洛伦兹力如何变化匀速圆周运动一
洛伦兹力问题及解题策略

祝同学们学习快乐!
练习1.电子质量为m电荷量为q,以速度v0与x轴成θ角射入磁感应强度为B 的匀强磁场中,最后落在x轴上的P点,如图所示,求: (1)的op长度; (2)电子由O点射入到落在P点所需的时间t.
【解析】带电粒子在匀强磁场中做匀速圆周运动,应根据已知条件首先确定 圆心的位置,画出运动轨迹.所求距离应和半径R相联系,所求时间应和粒子 转动的圆心角θ、周期T相联系.
(2)如图乙所示,图中P为入射点,M为 出射点,已知入射方向和出射点的位置时, 可以通过入射点作入射方向的垂线,连接 入射点和出射点,作其中垂线,这两条垂 线的交点就是圆弧轨道的圆心O。
2.半径、周期的计算:带电粒子垂直磁场方向射入磁场,只受洛伦兹 m v2 R
[解析] 当带电粒子带正电时,轨迹如图中OAC,对粒子,由于 洛伦兹力提供向心力,则
qv0B=mRv20,R=mqBv0, T=2qπBm 故粒子在磁场中的运动时间 t1=234600°°T=43πqmB
粒子在 C 点离开磁场 OC=2R·sin60°=
3mv0 qB
故离开磁场的位置为(- 3qmBv0,0) 当带电粒子带负电时,轨迹如图中 ODE 所示,同理求
解得 v1=B4qmd.
设粒子刚好打在上极板右边缘时,
由图知:R22=L2+(R2-d2)2,所以 R2=4L24+d d2,
又 R2
=
mv2,解得 Bq
v2=Bq44Lm2+d d2.
综上分析,要使粒子不打在极板上,
其入射速率应满足以下条件:
v<B4qmd或
Bq4L2+d2 v2> 4md
答案:v<B4qmd或
磁场,离开磁场时速度方向偏转了60°角.试求:
洛伦兹力问题及解题策略

判断洛伦兹力的方向可以使用左 手定则,即伸开左手,让大拇指 与四指在同一平面内且互相垂直, 将磁感应强度穿过掌心,四指指 向正电荷的运动方向,大拇指所 指方向即为洛伦兹力的方向。
在解决洛伦兹力问题时,需要对 带电粒子进行受力分析,特别是 分析洛伦兹力的方向和大小,以 便进一步求解问题。
03 解题策略
2
在解题过程中,应注意逻辑的严密性和物理量的 单位统一,避免出现计算错误和单位不统一的情 况。
3
在解题过程中,应注意对题目中的隐含条件进行 挖掘和分析,如磁场方向、粒子的电性等。
THANKS FOR WATCHING
感谢您的观看
洛伦兹力公式F=qvB只在非匀 强磁场中成立,在匀强磁场中,
洛伦兹力应为F=qvBsinθ。
当带电粒子在磁场中做匀速 圆周运动时,洛伦兹力提供
向心力,即F=mv²/r。
在处理带电粒子在磁场中的运 动问题时,应先分析粒子的受 力情况,再根据牛顿第二定律
列方程求解。
注意解题的逻辑性和严密性
1
在解题过程中,应先明确已知条件和待求量,再 根据物理规律建立方程,最后求解方程得出结果。
洛伦兹力的大小和方向
洛伦兹力的大小公式为:F=qvBsinθ,其中q为粒子电量,v为粒子速度,B为磁感应强度,θ为粒子运动方向与磁场方向的夹角。
洛伦兹力的方向由左手定则确定,伸开左手,让大拇指与其余四指垂直,将左手放入磁场中,让磁感线垂直穿过手心,四指 指向粒子的运动方向,则大拇指所指方向即为洛伦兹力的方向。
05 解题技巧与注意事项
掌握洛伦兹力的基本性质
01
洛伦兹力始终垂直于运动方向,不会改变速度的大小,只改变 速度的方向。
02
洛伦兹力的大小与磁感应强度、电荷量以及速度大小有关,方
洛伦兹力边界以及动态圆

带电粒子在匀强磁场中的运动1.两种方法定圆心方法一:已知入射点、入射方向和出射点、出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示)。
方法二:已知入射方向和入射点、出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示)。
2.几何知识求半径利用平面几何关系,求出轨迹圆的可能半径(或圆心角),求解时注意以下几个重要的几何特点:(1)粒子速度的偏向角(φ)等于圆心角(α),并等于AB 弦与切线的夹角(弦切角θ)的2倍(如图所示),即φ=α=2θ=ωt 。
(2)直角三角形的应用(勾股定理)。
找到AB 的中点C ,连接OC ,则△AOC 、△BOC 都是直角三角形。
3.两个观点算时间观点一:由运动弧长计算,t =lv (l 为弧长); 观点二:由旋转角度计算,t =α360°T ⎝⎛⎭⎫或t =α2πT 。
4.三类边界磁场中的轨迹特点 (1)直线边界:进出磁场具有对称性。
(2)平行边界:存在临界条件。
(3)圆形边界:等角进出,沿径向射入必沿径向射出。
类型(一)直线边界问题[例1](多选)如图所示,一单边有界磁场的边界上有一粒子源,以与水平方向成θ角的不同速率,向磁场中射入两个相同的粒子1和2,粒子1经磁场偏转后从边界上A点出磁场,粒子2经磁场偏转后从边界上B点出磁场,OA=AB,则()A.粒子1与粒子2的速度之比为1∶2B.粒子1与粒子2的速度之比为1∶4C.粒子1与粒子2在磁场中运动的时间之比为1∶1D.粒子1与粒子2在磁场中运动的时间之比为1∶2[解析]粒子进入磁场时速度的垂线与OA的垂直平分线的交点为粒子1在磁场中做圆周运动的圆心,同理,粒子进入磁场时速度的垂线与OB的垂直平分线的交点为粒子2在磁场中做圆周运动的圆心,由几何关系可知,两个粒子在磁场中做圆周运动的半径之比为r1∶r2=1∶2,由r=m vqB可知,粒子1与粒子2的速度之比为1∶2,A项正确,B项错误;由于粒子在磁场中做圆周运动的周期均为T=2πmqB,且两粒子在磁场中做圆周运动的轨迹所对的圆心角相同,因此粒子在磁场中运动的时间相同,即C项正确,D项错误。
洛伦兹力问题

v=v孔射出的速度为vR=+()R=LB==5vr=evB=mt=.R==T/4===m-mvOC=()==R=mvB=m,则R==0.2m PQ=2PO=2=0.2≈0.35m.v=m2解析(1)要使电子不发生偏转,则应有电场力与洛伦兹力相等,即eE=ev0B,则E=v0B.(2)电子在电场中向上偏转量s=t2,且tanθ==,而在加速电场中,有eU=mv02,且l=v0t,又偏移距离y=s+dtanθ,解以上方程得U=.五、带电粒子在电磁场中的动态运动问题顾名思义,在处理带电粒子或带电物体,在电磁场中的动态问题时,要正确进行物体的运动状况分析,找出物体的速度、位置及其变化,分清运动过程,注意正确分析其受力,此乃求解之关键.[例8] 如图10所示,套在很长的绝缘直棒上的小球,其质量为m,带电荷量为+q,小球可在棒上滑动,将此棒竖直放在互相垂直且沿水平方向的匀强电场和匀强磁场中,电场强度是E,磁感强度是B,小球与棒的动摩擦因数为μ,求小球由静止沿棒下落的最大加速度和最大速度.(设小球带电荷量不变)解析小球的受力情况如图10所示,且有N=qE+qvB因而F合=mg-μ(qE+qvB),显然随着v的增大,F合减小,其加速度也减小,即小球做加速度减小的变加速度运动,当a=0时,速度达最大值,故可解得v=0时,a m==g-a=0时,即mg-μ(qE+qvB)=0时,v m=.六、极值问题求极值是物理学中的一类重要问题,可以通过对物理过程准确分析反映学生分析问题的能力,一般地首先要建立合理的物理模型,再根据物理规律确定极端情况而求极值,此即所谓的物理方法求极值.当然根据需要也可以采用其他方法如几何方法、三角方法、代数方法等.[例9]如图11所示,真空的狭长的区域内有宽度为d,磁感强度为B的匀强磁场,质量为m、电荷量为q的带负电的粒子,从边界AB垂直磁场方向以一定的速率v射入磁场,并能从磁场边界CD穿出磁场,则粒子入射速度跟边界AB成角θ=_________时,粒子在磁场中运动时间最短.(不计重力,结果用反三角函数表示)解析带电粒子以一定的速率射入磁场时,其运动半径是一定的.当粒子在磁场中运动时间最短时,圆周的圆心角应最小,即对应的弧长(或弦长)也最短.显然,最短的弦长为磁场宽度d,由图12,则有cosθ=时,即R=,又qvB=m,则有R=,故cosθ=.因此,粒子入射速度跟边界AB成角θ=arccos时,粒子在磁场中运动时间最短.[例10]顶角为2θ的光滑圆锥置于方向竖直向下的匀强磁场中,小球质量为m,带电荷量为q,磁场的磁感强度为B,小球沿圆锥面做匀速圆周运动,则:(1)顺着磁场方向看,小球如何运动?(2)小球运动的最小半径是多少?[解析]小球此时受重力及弹力作用,要使小球能绕圆锥运动,当小球处于图13位置时还须受水平方向向右的洛伦兹力,由左手定则可判知小球由图示位置向外运动,即顺着磁场方向看,小球逆时针运动.在水平方向有qvB-Ncosθ=m在竖直方向有Nsinθ=mg故qvB-mgcotθ=m即mv2-qvBR+mgRcotθ=0当该方程有解时,则必有(qBR)2-4m2gRcotθ≥0解之得R≥4m2g/q2B2tanθ,因此小球运动的最小半径为R=4m2g/q2B2tanθ.七、洛伦兹力在实际中的应用电场可以对带电粒子有电场力的作用,而磁场对运动的带电粒子有洛伦兹力作用.当电场和磁场共同存在时,对带电粒子也会施加影响,这一知识在现代科学技术中有着广泛的应用.1.带电粒子在电场力和洛伦兹力同时作用下的运动主要有三种应用,即速度选择器、磁流体发电机和霍尔效应.2.带电粒子在电场力与洛伦兹力递次作用可交替作用下的运动也有三种应用,即电视显像管、质谱仪和回旋加速器.[例11]质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图14所示,离子源S产生的一个质量为m电荷量为q的正离子,离子产生时速度很小,可以看作是静止的,离子产生出来后经过电压U加速,进入磁感应强度为B的匀强磁场,沿着半圆周运动而达到记录它的照相底片P上,测得它在P上的位置到入口处S1的距离为x,则下列说法正确的是( )A.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明离子的质量一定变大;B.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明加速电压U一定变大C.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明磁感应强度B一定变大D.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明离子所带电荷量q可能变小解析离子加速时,有qU=,在匀强磁场中,做圆周运动,有qvB=m,而x=2R,由以上方程,得x2=,可见本题正确选项为D.[例12] 磁流体发电技术是一种目前世界上正在研究的新兴技术,它可以直接把内能转化为电能,同时具有效率高(可达45%~55%,火力发电效率为30%),污染少等优点.其原理如图15所示,将一束等离子体(高温下电离的气体,含有大量带正电和带负电的微粒)以声速的0.8~2.5倍的速度喷射入磁场中,磁场中有两块金属板A、B,这时A、B上就积聚电荷产生电压,设粒子所带电荷量为q,进入磁场的喷射速度是v,磁场的磁感应强度为B,两块金属板的面积为S,AB间的距离为d.(1)该磁流体发电机的电动势有多大?(2)设磁流体发电机内阻为r,当外电阻R是多少时输出功率最大?并求最大输出功率.(3)为使等离子体以恒定速度v通过磁场必须使通道两端保持一定的压强差,压强差为多大?解析(1)磁流体发电机的电动势即为S断开时,电源两极板间的电势差,在洛伦兹力作用下,等离子体中的正、负电荷分别向上、下板偏转,使两极板间产生电势差,且电势差随着电荷在两极板上的积累而增大,当电荷不偏转时,两极板间电势差达到最大值.此时有qvB=qE=q,则U=Bdv.该磁流体发电机的电动势E=Bdv.(2)发电机的输出功率P=I2R=()2R==显然,当外电阻R=r时输出功率最大,且P m=.(3)当等离子体受到的洛伦兹力与等离子压力差相等时方可以恒定速度通过磁场,即有△p=又F=BId,I==解之得△p=.八、与力学的综合题这类问题是以洛伦兹力为载体,本质上可看作是力学题,故解题中在考虑洛伦兹力的前提下,可以利用解决力学问题的三大方法处理之,即动力学观点,包括牛顿三大定律和运动学规律;动量观点,包括动量定理和动量守恒定律;能量观点,包括动能定理和能量守恒定律.在上述方法中,应首选能量观点和动量观点,对多个物体组成的系统,优先考虑两大守恒定律.[例13]一小球质量为m,带负电,电荷量为q,由长l的绝缘丝线系住,置于匀强磁场中,丝线的另一端固定在A点,提高小球,使丝线拉直与竖直方向成60°角,如图16所示.调节磁场的磁感强度B0,释放小球,球能沿圆周运动,到最低点时,丝线的张力为零,且继续摆动,求:(1)摆球至最低点时的速度;(2)B0的值;(3)小球在摆动过程中丝线受的最大拉力.解析(1)小球在磁场中受到重力、弹力及洛伦兹力作用,但从释放到运动至最低点只有重力做功,由动能定理,则有mgl(1-cos60°)=mv2解之得v=.(2)在最低点时,洛伦兹力与重力的合力提供向心力,即有qvB0-mg=m,由以上二式,解得B0=.(3)由于小球运动方向的不同而使洛伦磁力方向改变,不难判断当小球从右边开始运动时,张力较大,且最低处张力最大,此时有T-qvB0-mg=m解之得T=4mg.[例14]一带电液滴在互相垂直的匀强电场和匀强磁场中运动,已知E和B,若此液滴在垂直磁场的平面内做半径为R的匀速圆周运动,如图17所示.求:(1)液滴速度的大小,绕行方向;(2)液滴运动到轨道最低点A分裂为质量、电荷量都相等的两液滴,其中一个液滴仍在原运动平面内做半径R1=3R的匀速圆周运动,绕行方向不变,且这个圆周最低点仍为A,则另一个液滴如何运动?解析本题文字叙述较长,但只要理解题意,求解仍是较简单的.(1)据题意,应有qE=mg,由此可判断液滴带负电,且qvB=m,则v=BqR/m=BgR/E,方向为顺时针方向.(2)分裂后,有.则v1=3BqR/m=3BgR/E由动量守恒定律,则有mv=故v2=2v-v1=-BgR/E这说明,另一液滴做反方向的圆周运动,且半径不变.[例15]一个质量m,带有+q电荷量的小球,悬挂在长为L的细线上,放在匀强磁场中,其最大摆角为α,为使摆的周期不受磁场影响,磁感应强度B应有何限制?解析由左手定则易判断:小球向左摆动时,所受洛伦兹力背离悬点,将使悬线张力增加,但不影响摆的周期,而向右摆动时,如B足够大,小球可能向悬点移动进而破坏其正常摆动.设小球处于图中的位置时摆球速度为v,当周期不受磁场影响时由机械能守恒定律,有=mgL(cosβ-cosα)据牛顿第二定律,有T+qvB-mgcosβ=m由以上二式可求得T=0时的B值,且B=,可见,T=0时B的取值与小球运动的速度v有关.由有关数学方法可以求得当时,B有最小值,即v=时,最小值B min=.这说明了当B=B min时,其他位置上悬线的张力均大于零,故使摆周期不受影响的磁感应强度应满足条件B min≤.[例16]如图19所示,在某一足够大的真空室中虚线PH的右侧是一磁感应强度为B,方向垂直纸面向里的匀强磁场,左侧是一场强为E,方向水平向左的匀强电场.在虚线PH上的一点O处有质量为M,电荷量为Q的镭核().某时刻原来静止的镭核水平向右放出一个质量为m,电荷量为q的α粒子而衰变为氡核(Rn),设α粒子与氡核分离后它们之间的作用力可忽略不计,涉及动量问题时,亏损的质量可不计.(1)写出镭核衰变为氡核的核反应方程;(2)经过一段时间α粒子刚好垂直到达虚线PH上的A点,测得OA=L,求此刻氡核的速度.解析(1)根据核衰变的特点可知,镭核衰变为氡核时满足电荷数守恒和质量数守恒,故有.(2)镭核衰变时遵守动量守恒定律,则(M-m)v0=mvα粒子在匀强磁场做匀速圆周运动,在磁场中运动了圆周,则到达A点需时t=且有qvB=m,R=L/2而氡核在电场中做匀加速直线运动,t时刻速度v t=v0+at,同时满足牛顿第二定律,即(Q-q)E=(M-m)a,联立以上各式解得所求氡核速度为v t=.。
洛伦兹力

答案 AD
[思考]
若没有轨道存在, 两小球运动的轨 迹如何? 答案 A球将沿直 线做匀加速运 动. B球的轨迹是摆线, 如下图所示.
三、带电体在洛伦兹力作用下的运动问题
洛伦兹力特点: 可能是恒力 也可能是变力
(匀速) (变速)
直线
曲线 变速运动中f洛大小、方向均有可能改变,与 速度有关。(状态)
洛伦兹力及其应用
磁场对运动电荷的作用 ---洛伦兹力
1.洛伦兹力的大小 F安是F洛宏观体现
F=Bqvsinθ, θ为v与B的夹角
v∥B时.洛伦兹力F=0 v⊥B时,洛伦兹力F=Bqv 2.洛伦兹力的方向 左手定则: 注意:1)F ⊥ B和v所决定的平面(因为它由B、V 决定),但B与V不一定垂直(因为它们由自身决 定) 2)四指的指向是正电荷的运动方向或负电荷 运动的反方向 3.洛伦兹力对运动电荷不做功,只改变运动电荷 速度的方向 .
aO' b 60
即
1 m t T 6 3qB
特点1 入射速度方向指向匀强磁场区域圆的圆心, 则出射速度方向的反向延长线必过该区域圆的圆心。
(3)圆形磁场区域 特点2 入射速度方向(不一定指向区域圆圆心) 初末速度方向的交点、轨迹圆的圆心、区域圆的 圆心都在弧弦的垂直平分线上。 (弦切角为 ),则出射速度方向与入射速度方向的 偏转角为 2 ,轨迹圆弧对应的圆心角也为 2
即V>Bed/m。
O
B
拓展:如已知带电粒子的质量m和电量e,若要带电粒 子能从磁场的右边界射出,粒子的速度V必须满足什 么条件?
(3)圆形磁场区域 例1。 如图1,圆形区域内存在垂直纸面向里的匀强 磁场,磁感应强度为B,现有一电荷量为q,质量为m 的正离子从a点沿圆形区域的直径入射,设正离子射 出磁场区域方向与入射方向的夹角为 60 求:此离子在磁场区域内飞行的时间。 由几何关系得出
(完整版)洛伦兹力问题及解题策略

洛伦兹力问题及解题策略《磁场》一章是高中物理的重点内容之一.历年高考对本章知识的考查覆盖面大,几乎每个知识点都考查到,纵观历年高考试题不难发现,实际上单独考查磁场知识的题目很少,绝大多数试题的考查方式为磁场中的通电导线或带电的运动粒子在安培力或洛伦兹力作用下的运动,尤其以带电粒子在洛伦兹力作用下在匀强磁场中做匀速圆周运动的问题居多,侧重于知识应用方面的考查,且难度较大,对考生的空间想象能力及物理过程、运动规律的综合分析能力要求较高.从近十年高考物理对洛伦兹力问题的考查情况可知,近十年高考均涉及了洛伦兹力问题,并且1994年、1996年、1999年还以压轴题的形式出现,洛伦兹力问题的重要性由此可见一斑;自1998年以来,此类问题连续以计算题的形式出现,且分值居高不下,由此可见,洛伦兹力问题是高考命题的热点之一,可谓是高考的一道“大餐”.全国高考情况是这样,近年开始实施的春季高考及理科综合能力测试也是这样,甚至对此类问题有“一大一小”的现象,即一个计算题,同时还有一个选择题或填空题,故对洛伦兹力问题必须引起高度的重视.本文将对有关洛伦兹力问题的类型做一大致分类,并指出各类问题的求解策略.一、带电粒子在磁场中做匀速圆周运动的圆心、半径及周期1. 圆心的确定:因为洛伦兹力指向圆心,根据F丄V,只要画出粒子运动轨迹上的两点(一般是射入和射出磁场的两点)的洛伦兹力方向,沿两个洛伦兹力方向做其延长线,两延长线的交点即为圆心.2. 半径和周期的计算:带电粒子垂直磁场方向射入磁场,只受洛伦兹力,将做匀速圆周运动,此时应有qvB=m,由此可求得粒子运动半径R=E,周期T=2nm/qB,即粒子的运动周期与粒子的速率大小无关.这几个公式在解决洛伦兹力的问题时经常用到,必须熟练掌握.在实际问题中,半径的计算一般是利用几何知识,常用解三角形的知识(如勾股定理等)求解.[例1]长为L,间距也为L的两平行板间有垂直纸面向里的匀强磁场,如图1所示,磁感强度为B,今有质量为m带电荷量为q的正离子,从平行板左端中点以平行于金属板的方向射入磁场,欲使离子恰从平行板右端飞出,入射离子的速度应为多少?解析应用上述方法易确定圆心Q则由几何知识有k图1 L2+(R- 2 )2二戌又离子射入磁场后,受洛伦兹力作用而做匀速圆周运动,且有qvB二m由以上二式联立解得v=5qBL/4m[例2]如图2所示,abed是一个正方形的盒子,在cd边的中点有一小孔e,盒子中存在着沿ad方向的匀强电场,场强大小为E. 一粒子源不断地从a处的小孔沿ab方向向盒内发射相同的带电粒子,粒子的初速度为v o,经电场作用后恰好从e处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B(图中未画出),粒子仍恰好从e孔射出.(带电粒子的重力和粒子之间的相互作用力均可忽略)(1) 判断所加的磁场方向;(2)求分别加电场和磁场时,粒子从e孔射出时的速率;⑶求电场强度E与磁感应强度B的比值.解析(1)根据粒子在电场中的偏转方向,可知粒子带正电,根据左手定则判断,磁场方向垂直纸面向外.(2) 设带电粒子的电荷量为q,质量为m盒子的边长为L,粒子在电场中沿ad方向的位移为L,沿ab方向的位移为弓,在电场中,有L=3 m1由动能定理EqL=212耳mv- 2 2mv由以上各式解得E==汕,v^7v o.在电场中粒子从e孔射出的速度为疔v o,在磁场中,由于粒子做匀速圆周运动,所以从e孔中射出的速度为v o.(3) 带电粒子在磁场中做匀速圆周运动,在磁场中v=v。
带电粒子在磁场中做匀速圆周运动的时间

带电粒子在磁场中匀速圆周运动的时间是一个物理学中的重要问题,涉及到磁场、带电粒子的运动规律等多个方面的知识。
本文将从相关概念的解释、物理公式的推导、实验验证等方面细致地分析带电粒子在磁场中做匀速圆周运动的时间问题,以期为读者深入理解这一问题提供一定的帮助。
一、带电粒子在磁场中匀速圆周运动的基本概念1.1 磁场的基本概念磁场是指物质中存在的与电流或磁矩相关的物理量。
处于磁场中的带电粒子会受到一个叫洛伦兹力的作用力而产生运动。
1.2 带电粒子在磁场中的运动规律处于磁场中的带电粒子会受到一个洛伦兹力,导致其做匀速圆周运动。
二、带电粒子在磁场中匀速圆周运动时间的物理公式推导2.1 带电粒子在磁场中受到的洛伦兹力带电粒子在磁场中受到的洛伦兹力可以表示为:F = qvBsinθ,其中q 为带电粒子的电荷量,v为带电粒子的速度,B为磁感应强度,θ为带电粒子速度方向与磁感应强度方向之间的夹角。
2.2 圆周运动的基本物理公式带电粒子在磁场中做匀速圆周运动的时间问题,可以通过圆周运动的基本公式来推导。
圆周运动的基本公式为:v = 2πr / T,其中v为速度,r为半径,T为运动周期。
2.3 带电粒子在磁场中做匀速圆周运动的时间推导通过将带电粒子在磁场中受到的洛伦兹力与圆周运动的基本公式相结合,可以得到带电粒子在磁场中做匀速圆周运动的时间公式:T = 2πm / (qB),其中m为带电粒子的质量,q为带电粒子的电荷量,B 为磁感应强度。
三、实验验证带电粒子在磁场中匀速圆周运动时间的方法3.1 实验装置为了验证带电粒子在磁场中做匀速圆周运动的时间,可以搭建一个简单的实验装置。
实验装置主要包括磁铁、电源、导线等。
3.2 实验步骤首先在实验装置中生成一个磁场,然后将带电粒子引入磁场中,观察带电粒子是否做匀速圆周运动,并测量带电粒子在磁场中做匀速圆周运动的时间。
3.3 实验结果分析通过实验数据的分析,可以验证带电粒子在磁场中做匀速圆周运动的时间公式的准确性,从而进一步验证相关理论。
洛伦兹力问题及解题策略知识讲解

解:(1)由左手定则可知,正
粒子在匀强磁场中应向 P 点
上方偏,轨迹如右图
(2)由 r=
mv qB
得
r=0.2
m
由T=
2πm qB
得T=0.126 s.
例3. 如图所示,一束电荷量为e的电子以垂直于磁场方向(磁感应强度为B)并 垂直于磁场边界的速度v射入宽度为d的磁场中,穿出磁场时速度方向和原来 射入方向的夹角为θ=30°.求电子穿越磁场轨迹的半径和运动的时间.
1、作出带电粒子在磁场中两个位置所受洛仑兹力,沿其方向延长线的交点确定 圆心,从而确定其运动轨迹。
2、作出带电粒子在磁场中某个位置所受洛仑兹力,沿其方向的延长线与圆周上 两点连线的中垂线的交点确定圆心,从而确定其运动轨迹。
3、①圆周上任意两点连线的中垂线过圆心 ②圆周上两条切线夹角的平分线过圆心 ③过切点作切线的垂线过圆心
v0
s
v
vy
例8.如图所示,空间分布着如图所示的匀强电场E(宽度为L)和匀强磁场B(两 部分磁场区域的磁感应强度大小相等,方向相反),一带电粒子电量为q,质量 为m(不计重力),从A点由静止释放,经电场加速后进入磁场穿过中间磁场进 入右边磁场后能按某一路径而返回A点,重复前述过程。求中间磁场的宽度d和 粒子的运动周期。
祝同学们学习快乐!
练习1.电子质量为m电荷量为q,以速度v0与x轴成θ角射入磁感应强度为B 的匀强磁场中,最后落在x轴上的P点,如图所示,求: (1)的op长度; (2)电子由O点射入到落在P点所需的时间t.
【解析】带电粒子在匀强磁场中做匀速圆周运动,应根据已知条件首先确定 圆心的位置,画出运动轨迹.所求距离应和半径R相联系,所求时间应和粒子 转动的圆心角θ、周期T相联系.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d
v b
Svt 2 U dU d 液体的流量: Q t 4 Bd 4B
四、电磁流量计 如图是一种测量血管中血流速度的仪器的示意 图,在动脉两侧分别安装电极并加磁场,电极的 连线与磁场垂直.设血管的直径为2mm,磁场的 磁感应强度为0.08T,测得两极间的电压为 0.10mV,则血流速度为多少?
T m t 4 2qB
2m v S 2R qB
a
v
P
b
课堂练习 长为L的水平极板间,有垂直纸面向内的匀强磁 场,如图所示,磁场强度为B,板间距离也为L,板 不带电,现有质量为m,电量为q的带正电粒子 (不计重力),从左边极板间中点处垂直磁场以 速度v平行极板射入磁场, 欲使粒子不打在极板上, 则粒子入射速度v应满足 什么条件?
U Bqv q d U v Bd
N
S
V
2
课堂练习
如图所示,一束电子(电量为e)以速度V垂直射
入磁感应强度为B、宽度为d的匀强磁场,穿透
磁场时的速度与电子原来的入射方向的夹角为
300.求: e v
θ
(1)电子的质量m
(2)电子在磁场中的运动时间t
qBd m 2v 30 d t T 360 12 v
B d
课堂练习 如图所示,一带正电粒子质量为m,带电量为q, 从隔板ab上一个小孔P处与隔板成45°角垂直 于磁感线射入磁感应强度为B的匀强磁场区,粒 子初速度大小为v,则 (1)粒子经过多长时间再次到达隔板? (2)到达点与P点相距多远?(不计粒子的重力)
课堂练习 图中MN表示真空室中垂直于纸面的平板,它的 一侧有匀强磁场,磁场方向垂直于纸面向里,磁感 应强度大小为B.一带电粒子从平板上的狭缝O处以 垂直于平板上的初速度v射入磁场区域,最后到达 平板上的P点,已知B、v以及P到O的距离L,不计重 力,求此粒子的电荷量q与质量m之比.
B
M
P
L
O
N
二、质谱仪 一个质量为m、电荷量为q的粒子,从容器下方 的小孔S1飘入电势差为U的加速电场,其初速度几乎 为零,然后经过S3沿着与磁场方向进入磁感应强度 为B的匀强磁场中,最后打到照相底片D上. (1)求粒子进入磁场时的速率 (2)求粒子在磁场中运动的轨道半径
3.6带电粒子 在匀强磁场中的运动
一、带电粒子在匀强磁场中的运动 问题1:带电粒子平行射入匀强磁场的运动状态? 匀速直线运动 问题2:带电粒子垂直射入匀强磁场的运动状态? 匀速圆周运动 1)带电粒子仅在洛伦兹力的作用下,粒子的速 度大小有没有变化? 2)洛伦兹力如何变化?
一、带电粒子在匀强磁场中的运动 带电粒子垂直射入匀强磁场的运动状态
q vmax= BR m
带电粒子做匀速圆周运动圆心的确定 圆心一定在与速度方向垂直的直线上 1)可以通过入射点和出射点作垂直于入射方向 和出射方向的直线,交点就是轨迹的圆心 2)可以通过入射点作入射方向的垂线,连接入射 点和出射点,作其连线的中垂线, 交点就是圆弧 的圆心 3)在圆周与割线的两个交点上速度与割线的夹 角相等 4)当粒子运动的圆弧所对的圆心角为α时,其运 动时间为 t T
一、带电粒子在匀强磁场中的运动
实验演示
1)不加磁场时观察电子束的径迹 2)给励磁线圈通电,观察电子束的径迹
3)保持初射电子的速度不变,改变磁感应强度, 观察电子束径迹的变化
4)保持磁感应强度不变,改变出射电子的速度, 观察电子束径迹的变化
一、带电粒子在匀强磁场中的运动 实验结论: 1.沿着与磁场垂直的方向射入磁场的带电粒子, 在匀强磁场中做匀速圆周运动 2.洛伦兹力提供了带电粒子做匀速圆周运动所 需的向心力 3.磁场强度不变,粒子射入的速度增加,轨道半 径也增大 4.粒子射入速度不变,磁场强度增大,轨道半径 减小
因为速度方向改变,所以洛伦兹方向也改变 因为带电粒子受到一个大小不变,方向总与粒 子运动方向垂直的力,因此带电粒子做匀速圆 周运动,其向心力就是洛伦兹力
一、带电粒子在匀强磁场中的运动
实验演示
洛伦兹力演示仪 构造: ①电子枪:射出电子 ②加速电场:作用是改变电子束出射的速度 ③励磁线圈:作用是能在两线圈之间产生平行 于两线圈中心的连线的匀强磁场 工作原理:由电子枪发出的电子射线可以使管的 低压水银蒸汽发出辉光,显示出电子的径迹
一、带电粒子在匀强磁场中的运动 问题3:推导粒子在匀强磁场中做匀速圆周运动的 圆半径r和运动周期T,与粒子的速度v和磁场的强 度B的关系表达式 1)圆周运动的半径
v2 qvB m R
2R T v
mv R qB
2m T qB
2)圆周运动的周期 在匀强磁场中做匀速圆周运动的带电粒子,轨 道半径跟运动速率成正比;周期跟轨道半径和运动 速率均无关
L L
+q m
v
B
四、电磁流量计 如图所示,一圆形导管直径为d,用非磁性材 料制成,其中有可以导电的液体向左流动,导电液 体中的自由电荷(正负电荷)所受洛伦兹力的方向? 正负电荷在洛伦兹力作用下将如何偏转?a、b间 是否存在电势差?哪点的电势高? 当自由电荷所受电场力和洛伦兹力平衡时 a、b间的电势差就保持稳定. a
轨迹 平面 速度 大小 速度 方向 受力 大小 受力 方向 运动 轨迹 因为带电粒子的初速度和所受洛伦兹力的方向 与磁场 都在跟磁场方向垂直的平面内,没有任何作用使 垂直 粒子离开这个平面 因为洛伦兹力总是跟粒子的运动方向垂直, 不变 所以粒子的速度大小不变 时刻 改变 不变 时刻 改变 圆
因为洛伦兹力总是跟粒子的运动方向垂直, 所以速度方向改变 因为速度大小不变,所以洛伦兹力大小也不变
A
1 2m U r B q
2U q r / B m
U
S1 S2 S3
D
B
课堂练习 课本P102问题与练习第3题
中华一题P74第10题、第11题
A
U
P
d
S1 S2 S3
Q a b
B1
S3
+
B2
三、回旋加速器
1、作用:产生高速运动的粒子
2、原理 用磁场控制轨道、用电场进行加速
+ -
~
+ -
三、回旋加速器 3、注意 2m T = 1)带电粒子在匀强磁场中的运动周期 qB 跟运动速率和轨道半径无关 2)交变电场的往复变化周期和粒子的运动周期T 相同,这样就可以保证粒子在每次经过交变电场 时都被加速 3)带电粒子每经电场加速一次,回旋半径就增大 一次,每次增加的动能为 E K=qU 所以各次半径之比为 1 ∶ 2∶ 3∶ ... 4)带电粒子在回旋加速器中飞出的速度为
课堂练习 如图中,水平导线中有电流I通过,导线正下方 的电子初速度的方向与电流I的方向相同,则电子 将( B ) I A.沿路径a运动,轨迹是圆 b B.沿路径a运动,轨迹半径越来越大 v C.沿路径a运动,轨迹半径越来越小 a D.沿路径b运动,轨迹半径越来越小
课堂练习 如图所示,正方形容器处在匀强磁场中,一束 电子从孔a垂直于磁场沿ab方向射入容器中,其中 一部分从c孔射出,一部分从d孔射出,容器处在 真空中,下列说法正确的是( ABD ) A.从两孔射出的电子速率之比是Vc:Vd=2:1 a b B.从两孔射出的电子在容器中 vo 运动所用的时间之比是tc:td=1:2 C.从两孔射出的电子在容器中 c 运动的加速度之比是ac:ad=√2:1 d D.从两孔射出的电子在容器中 运动的加速度之比是ac:ad=2:1