().(A) a — b = 1(B) a —b = 0 (C) a + b = 1 (D) a+b = 0应选(D).解 X~N(—1,2),厂N(l,2),于是D (X )= 2,D (K )=2. 又 Cov(X,Y) = 0.Cov(aX + Y^X+bY) = 0. 由协方差的性质有Cov(aX + Y,X +aY)=aCov(X, X) + Cov(Y, X) + abCov(X, Y) + bCov(Y 、Y) = aD(X)+bD(Y) = 2a + 2b =0故a + b = 0•故选(D)・&设X 为禽散性随机变量,且p = P[X=ad(i = l,2……),则X 的期望EX 存在的充分 条件是()0,x <0 0,x<0-,0 < x < 2A. F(x) = 33—,2 < x<5 4 B. F(x)=l,x> 57tx.— < x< 1 4 l,x>lC. f(x) = <,x>0 0,x<0D ・ f(x)=sinsK 竺20,其它limmslim n t s答案:D解析:EX 存在o 习伽|/川收敛,所以是EX 存在的必要条件并不一泄是充分条件.而Bn=l不能保证收敛,因而正确选项是D期望和级数知识的综合考察。
哈工大--最全版本--概率论模拟试题

概率论与数理统计模拟试题(一)一、填空题(每小题3分,共5小题,满分15分)1.设事件,,A B C 两两独立,且ABC φ=,1()()()2P A P B P C ==<, 9()16P A B C =,则()P A = . 2.设两个相互独立的事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相等. 则()P A = .3.设随机变量~(1,1)X -,则X Y e =的概率密度为()Y f y = .4.设随机变量[]~0,6X U ,1~12,4Y B ⎛⎫⎪⎝⎭,且X 与Y 相互独立,则根据切比雪夫不等式有:(33)P X Y X -<<+≥__________.5.总体22~(,),0.04X N μσσ=抽取容量为16的样本,测得均值1.416,若μ的置信区间是(1.4160.098,1.4160.098)-+,则置信度_________. 二、选择题(每小题3分,共5小题,满分15分)(每小题给出的四个选项中,只有一个是符合题目要求的,把所选项的字母填在题后 的括号内)1.设,,A B C 是三个独立的随机事件且0()1P C <<. 则在下列给定的四对事件中不相互独立的是( ) (A )AB 与C ; (B )BC 与C ; (C )A B -与C ; (D )AB 与C .2.设随机变量X 的概率密度为21()(1)f x x π=+,则2Y X =的概率密度为( ) (A )21(14)y π+; (B )21(4)y π+; (C )22(4)y π+; (D )22(1)y π+.3.如下四个函数中不是随机变量分布函数的是( )(A )21,0()1,02x F x x x ≥⎧⎪=⎨<⎪+⎩ (B )0,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩(C )()(),x F x f t dt -∞=⎰其中()1f t dt ∞-∞=⎰(D )0,0()1,0xx F x e x -≤⎧=⎨->⎩4.随机变量7~(1,1),X U Y X -=,则( )(A )X 与Y 不相关,不独立 (B )X 与Y 相关,不独立 (C )X 与Y 不相关,独立 (D )X 与Y 相关,独立 5.设1,,n X X 是总体X 的样本,2,EX DX μσ==,X 是样本均值,2S 是样本方差,则( )(A )21(,)XN nμσ; (B )2S 与X 独立;(C )2S 是2σ的无偏估计; (D )222(1)(1)n S n χσ--. 三、(10分)某炮台上有三门炮,假定第一门炮的命中率为0.4,第二门炮的命中率为0.3,第三门炮的命中率为0.5,今三门炮向同一目标各射一发炮弹. 结果有两弹中靶,求第一门炮中靶的概率?四、(10分)某种商品一周的需求量是一个随机变量,其概率密度为,0()0,0t te t f t t -⎧>=⎨≤⎩设各周的需求量是相互独立的,试求两周需求量的概率密度.五、(10分)设随机变量X 的密度函数1,203(),10,x f x A x B ⎧-<<⎪⎪=<<⎨⎪⎪⎩其他,分布函数()F x 在2x =处的值5(2)6F =,求(1),A B . (2)若||Y X =,求,X Y 联合分布函数(,)F x y 在(2,3)处的值.六、(14分)总体X密度函数2232,(1,) ()(1)0,xf x xθθθ⎧∈⎪=-⎨⎪⎩其他抽取简单随机样本1,,nX X,求θ的矩估计和最大似然估计.七、(6分)证明若2~()X n χ,则,2EX n DX n ==.概率论与数理统计模拟试题(二)一、填空题(每小题3分,共5小题,满分15分) 1.已知11()()(),()0,()()416P A P B P C P AB P AC P BC ======,则,,A B C 都不发生概率为 .2.随机变量2~(),12X P EX λ=,则(1)P X ≥= .3.随机变量X 的密度函数为1,0121(),1340,x f x x ⎧<<⎪⎪⎪=<<⎨⎪⎪⎪⎩其他,则12Y X =-的密度函数()Y f y =__________.4.设随机变量X 的概率密度为1,10,()1,01,0,x x f x x x +-≤<⎧⎪=-<≤⎨⎪⎩其它.则方差DX = . 5.已知一批零件的长度(,1)XN μ,从中随机地抽取16个零件,得样本均值40x =,则μ的置信度0.95的置信区间为__________.二、选择题(每小题3分,共5小题,满分15分)(每小题给出的四个选项中,只有一个是符合题目要求的,把所选项的字母填在题后 的括号内)1.设,,A B C 三个事件两两独立,则,,A B C 相互独立的充分必要条件是( ) (A )A 与BC 独立; (B )AB 与A C 独立;(C )AB 与AC 独立; (D )AB 与AC 独立.2.下列四个函数中,能成为随机变量密度函数的是 (A )||()x f x e-= (B )21()(1)f x x π=+(C)22,0()00xx f x x -⎧≥=<⎩, (D )1,||1()0,||1x f x x ≤⎧=⎨>⎩3.随机变量,X Y 独立同分布,11~(,),(1)22X N P X Y μ+≤=,则μ= .(A )1- (B )0 (C )12(D )14.将一枚硬币重复掷n 次,以X 和Y 分别表示正、反面向上的次数,则X 和Y 的相关系数等于( )(A )1; (B )1-; (C )0; (D )21. 5.设12,,,n X X X 是来自具有2()n χ分布的总体的样本,X 为样本均值,则EX和DX 的值为( )(A )EX n =,2DX =; (B ),2EX n DX n ==; (C )1,2EX DX ==; (D )1,EX DX n n==. 三、(10分)设一批晶体管的次品率为0.01,今从这批晶体管中抽取4个,求其中恰有1 个次品和恰有2个次品的概率?四、(10分)(,)X Y 的密度2,0(,)(0)0,x e y xf x y λλλ-⎧<<=>⎨⎩其他求Z X Y =+的概率密度函数()Z f z .五、(10分)随机变量01015~,~,131384444X Y EXY ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭求(1)(1)P X Y +≤; (2)max(,)E X Y .六、(6分)在射击比赛中,每人射击三次(每次一发),约定全部不中得0分,只中一弹得5分,中二弹得10分,中三弹得20分。
概率论与数理统计模拟试题集(6套,含详细答案)

《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。
正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。
三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》(B )模拟试题(一)
一 判断题(2分ⅹ5=10分)
1.其概率为1的事件,必定是必然事件.
2.若事件A,B 相互独立,则,A B 也相互独立.
3.若事件X,Y 都服从正态分布,则(X,Y)也服从正态分布.
4.连续型随机变量X,Y 相互独立的充要条件是f(x,y)=()()X Y f x f y ⋅.
5.设
12,,,n X X X ⋅⋅⋅是来自总体X 的样本,且E(X)=μ,(1)X t n -.
二 单选题(3分ⅹ5=15分)
1.若事件A,B 相互独立,则概率P(A B)= .
(A) P(A+B) (B) 1-P(A )P(B ) (C) P(A )+P(B ) (D) 1-P(A)P(B)
2. 设X 的概率密度为:当x ≥0时,()f x =3x Ae -;当x<0时, ()f x =0,则A= .
(A) 1/3 (B) –1/3 (C) 3 (D) --3
3. 设X,Y 相互独立,且P(X=0)=13,P(X=1)=23, P(Y=0)=13, P(Y=1)=23
, 则P(X=Y)= 。
(A)59 (B) 49 (C) 29 (D) 19
4 . 设X 在[2,4]上服从均匀分布,则E (2X+1)= .
(A) 1 (B) 3 (C) 5 (D) 7
5. 设总体X N(2,μσ), 其中2,μσ为未知参数, 1,2,,n X X X ⋅⋅⋅是来自总体X 的一个样本,则可作为2σ的无偏估计的是 . (A) 11n - 21()n i i X μ=-∑ (B) 1n 21()n i i X μ=-∑ (C) 11n -21()n i i X X =-∑ (D) 1n 21()n i i X X =-∑
三、填空题(4分ⅹ5=20分)
1. 设A,B,C 为任意事件,则“A,B,C 中至少有两个事件出现”可表示为 。
2 设A,B 为随机事件,且P(B)=, P(AB)=, 则条件概率P(A ∕B)= . 3 已知离散型变量X 的分布律为P(X=k)=a k b (k=1,2,….),则b= . 4 设X,Y 相互独立,且D(X)=D(Y)=1, 则D(2X-3Y)= .
5. 设X U[0,3θ], (0θ≥,未知), 1,2,,n X X X ⋅⋅⋅是来自总体X 的一个样本,且
1
1n
i i X X n ==∑,则参数θ的估计量为 . 四 (10分) 已知事件A,B 相互独立,且P(A)=, P(B)=, 求P(A ∪B), P(A-B).
五 (10分). 一袋中共有3个黑球,7个白球,今从中任意抽球两次,每次抽取一个,抽后不放回,求第二次抽出的是黑球的概率.
六 (10分). 已知电源电压X 服从正态分布N(220,225), 在电源电压处于以下
三种状态: X ≤200V, 200V ≤X ≤240V, X ≥240V 时,某电子元件损坏的概率分别为, , . 试求: (1) 该电子元件损坏的概率; (2) 该电子元件损坏时, 电压在200—240V 之间的概率. (已知:0(0.8)0.7881Φ=).
七(12分).已知X,Y 相互独立, (X,Y)的分布律为: P(X=1,Y=1)=
318, P(X=1,Y=2)=218, P(X=1,Y=3)=118, P(X=2,Y=1)= 618
, P(X=2,Y=2)=α, P(X=2,Y=3)=β. 试求: (1) ,αβ的值; (2) X,Y 的边缘分布;.
八 (13分) 设1,2,,n X X X ⋅⋅⋅是来自总体X 的一个样本, X 的概率密度为f(x)= 其中θ>1的未知参数,试求θ的矩估计量和极大似然估计量.
《概率论与数理统计》(B )模拟试题(二)
一、 判断题(2分ⅹ5=10分)
1. 其概率为0的事件,必定是不可能事件. ( )
2. 若事件A,B 相互独立,则AB=∅. ( )
3. 若(X,Y)的联合分布密度为
f(x,y), 则Y 的边缘分布密度为
()(,)Y f y f x y dx +∞-∞=
⎰.( ).
4. 若X,Y 相互独立, 都服从正态分布, 则(X,Y)服从二维正态分布. ( )
5. 设1,2,,n X X X ⋅⋅⋅是来自总体X 的一个样本, 且E (X )=μ,则
(1)X t n -。
二 单选题(3分ⅹ5=15分)
1. 下列表示式与A B=B,不等价的是 .
(A) A ⊂B (B) B A ⊂ (C) AB =∅ (D) AB =∅
2. 设P(A)=P(B)=P(C)=1/4, P(AB)=0, P(AC)=P(BC)=1/6, 则事件A,B,C 都不发生的概率为 .
(A) 5/12 (B) 3/4 (C) 7/12 (D) 1/4
3. 设X 的分布函数F(x)= a+1π
arctanx, 则常数a= . (A) 1/2 (B) 2 (C) π (D) 1/ π
4. 设X,Y 相互独立,且方差D(X)=D(Y)=1, 则方差D(3X--4Y)= .
(A) –1 (B) 7 (C) –7 (D) 25
5. 设总体X 2(,),N μσ其中2μσ,为未知参数, 1,2,,n X X X ⋅⋅⋅是来自X 的一个样本,则可作为2σ的无偏估计量的是 . (A) 1n 21()n i i X μ=-∑ (A) 11n - 21
()n i i X μ=-∑ (C) 1n 21()n i i X X =-∑ (D)11n -21()n i i X X =-∑
三 填空题 (4分ⅹ5=20分)
1. 设A,B 为任意事件,则“事件A,B 中最多有一个事件发生”可表示为 .
2. 设A,B 为随机事件,且P(AB)=, P(A/B)=, 则P(B)= .
3. 已知离散型随机变量X 的分布律为P(X=k)=a 23k
⎛⎫ ⎪⎝⎭
,k=1,2,…, 则常数a= .
4. 设X 服从[2,4]上的均匀分布,则数学期望E(2X+2)= .
5. 从一批零件中随机抽取5只,测得其长度为, , , , , 则样本的均值为 .
四 (10分) 已知事件A,B 相互独立, P(A)=, P(B)=, 求P(A B), P(A--B). 五 (10分) 将20个球队平均分成两组, 每组10个队,求最强的两个队刚好各在一个组的概率.
六 (10分) 设连续型随机变量X 的概率密度函数为: 当2x π≤
时, f(x)=Acosx, 当2
x π
>时,f(x)=0. 试求: (1) 常数A; (2)计算概率P(0<X<π/4); (3)求X 的分布函数F(x).
七 (12分) 设袋中有3个球,其标号为1,2,2. 今从中不放回地任取2个球, 记X,Y 为第1,2次抽得球的标号,试求: (1) (X,Y)的联合概率分布律; (2) X,Y 的边缘概率分布律.
八 (13分) 设总体X 具有分布律: 当x=0,1,2,…时,p(x,θ)=!x e x θ
θ-, 当x 取其
它值时, p(x,θ)=0. 又1,,n X X ⋅⋅⋅是来自总体X 的一个样本,求θ的最大似然估计量.
《概率统计》(B )模拟试题(一) 答案
一、 1. 错 2. 对 3 .错 4. 对 5 .对
二、 1. (B) 2.(C) 3.(A) 4.(D) 5.(C)
三、 1.ABC ABC ABC ++. 2. 3. 11a + 4. 13 5. 23
X . 四、 P(A ∪B)=, P(A-B)=
五、记i A =第i 次抽得黑球, 则2121232733()()()10910910
P A P A A P A A =+=⋅+⋅= 六、 2220(220,25),(0,1).25
X X N Y N -∴= (1) P(电子损坏)=P{X<200}+P{200<X<240}+P{X>240} =.
(2) P{200<X<240∕损坏}=0.0057620.069332
=. 七、(1) P(X=1)=13, P(X=2)=23, P(Y=1)=12, P(Y=2)=13, P(Y=3)=16
. 八、(1) ˆ3X X θ=-, (2)1ˆln ln 3n i
i n X
n θ==-∑. 《概率统计》(B )模拟试题(二) 答案
一、1.错 2. 错 3. 对 4. 对 5. 错
二、1. (D) 2. (C) 3. (A) 4. (D) 5. (B) 三、1. AB AB AB ++
. 2. 3. 1/2 4. 2 5.
四、;
五、10/19
六、/4, (3) 0; (Sin x+1)/2.
七、(1) 0,1/3, 1/3, 1/3 (2) 1/3, 2/3; 1/3, 2/3
八、ˆθ=X .。