认识三角形同步练习题

合集下载

认识三角形(二)习题

认识三角形(二)习题

认识三角形(二) 同步练习题A组一、填空题1.已知三角形的三边分别为2,a,4,那么a的取值范围是______.2.(1)已知a,b,c是△ABC的三边长,a,b满足|a-7|+(b-1)2=0,c为奇数,则c=______.(2)已知a,b,c为△ABC的三条边,化简|a+b-c|-|b-a-c|=______.3.(1)一个三角形的两边长为3 cm和2 cm,第三边长为奇数,则第三边的长为______cm.(2)已知三角形的三边长分别是3,x,9,则化简|x-5|+|x-13|=______.4.(1)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为______.(2)若等腰三角形两边长分别为3和5,则它的周长为______.二、选择题5.下列长度的三条线段,能组成三角形的是( )A.4 cm,5 cm,9 cm B.8 cm,8 cm,15 cmC.5 cm,5 cm,10 cm D.6 cm,7 cm,14 cm6.若要植一块三角形草坪,两边长分别是20米和50米,则这块草坪第三边长不能为( )A.60米B.50米C.40米D.30米7.长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )A.4 B.5 C.6 D.7三、解答题9.由下列长度的三条线段能组成三角形吗?请说明理由(1)10 cm,12 cm,21 cm;(2)5 cm,5 cm,10 cm;(3)5.4 cm,7.2 cm,11 cm;(4)(k+1) cm,(k+2) cm,(2k+2) cm(k>0).10.(1)如图,已知△ABC.①若AB=4,AC=5,则BC边的取值范围是______;②D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.(2)已知△ABC中,三边长分别为a,b,c,且满足a=b+2,b=c+1.①试说明b一定大于3;②若这个三角形周长为22,求a,b,c.B组一、填空题11.(1)有长度分别为10 cm,7 cm,5 cm和3 cm的四根铁丝,选其中三根组成三角形,则有______种选法.(2)等腰三角形的周长是27 cm,一腰上的中线将周长分为5∶4两部分,则这个等腰三角形的底边长为______.13.已知四边形ABCD的四边分别为a,b,c,d,若a=3,b=4,d=10,则c的取值范围是______.15.△ABC中,三边之比为3:4:5,且最长边为10m,则△ABC周长为_____cm.18.有两根小棒分别长2厘米和4厘米.要围成一个等腰三角形,第三根小棒的长度应该是____厘米.二、解答题30.如图所示,D是△ABC的边AC上任意一点(不含端点),连结BD,请判断AB+BC+AC与2BD的大小关系,并说明理由.。

苏科版2020-2021学年七年级数学下册7.4认识三角形考点同步训练(含答案)

苏科版2020-2021学年七年级数学下册7.4认识三角形考点同步训练(含答案)

苏科版2020-2021 学年七年级数学下册7.4 认识三角形考点同步训练考点一.三角形:1.如图,图中直角三角形共有()A.1 个B.2 个C.3 个D.4 个2.某同学在纸上画了四个点,如果把这四个点彼此连接,连成一个图形,则这个图形中会有个三角形出现.3.如图,直角三角形的个数为.4.过A、B、C、D、E 五个点中任意三点画三角形;(1)其中以AB 为一边可以画出个三角形;(2)其中以C 为顶点可以画出个三角形.考点二.三角形的角平分线、中线和高:5.用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是()A.B.C.D.6.以下是四位同学在钝角三角形△ABC 中画AC 边上的高,其中正确的是()A.B.C.D.7.在数学课上,同学们在练习画边AC 上的高时,出现下列四种图形,其中正确的是()A.B.C.D.8.如图,△ABC 中,∠BAC 是钝角,AD⊥BC、EB⊥BC、FC⊥BC,则下列说法正确的是()A.AD 是△ABC 的高B.EB 是△ABC 的高C.FC 是△ABC 的高D.AE、AF 是△ABC 的高9.如图,已知P 为直线l 外一点,点A、B、C、D 在直线l 上,且PA>PB>PC>PD,下列说法正确的是()A.线段PD 的长是点P 到直线l 的距离B.线段PC 可能是△PAB 的高C.线段PD 可能是△PBC 的高D.线段PB 可能是△PAC 的高10.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形11.如图,在四边形ABCD 中,AB∥CD,3AB=4AD=6CD,E 为AB 的中点.萧钟同学用无刻度的直尺先连接CE 交BD 于点F,再连接AF.则线段AF 是△ABD 的()A.中线B.高线C.角平分线D.中线、高线、角平分线(三线合一)12.如图,D、E 分别是△ABC 的边AC、BC 的中点,则下列说法不正确的是()A.DE 是△ABC 的中线B.BD 是△ABC 的中线C.AD=DC,BE=EC D.DE 是△BCD 的中线13.如图,AD⊥BC 于D,BE⊥AC 于E,CF⊥AB 于F,GA⊥AC 于A,在△ABC 中,AB边上的高为()A.AD B.GA C.BE D.CF14.如图,在△ABC 中,∠ACB=60°,∠BAC=75°,AD⊥BC 于D,BE⊥AC 于E,AD 与BE 交于H,则∠CHD=.15.在△ABC 中,AC=5cm,AD 是△ABC 中线,若△ABD 周长与△ADC 的周长相差2cm,则BA=cm.16.如图,在△ABC 中(AB>BC),AB=2AC,AC 边上中线BD 把△ABC 的周长分成30和20 两部分,求AB 和BC 的长.17.如图,△ABC 的周长是21cm,AB=AC,中线BD 分△ABC 为两个三角形,且△ABD的周长比△BCD 的周长大6cm,求AB,BC.18.已知:∠MON=40°,OE 平分∠MON,点A、B、C 分别是射线OM、OE、ON 上的动点(A、B、C 不与点O 重合),连接AC 交射线OE 于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO 的度数是;②当∠BAD=∠ABD 时,x=;当∠BAD=∠BDA 时,x=.(2)如图2,若AB⊥OM,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.考点三.三角形的面积:19.如图,AD 是△ABC 的中线,DE 是△ADC 的高线,AB=3,AC=5,DE=2,那么点D 到AB 的距离是()A. B. C. D.2 20.如图,在△ABC 中,已知点E、F 分别是AD、CE 边上的中点,且S△BEF=4cm2,则S△ABC 的值为()A.1cm2 B.2cm2 C.8cm2 D.16cm221.已知AD 是△ABC 的中线,BE 是△ABD 的中线,若△ABC 的面积为18,则△ABE 的面积为(A.5 )B.4.5C.4 D.922.如图,D,E,F 分别是边BC,AD,AC 上的中点,若S 四边形的面积为3,则△ABC的面积是()A.5 B.6 C.7 D.8 23.如图,长方形ABCD 中,AB=4cm,BC=3cm,点E 是CD 的中点,动点P 从A 点出发,以每秒1cm 的速度沿A→B→C→E 运动,最终到达点E.若点P 运动的时间为x 秒,那么当x =时,△APE 的面积等于5.24.把一张三角形的纸折叠成如图后,面积减少,已知阴影部分的面积是50 平方厘米,则这张三角形纸的面积是平方分米.考点四.三角形的稳定性:25.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角26.下列图形中不具有稳定性是()A.B.C.D.27.用八根木条钉成如图所示的八边形木架,要使它不变形,至少要钉上木条的根数是()A.3 根B.4 根C.5 根D.6 根考点五.三角形的重心:28.三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点29.在Rt△ABC 中,AD 是斜边BC 边上的中线,G 是△ABC 重心,如果BC=6,那么线段AG 的长为.考点六.三角形三边关系:30.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.1,2,3 31.如图,为估计池塘岸边A、B 两点的距离,小方在池塘的一侧选取一点O,测得OA=15 米,OB=10 米,A、B 间的距离不可能是()A.5 米B.10 米C.15 米D.20 米32.已知关于x 的不等式组至少有两个整数解,且存在以3,a,7 为边的三角形,则a 的整数解有()A.4 个B.5 个C.6 个D.7 个33.若a、b、c 为△ABC 的三边长,且满足|a﹣4|+=0,则c 的值可以为()A.5 B.6 C.7 D.834.已知三角形两边的长分别是4 和10,则此三角形第三边的长可能是()A.5 B.6 C.12 D.1635.△ABC 中,AB=10,BC=2x,AC=3x,则x 的取值范围.36.在△ABC 中,若AB=4,BC=2,且AC 的长为偶数,则AC=.37.若a、b、c 为三角形的三边,且a、b 满足+(b﹣2)2=0,第三边c 为奇数,则c=.38.三角形的两边长分别是3 和4,第三边长是方程x2﹣13x+40=0 的根,则该三角形的周长为.39.如图:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF.40.在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,则AD 的取值范围是.参考答案1.解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3 个,故选:C.2.解:∵①当四个点共线时,不能作出三角形;②当三个点共线,第四个点不在这条直线上时,能够画出3 个三角形;③若4 个点能构成凹四边形,则能画出4 个三角形;④当任意的三个点不共线时,则能够画出8 个三角形.∴0 或3 或4 或8.3.解:如图,直角三角形有:△ADC、△BCD、△CDE、△BDE、△ACE、△ACB,一共6 个,故答案为:6.4.解:(1)如图,以AB 为一边的三角形有△ABC、△ABD、△ABE 共3 个;(2)如图,以点C 为顶点的三角形有△ABC、△BEC、△BCD、△ACE、△ACD、△ CDE 共6 个.故答案为:(1)3,(2)6.5.解:B,C,D 都不是△ABC 的边BC 上的高,故选:A.6.解:A、高BD 交AC 的延长线于点D 处,符合题意;B、没有经过顶点B,不符合题意;C、做的是BC 边上的高线AD,不符合题意;D、没有经过顶点B,不符合题意.故选:A.7.解:AC 边上的高应该是过B 作垂线段AC,符合这个条件的是C;A,B,D 都不过B 点,故错误;故选:C.8.解:△ABC 中,画BC 边上的高,是线段AD.故选:A.9.解:A.线段PD 的长不一定是点P 到直线l 的距离,故本选项错误;B.线段PC 不可能是△PAB 的高,故本选项错误;C.线段PD 可能是△PBC 的高,故本选项正确;D.线段PB 不可能是△PAC 的高,故本选项错误;故选:C.10.解:一个三角形的三条高的交点恰是三角形的一个顶点,这个三角形是直角三角形.故选:C.11.解:∵3AB=6CD,E 为AB 的中点,∴CD=AB,BE=AB,∴CD=BE,又∵AB∥CD,∴∠EBF=∠CDF,又∵∠EFB=∠CFD,∴△BEF≌△DCF(AAS),∴BF=DF,∴线段AF 是△ABD 的中线,故选:A.12.解:∵D、E 分别是△ABC 的边AC、BC 的中点,∴DE 是△ABC 的中位线,不是中线;BD 是△ABC 的中线;AD=DC,BE=EC;DE 是△BCD 的中线;故选:A.13.解:∵AB 边上的高是指过顶点C 向AB 所在直线作的垂线段,∴在AD⊥BC 于D,BE⊥AC 于E,CF⊥AB 于F,GA⊥AC 于A 中,只有CF 符合上述条件.故选:D.14.解:延长CH 交AB 于点H,在△ABC 中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH 中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.15.解:如图,∵AD 是△ABC 中线,∴BD=CD,∴△ABD 周长﹣△ADC 的周长=(BA+BD+AD)﹣(AC+AD+CD)=BA﹣AC,∵△ABD 周长与△ADC 的周长相差2cm,∴|BA﹣5|=2,∴解得BA=7 或3.故答案为:3 或7.16.解:设AC=x,则AB=2x,∵BD 是中线,∴AD=DC=x,由题意得,2x+x=30,解得,x=12,则AC=12,AB=24,∴BC=20﹣×12=14.答:AB=24,BC=14.17.解:∵BD 是中线,∴AD=CD=AC,∵△ABD 的周长比△BCD 的周长大6cm,∴(AB+AD+BD)﹣(BD+CD+BC)=AB﹣BC=6cm①,∵△ABC 的周长是21cm,AB=AC,∴2AB+BC=21cm②,联立①②得:AB=9cm,BC=3cm.18.解:(1)①∵∠MON=40°,OE 平分∠MON,∴∠AOB=∠BON=20°,∵AB∥ON,∴∠ABO=20°,②∵∠BAD=∠ABD,∴∠BAD=20°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=120°,∵∠BAD=∠BDA,∠ABO=20°,∴∠BAD=80°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=60°;故答案为:①20°;②120,60;(2)①当点D 在线段OB 上时,∵OE 是∠MON 的角平分线,∴∠AOB=∠MON=20°,∵AB⊥OM,∴∠AOB+∠ABO=90°,∴∠ABO=70°,若∠BAD=∠ABD=70°,则x=20若∠BAD=∠BDA=(180°﹣70°)=55°,则x=35若∠ADB=∠ABD=70°,则∠BAD=180°﹣2×70°=40°,∴x=50②当点D 在射线BE 上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x 的值,使得△ADB 中有两个相等的角,且x=20、35、50、125.19.解:∵AC=5,DE=2,∴△ADC 的面积为=5,∵AD 是△ABC 的中线,∴△ABD 的面积为5,∴点D 到AB 的距离是.故选:A.20.解:∵由于E、F 分别为AD、CE 的中点,∴△ABE、△DBE、△DCE、△AEC 的面积相等,∴S△BEC=2S△BEF=8(cm2),∴S△ABC=2S△BEC=16(cm2).故选:D.21.解:∵AD 是△ABC 的中线,∴S△ABD=S△ABC=×18=9,∵BE 是△ABD 的中线,∴S△ABE=S△ABD=×9=4.5.故选:B.22.解:∵D 为BC 的中点,∴S△ABD=S△ACD=S△ABC,∵E,F 分别是边AD,AC 上的中点,∴S△BDE=S△ABD,S△ADF=S△ADC,S△DEF=S△ADF,∴S△BDE=S△ABC,S△DEF=S△ADC=S△ABC,S△BDE+S△DEF=S△ADC+ S△ABC=S△ABC,∴S△ABC=S 阴影部分=×3=8.故选:D.23.解:①如图1,当P 在AB 上时,∵△APE 的面积等于5,∴x•3=5,x=;②当P 在BC 上时,∵△APE 的面积等于5,∴S 长方形ABCD﹣S△CPE﹣S△ADE﹣S△ABP=5,∴3×4﹣(3+4﹣x)×2﹣×2×3﹣×4×(x﹣4)=5,x=5;③当P 在CE 上时,∴ (4+3+2﹣x)×3=5,x=<3+4,此时不符合;故答案为:或5.24.解:∵折叠后面积减少,∴阴影部分的面积占三角形纸的面积的(1﹣﹣)=,∴三角形纸的面积=50÷ =200 平方厘米=2 平方分米.故答案为:2.25.解:加上EF 后,原图形中具有△AEF 了,故这种做法根据的是三角形的稳定性.故选:B.26.解:根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.显然B 选项中有四边形,不具有稳定性.故选:B.27.解:过八边形的一个顶点作对角线,可以做5 条,把八边形分成6 个三角形,因为三角形具有稳定性.故选:C.28.解:三角形的重心是三条中线的交点,故选:A.29.解:∵AD 是斜边BC 边上的中线,∴AD=BC=×6=3,∵G 是△ABC 重心,∴=2,∴AG=AD=×3=2.故答案为2.30.解:3+4<8,则3,4,8 不能组成三角形,A 不符合题意;5+6=11,则5,6,11 不能组成三角形,B 不合题意;5+6>10,则5,6,10 能组成三角形,C 符合题意;1+2=3,则1,2,3 不能组成三角形,D 不合题意,故选:C.31.解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B 间的距离在 5 和25 之间,∴A、B 间的距离不可能是5 米;故选:A.32.解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式组至少有两个整数解,∴a>5,又∵存在以3,a,7 为边的三角形,∴4<a<10,∴a 的取值范围是5<a<10,∴a 的整数解有4 个,故选:A.33.解:∵|a﹣4|+ =0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5 符合条件;故选:A.34.解:设第三边的长为x,∵三角形两边的长分别是4 和10,∴10﹣4<x<10+4,即6<x<14.故选:C.35.解:根据题意得:3x﹣2x<10<3x+2x,解得:2<x<10.故答案为:2<x<10.36.解:因为4﹣2<AC<4+2,所以2<AC<6,因为AC 长是偶数,所以AC 为4,故答案为:4.37.解:∵a、b 满足+(b﹣2)2=0,∴a=9,b=2,∵a、b、c 为三角形的三边,∴7<c<11,∵第三边c 为奇数,∴c=9,故答案为9.38.解:x2﹣13x+40=0,(x﹣5)(x﹣8)=0,所以x1=5,x2=8,而三角形的两边长分别是3 和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为12.39.证明:延长ED 到H,使DE=DH,连接CH,FH,∵AD 是△ABC 的中线,∴BD=DC,∵DE、DF 分别为∠ADB 和∠ADC 的平分线,∴∠1=∠2=∠ADB,∠3=∠4=∠ADC,∴∠1+∠4=∠2+∠3=∠ADB+ ∠ADC=×180°=90°,∵∠1=∠5,∴∠5+∠4=90°,即∠EDF=∠FDH=90°,在△EFD 和△HFD 中,,∴△EFD≌△HFD(SAS),∴EF=FH,在△BDE 和△CDH 中,,∴△BDE≌△CDH(SAS),∴BE=CH,在△CFH 中,由三角形三边关系定理得:CF+CH>FH,∵CH=BE,FH=EF,∴BE+CF>EF.40.解:如图,延长AD 到E,使DE=AD,∵AD 是BC 边上的中线,∴BD=CD,在△ABD 和△ECD 中,,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=5,AC=3,∴5﹣3<AE<5+3,即2<AE<8,1<AD<4.故答案为:1<AD<4.。

2020-2021学年七年级数学北师大版下册第四章 4.1认识三角形 同步练习题

2020-2021学年七年级数学北师大版下册第四章 4.1认识三角形 同步练习题

4.【知识点】1 由____________________的三条线段____________相接所组成的图形叫做三角形,三角形有____________条边、____________个内角和____________个顶点. “三角形”用符号“____________”表示,顶点是A,B,C的三角形,可记作“____________”.2 三角形按内角大小分类,可分为________________、____________________、________________________.3 三角形任意两边之和____________第三边;三角形任意两边之差____________第三边.4 从三角形的一个顶点向它的对边所在的直线作____________,顶点和____________之间的线段叫做三角形的高线,简称三角形的高.三角形三条高所在的直线____________.5 在三角形中,连接一个顶点与它对边____________的线段,叫做这个三角形的中线,三角形的三条中线____________,这一点称为三角形的____________.6 在三角形中,一个内角的________________与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的三条角平分线__________________.【例题讲解】1如图4-1-2,图中有几个三角形?把它们表示出来,并写出∠B的对边.2 如图4-1-4所示的图中共有多少个三角形?请写出这些三角形并指出所有以E为顶点的角.3 在△ABC中,∠A=21°,∠B=34°,则△ABC是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 锐角三角形或钝角三角形4 一个三角形的两边b=4,c=7,试确定第三边a的范围. 当各边均为整数时,有几个三角形?有等腰三角形吗?等腰三角形的各边长各是多少?5 下列四个图形中,线段BE是△ABC的高的是()6 如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 都有可能7 如图4-1-15,已知△ABC 的周长为24 cm ,AD 是BC 边上的中线,AD=85AB ,AD=5 cm ,△ABD 的周长是18 cm ,求AC 的长.8 如图4-1-17,在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长多5 cm ,AB 与AC 的和为13 cm ,求AC 的长.9 如图4-1-19,在△ABC 中,∠B=60°,∠C=30°,AD 和AE 分别是△ABC 的高和角平分线,求∠DAE 的度数.10 如图4-1-21,△ABC 中,AD,AE 分别是△ABC 的高和角平分线,BF 是∠ABC 的平分线,BF 与AE 交于点O ,若∠ABC=40°,∠C=60°,求∠AEC ,∠BOE 的度数.【举一反三】1 如图4-1-3所示的图形中共有三角形( )A. 4个B. 5个C. 6个D. 8个2 如图4-1-5,三角形共有()A.3个B.4个C.5个D.6个3 下列说法正确的是()A. 一个钝角三角形一定不是等腰三角形,也不是等边三角形B. 一个等腰三角形一定是锐角三角形,或直角三角形C. 一个直角三角形一定不是等腰三角形,也不是等边三角形D. 一个等边三角形一定不是钝角三角形,也不是直角三角形4 三角形按边分类,可分为()A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形5 若三角形中的两边长分别为9和2,第三边长为偶数,求三角形的周长.6 下列各图中,正确画出AC边上的高的是()7 如图4-1-14,△ABC中BC边上的高是()A.BDB.AEC.BED.CF8 如图4-1-16,在△ABC中(AB>BC),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.9 如图4-1-18,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长多3 cm,BC=8 cm,求边AC的长.10 如图4-1-20,D是△ABC中BC上的一点,DE∥AC交AB于点E,DF∥AB交AC于点F,且∠ADE=∠ADF,AD是△ABC的角平分线吗?说明理由.11如图4-1-22,在△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD,AC于点F,E,试说明:∠CFE=∠CEF.【知识操练】1 在△ABC中,∠C=90°,点D,E分别是边AC,BC的中点,点F在△ABC 内,连接DE,EF,FD.以下图形符合上述描述的是()2 至少有两边相等的三角形是()A.等边三角形B.等腰三角形C.等腰直角三角形D.锐角三角形3 下列说法正确的是()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分可分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4 以下列各组线段为边,能组成三角形的是()A.1 cm,2 cm,3 cmB.2 cm,5 cm,8 cmC.3 cm,4 cm,5 cmD.4 cm,5 cm,10 cm5 如图4-1-23,已知BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长的差是()A. 2B. 3C. 6D. 不能确定6 如图4-1-24,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F.下列关于高的说法错误的是()A.△ABC中,AD是BC边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高7 如图4-1-25,AD是△ABC的中线,△ABC的面积为10 cm2,则△ABD的面积是()A. 5 cm2B. 6 cm2C. 7 cm2D. 8 cm28 如图4-1-26,在△ABC中,AD是高,AE是∠BAC的平分线,AF是BC边上的中线,则下列线段中,最短的是()A.AB B.AE C.AD D.AF9 如图4-1-27,已知∠1=∠2,∠3=∠4,则下列正确的结论有()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.1个B.2个C.3个D.4个10 如图4-1-28,在△ABC中,∠C=90°,D,E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是()A.BC是△ABE的高B.BE是△ABD的中线C.BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC11 如图4-1-29,在△ABC中,AD,CE分别为BC,AB边上的高,若BC=6,AD=5,CE=4,则AB的长为____________.12 一个三角形的两边长分别是3和8,周长是偶数,那么第三边的边长是___________.13 一副三角尺如图4-1-9所示叠放在一起,则图中∠α的度数是____________.14 如图4-1-30,已知AE是△ABC的边BC上的高,AD是∠EAC的平分线,交BC于点D.若∠ACB=40°,则∠DAE=__________.15 已知a,b,c为△ABC的三边长,b,c满足(b-2)2+|c-3|=0,且a为方程|a-4|=2的解,求△ABC的周长,并判断△ABC的形状.16 如图4-1-10,点O是△ABC内的一点,试说明:OA+OB+OC>(AB+BC+CA).17 如图4-1-31,△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.。

小学数学四年级下册二认识三角形和四边形四边形分类同步练习

小学数学四年级下册二认识三角形和四边形四边形分类同步练习

探索与发现:三角形边的关系学校:___________姓名:___________班级:___________考号:___________一、选择题1.下面每组小棒,________能围成平行四边形.A.B.C.2.下面()图形的面积可以分成一个梯形和一个三角形面积之和。

A.B.C.3.下列哪一句话是正确的().A.平行线延长也可能相交.B.梯形是特殊的平行四边形.C.平行四边形两组对边分别平行.4.一个长方形的周长为a 厘米,宽边比长短3厘米,则这个长方形的长边的长度是()A.(a+3)÷4B.(a+a×2)÷2C.(a÷2﹣3)÷2D.(a÷2+3)÷2 5.不折叠,将一张平行四边形纸只剪一刀,剪不出()。

A.一个梯形和一个三角形B.两个梯形C.两个三角形D.一个长方形和一个三角形6.如图中长方形的个数是()A.3B.4C.5D.67.下面说法正确的是().A.同一平面内,不相交的两条直线一定互相平行B.梯形是特殊的平行四边形C.把一张正方形的纸对折再对折,打开后,折痕互相垂直D.平行四边形只可以画一条高8.下面图形中,一定有平行线的是()。

A.三角形B.四边形C.梯形二、填空题9.下图有( )个三角形,( )个平行四边形,( )个梯形。

10.新华体育场足球场地是一个长方形草坪,长100米,宽50米.一名运动员沿着足球场边跑了10圈,他跑了千米.11.一个正方形花坛,周长是51.2米,它的边长是多少米?(列方程解答)12.在图中,大正方形的周长是一个小正方形周长的2倍..(判断对错)13.正方形和长方形是特殊的( ),( )是特殊的长方形。

14.用一根31.4厘米的铁丝围成一个正方形,这个正方形的边长是厘米,如果围成一个圆形,这个圆的直径是厘米.三、判断题15.一个梯形可以由一个平行四边形和一个三角形组成。

( )16.平行四边形能分成两个相同的三角形。

精品2014年八年级数学上册-三角形初步认识同步讲义+练习

精品2014年八年级数学上册-三角形初步认识同步讲义+练习

精品2014年⼋年级数学上册-三⾓形初步认识同步讲义+练习三⾓形初步认识第01课与三⾓形有关的线段知识点:三⾓形定义:组成的图形叫做三⾓形。

⽤符号“△”表⽰。

注意:三条线段必须①;②组成三⾓形的线段叫做三⾓形的,相邻两边所组成的⾓叫做三⾓形的,简称⾓,相邻两边的公共端点是三⾓形的。

注意:三⾓形ABC 的顶点C 所对的边AB 可⽤c 表⽰,顶点B 所对的边AC 可⽤b 表⽰,顶点A 所对的边BC 可⽤a 表⽰.三⾓形三要素:、、。

三⾓形三边的不等关系:。

附加:公式:三⾓形的分类:(1)按⾓分类: 三⾓形、三⾓形、三⾓形。

(2)按边分类:三⾓形的⾼线:从三⾓形的⼀个向它的对边所在直线作,顶点和垂⾜之间的叫做三⾓形的⾼线,简称三⾓形的⾼.注意:⾼与垂线不同,⾼是线段,垂线是直线。

三⾓形的三条⾼,简称三⾓形的⼼。

三⾓形的中线:如图,我们把连结△ABC 的顶点A 和它的对边BC 的中点D ,所得线段AD 叫做△ABC 的钝⾓三⾓形直⾓三⾓形锐⾓三⾓形位置边BC 上的中线,表⽰为BD=DC 或BD=DC=21BC 或2BD=2DC=BC. 三⾓的三条中线,简称三⾓形的⼼。

注意:三⾓形的中线是线段。

三⾓形的⾓平分线:如图,画∠A 的平分线AD ,交∠A 所对的边BC 于点D ,所得线段AD 叫做△ABC 的⾓平分线,表⽰为∠BAD=∠CAD 或∠BAD=∠CAD =1/2∠BAC 或2∠BAD=2∠CAD =∠BAC 。

三⾓形三个⾓的平分线,简称三⾓形的⼼。

注意:三⾓形的⾓平分线是线段,⽽⾓的平分线是射线,是不⼀样的。

三⾓形稳定性(1)把三根⽊条⽤钉⼦钉成⼀个三⾓形⽊架,然后扭动它,它的形状会改变吗? (2)把四根⽊条⽤钉⼦钉成⼀个四边形⽊架,然后扭动它,它的形状会改变吗? (3)在四边形的⽊架上再钉⼀根⽊条,将它的⼀对顶点连接起来,然后扭动它,它的形状会改变吗?例1.⽤⼀条长为18cm 的细绳围成⼀个等腰三⾓形. (1)如果腰长是底边的2倍,那么各边的长是多少? (2)能围成有⼀边长为4㎝的等腰三⾓形吗?为什么?例2.已知△ABC 的周长是24cm ,三边a 、b 、c 满⾜c+a=2b ,c-a=4cm ,求a 、b 、c 的长.三⾓形中线的性质:例3.⼀个等腰三⾓形的周长为32 cm,腰长的3倍⽐底边长的2倍多6 cm.求各边长.例4.如图,在直⾓三⾓形ABC中,∠ACB=900,CD是AB边上的⾼,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的⾯积;(2)CD的长;(3)作出△ABC的边AC上的中线BE,并求出△ABE的⾯积;(4)作出△BCD的边BC边上的⾼DF,当BD=11cm 时,试求出DF的长。

北师大版初中数学七年级下册《4.1 认识三角形》同步练习卷(9)

北师大版初中数学七年级下册《4.1 认识三角形》同步练习卷(9)

北师大新版七年级下学期《4.1 认识三角形》同步练习卷一.选择题(共26小题)1.三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A表示()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形2.图中三角形的个数是()A.3个B.4个C.5个D.6个3.如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个4.给出下列说法:(1)等边三角形是等腰三角形;(2)三角形按边的相等关系分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形按角的大小分类可分为锐角三角形、直角三角形和钝角三角形.其中,正确的有()个.A.1B.2C.3D.05.如图所示,有一条线段是△ABC(AC>AB)的中线,该线段是()A.线段AD B.线段AE C.线段AF D.线段MN6.在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.7.下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.8.如图,四个图形中,线段BE是△ABC的高的图是()A.B.C.D.9.如图,在△ABC中,AD,BE是两条中线,则△EFD和△BF A的面积之比是()A.1:2B.1:4C.1:3D.2:310.如图,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,且△ABC的面积为16,则△BEF的面积是()A.2B.4C.6D.811.下列各组数不可能是一个三角形的边长的是()A.7,8,9B.5,6,7C.3,4,5D.1,2,312.已知线段a=6cm,b=8cm,则下列线段中,能与a、b组成三角形的是()A.2cm B.12cm C.14cm D.16cm13.若三角形的两边长为2和3,则第三边长可以是()A.1B.3C.5D.714.下列长度的三条线段能组成三角形的是()A.4,5,9B.5,5,11C.1,2,3D.5,6,10 15.下列各组数可做为一个三角形三边长的是()A.4,6,8B.4,5,9C.1,2,4D.5,5,11 16.如图,在Rt△ABC中,∠C=90°,∠ABC和∠BAC的平分线交于一点O,∠ABO=30°,则∠AOB的度数是()A.100°B.125°C.135°D.130°17.如图,∠A=120°,且∠1=∠2=∠3和∠4=∠5=∠6,则∠BDC=()A.120°B.60°C.140°D.无法确定18.如图,在△ABC中,BD平分∠ABC,DE∥BC,且交AB于点E,∠A=60°,∠BDC =86°,则∠BDE的度数为()A.26°B.30°C.34°D.52°19.如图,在△ABC中,点D是∠ABC和∠ACB角平分线的交点,若∠BDC=110°,那么∠A=()A.40°B.50°C.60°D.70°20.如图,∠C=50°,∠B=30°,则∠CAD的度数是()A.80°B.90°C.100°D.110°21.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是()A.30°B.40°C.50°D.60°22.一副三角板,按如图所示叠放在一起,则图中∠α的度数是()A.75°B.105°C.110°D.120°23.在△ABC中,∠A,∠C与∠B的外角度数如图所示,则x的值是()A.60B.65C.70D.8024.如图,在Rt△ABC中,∠ACB=90°,点E、F为直角边BC、AC的中点,且AE=3,BF=4,则AB=()A.2B.3C.2D.525.在一个直角三角形中,有一个锐角等于35°,则另一个锐角的度数是()A.75°B.65°C.55°D.45°26.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足点为D,则下列结论中正确的个数为()①AB与AC互相垂直;②∠ADC=90°;③点C到AB的垂线段是线段AB;④线段AB的长度是点B到AC的距离;⑤线段AB是点B到AC的距离.A.5B.4C.3D.2二.填空题(共4小题)27.如图,△ABC中,点O是重心,过点O的两条线段BE⊥AD.若BD=10,BO=8,则AO的长为.28.如图,△ABC的中线BE、CD交于点G,则值为.29.已知△ABC中,∠ACB=90°,AC=6,BC=8,G为△ABC的重心,那么CG=.30.在Rt△ABC中,∠C=Rt∠,∠A=70°,则∠B=.北师大新版七年级下学期《4.1 认识三角形》2019年同步练习卷参考答案与试题解析一.选择题(共26小题)1.三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A表示()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【分析】根据三角形的分类可直接得到答案.【解答】解:三角形根据边分类,∴图中小椭圆圈里的A表示等边三角形.故选:D.【点评】此题主要考查了三角形的分类,关键是掌握分类方法.按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).2.图中三角形的个数是()A.3个B.4个C.5个D.6个【分析】三条线段首尾顺次相接组成的图形叫做三角形,根据图示得出三角形个数即可.【解答】解:图中三角形由△ABC,△ABE,△BEC,△BDC,△DEC,故选:C.【点评】此题考查三角形,在数三角形的个数时,注意不要忽略一些大的三角形.3.如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个【分析】根据三角形的定义,找出图中所有的三角形,数出其个数即可得出结论.【解答】解:图中是三角形的有:△AOC、△BOD、△AOB、△ABC、△ABD.故选:C.【点评】本题考查了三角形,牢记三角形的定义是解题的关键.4.给出下列说法:(1)等边三角形是等腰三角形;(2)三角形按边的相等关系分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形按角的大小分类可分为锐角三角形、直角三角形和钝角三角形.其中,正确的有()个.A.1B.2C.3D.0【分析】根据三角形的分类、三角形的三边关系进行判断.【解答】解:(1)等边三角形是一特殊的等腰三角形,正确;(2)三角形按边分类可以分为不等边三角形和等腰三角形,错误;(3)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形,正确.综上所述,正确的结论2个.故选:B.【点评】本题考查了三角形.注意:等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.5.如图所示,有一条线段是△ABC(AC>AB)的中线,该线段是()A.线段AD B.线段AE C.线段AF D.线段MN【分析】三角形一边的中点与此边所对顶点的连线叫做三角形的中线,逐一判断各选项即可.【解答】解:由图可得,F是BC的中点,根据三角形中线的定义,可知线段AF是△ABC的中线,故选:C.【点评】本题主要考查了三角形中线,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.6.在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.【解答】解:过点A作直线BC的垂线段,即画BC边上的高,所以画法正确的是D.故选:D.【点评】考查了三角形的高的概念,能够正确作三角形一边上的高.7.下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BD是△ABC 的高.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.【点评】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.8.如图,四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【解答】解:过点B作AC边上的高,垂足为E,则线段BE是△ABC的高的图是选项C.故选:C.【点评】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.9.如图,在△ABC中,AD,BE是两条中线,则△EFD和△BF A的面积之比是()A.1:2B.1:4C.1:3D.2:3【分析】利用三角形的中位线定理可得DE:AB=1:2,再利用相似三角形的性质即可解决问题.【解答】解:∵CE=AE,CD=DB,∴ED∥AB,DE=AB,∴△DEF∽△ABF,∴=()2=,故选:B.【点评】本题考查三角形的面积,三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.如图,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,且△ABC的面积为16,则△BEF的面积是()A.2B.4C.6D.8【分析】因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,△EBC与△ABC同底,△EBC的高是△ABC高的一半;利用三角形的等积变换可解答.【解答】解:解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,高相等;∴S△BEF=S△BEC,同理得,S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=16,∴S△BEF=4,即阴影部分的面积为4.故选:B.【点评】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.结合图形直观解答.11.下列各组数不可能是一个三角形的边长的是()A.7,8,9B.5,6,7C.3,4,5D.1,2,3【分析】在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【解答】解:A、7+8>9,能构成三角形;B、5+6>7,能构成三角形;C、3+4>5,能构成三角形;D、1+2=3,不能构成三角形.故选:D.【点评】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.12.已知线段a=6cm,b=8cm,则下列线段中,能与a、b组成三角形的是()A.2cm B.12cm C.14cm D.16cm【分析】根据三角形的第三边大于两边之差小于两边之和即可判断.【解答】解:设三角形的第三边为m.由题意:8﹣6<m<6+8,即2<m<14,故选:B.【点评】本题考查三角形的三边关系,解题的关键是熟练掌握基本知识,属于中考常考题型.13.若三角形的两边长为2和3,则第三边长可以是()A.1B.3C.5D.7【分析】根据三角形三边关系定理求出第三边的范围,即可解答.【解答】解:∵三角形的两边长为3和2,∴第三边x的长度范围是3﹣2<x<3+2,即1<x<5,观察选项,只有选项B符合题意.故选:B.【点评】本题考查的是三角形的三边关系,掌握三角形三边关系定理:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.14.下列长度的三条线段能组成三角形的是()A.4,5,9B.5,5,11C.1,2,3D.5,6,10【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,4+5=9,不能组成三角形;B中,5+5=10<11,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,5+6=11>8,能组成三角形.故选:D.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.15.下列各组数可做为一个三角形三边长的是()A.4,6,8B.4,5,9C.1,2,4D.5,5,11【分析】在三角形中任意两边之和大于第三边,任意两边之差小于第三边,据此可得答案.【解答】解:A、4+6>8,能组成三角形;B、4+5=9,不能组成三角形;C、1+2<4,不能组成三角形;D、5+5<11,不能组成三角形.故选:A.【点评】本题考查了三角形三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.16.如图,在Rt△ABC中,∠C=90°,∠ABC和∠BAC的平分线交于一点O,∠ABO=30°,则∠AOB的度数是()A.100°B.125°C.135°D.130°【分析】根据角平分线的定义以及三角形内角和定理,即可得到∠ABO和∠BAO的度数,再根据三角形内角和定理即可得出∠AOB的度数.【解答】解:∵BO平分∠ABC,∠ABO=30°,∴∠ABC=60°,又∵∠C=90°,∴∠BAC=30°,∵AO平分∠BAC,∴∠BAO=∠BAC=15°,∴△AOB中,∠AOB=180°﹣∠BAO﹣∠ABO=135°,故选:C.【点评】本题主要考查了三角形内角和定理以及角平分线的定义,解题时注意:三角形内角和是180°.17.如图,∠A=120°,且∠1=∠2=∠3和∠4=∠5=∠6,则∠BDC=()A.120°B.60°C.140°D.无法确定【分析】以及三角形内角和定理,即可得到∠ABC+∠ACB=180°﹣120°=60°,再根据∠1=∠2=∠3,∠4=∠5=∠6,即可得到∠DBC+∠DCB的度数,最后利用三角形内角和定理可得∠BDC的度数.【解答】解:在△ABC中,∵∠A=120°,∴∠ABC+∠ACB=180°﹣120°=60°,又∵∠1=∠2=∠3,∠4=∠5=∠6,∴∠DBC+∠DCB=×60°=40°,∴∠BDC=180°﹣40°=140°,故选:C.【点评】此题考查三角形的内角和,角平分线的定义,解题时注意:三角形内角和是180°.18.如图,在△ABC中,BD平分∠ABC,DE∥BC,且交AB于点E,∠A=60°,∠BDC =86°,则∠BDE的度数为()A.26°B.30°C.34°D.52°【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和,求出∠ABD的度数,再根据角平分线的定义求出∠DBC的度数,然后根据两直线平行,内错角相等即可得解.【解答】解:∵∠BDC=∠A+∠ABD,∴∠ABD=∠BDC﹣∠A=86°﹣60°=26°,∵BD平分∠ABC,∴∠DBC=∠ABD=26°,又∵DE∥BC,∴∠BDE=∠DBC=26°.故选:A.【点评】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,以及两直线平行,内错角相等的性质,准确识图是解题的关键.19.如图,在△ABC中,点D是∠ABC和∠ACB角平分线的交点,若∠BDC=110°,那么∠A=()A.40°B.50°C.60°D.70°【分析】求出∠ABC+∠ACB的度数即可解决问题.【解答】解:∵∠BDC=110°,∴∠DBC+∠DCB=70°,∵点D是∠ABC和∠ACB角平分线的交点,∴∠ABC+∠ACB=2(∠DBC+∠DCB)=140°,∴∠A=180°﹣140°=40°,故选:A.【点评】本题考查三角形的内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.如图,∠C=50°,∠B=30°,则∠CAD的度数是()A.80°B.90°C.100°D.110°【分析】根据三角形的外角的性质即可解决问题.【解答】解:∵∠CAD=∠B+∠C,∠C=50°,∠B=30°,∴∠CAD=80°,故选:A.【点评】本题考查三角形的外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.21.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是()A.30°B.40°C.50°D.60°【分析】由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故选:D.【点评】本题考查了三角形的外角定理,关键是根据三角形任意一个外角等于与之不相邻的两内角的和.22.一副三角板,按如图所示叠放在一起,则图中∠α的度数是()A.75°B.105°C.110°D.120°【分析】根据图形求出∠1,根据三角形的外角性质计算,得到答案.【解答】解:如图,∠1=90°﹣45°=45°,则∠α=60°+45°=105°,故选:B.【点评】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.23.在△ABC中,∠A,∠C与∠B的外角度数如图所示,则x的值是()A.60B.65C.70D.80【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列式计算即可得解.【解答】解:∵与∠ABC相邻的外角=∠A+∠C,∴x+65=x﹣5+x,解得x=70.故选:C.【点评】本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.24.如图,在Rt△ABC中,∠ACB=90°,点E、F为直角边BC、AC的中点,且AE=3,BF=4,则AB=()A.2B.3C.2D.5【分析】设BE=EC=x,CF=F A=y,构建方程组求出x2,y2,再根据AB=计算即可.【解答】解:设BE=EC=x,CF=F A=y,∵∠C=90°,AE=3,BF=4,则有,解得x2=,y2=,∴AB===2,故选:C.【点评】本题考查解直角三角形,勾股定理等知识,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.25.在一个直角三角形中,有一个锐角等于35°,则另一个锐角的度数是()A.75°B.65°C.55°D.45°【分析】根据直角三角形两锐角互余,列式进行计算即可得解.【解答】解:∵在一个直角三角形中,有一个锐角等于35°,∴另一个锐角的度数是90°﹣35°=55°.故选:C.【点评】本题主要考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.26.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足点为D,则下列结论中正确的个数为()①AB与AC互相垂直;②∠ADC=90°;③点C到AB的垂线段是线段AB;④线段AB的长度是点B到AC的距离;⑤线段AB是点B到AC的距离.A.5B.4C.3D.2【分析】根据点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离;当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线进行分析.【解答】解:∵∠BAC=90°,∴AB与AC互相垂直;故①正确;∵AD⊥BC,∴∠ADC=90°,故②正确;点C到AB的垂线段是线段AC;故③错误;线段AB的长度是点B到AC的距离;故④正确;线段AB的长度是点B到AC的距离,故⑤错误;故选:C.【点评】本题主要考查了点到直线的距离,关键时注意点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.二.填空题(共4小题)27.如图,△ABC中,点O是重心,过点O的两条线段BE⊥AD.若BD=10,BO=8,则AO的长为12.【分析】先根据勾股定理得到OD的长,再根据重心的性质即可得到AO的长.【解答】解:∵BE⊥AD,BD=10,BO=8,∴OD==6,∵AC、BC上的中线交于点O,∴AO=2OD=12.故答案为:12.【点评】此题主要考查了勾股定理的应用以及重心的性质,根据已知得出各边之间的关系进而求出是解题关键.28.如图,△ABC的中线BE、CD交于点G,则值为.【分析】根据三角形重心的性质即可求解.【解答】解:∵△ABC的中线BE、CD交于点G,∴CG:DG=2:1,∴==.故答案为:.【点评】考查了三角形的重心,重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1.29.已知△ABC中,∠ACB=90°,AC=6,BC=8,G为△ABC的重心,那么CG=.【分析】根据勾股定理求出AB,根据直角三角形的性质求出CD,根据三角形的重心的性质计算即可.【解答】解:△ABC中,∠ACB=90°,AC=6,BC=8,∴AB==10,∵G为△ABC的重心,∴CD是△ABC的中线,∴CD=AB=5,∵G为△ABC的重心,∴CG =CD =,故答案为:.【点评】本题考查的是三角形的重心的概念和性质,勾股定理,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.30.在Rt△ABC中,∠C=Rt∠,∠A=70°,则∠B=20°.【分析】根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵∠C=Rt∠,∠A=70°,∴∠B=90°﹣∠A=90°﹣70°=20°.故答案为:20°.【点评】本题考查了直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.第21页(共21页)。

13-认识三角形同步练习

13-认识三角形同步练习

认识三角形同步练习一、选择题(共10小题,每小题4分,共40分)1.如图,下列说法错误的是()A.∠A,∠B,∠ACB是△ABC的内角B.∠BCD是与∠ACB相邻的外角C.∠A+∠BCD=180°D.△ABC的三条边分别是线段AB,BC,AC2.如图,在∠1、∠2、∠3和∠4这四个角中,属于△ABC外角的有()A.1个B.2个C.3个D.4个3.下列说法正确的有( )①等腰三角形是等边三角形;②三角形按边分类可分为等腰三角形,等边三角形和不等边三角形;③三角形的外角与和它相邻的内角互补;④三角形按角分类应分为锐角三角形,直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4.已知△ABC的一个外角为50°,则△ABC一定是( )A.锐角三角形B.钝角三角形C.直角三角形D.锐角或钝角三角形5.已知△ABC的周长为13 cm,AB与BC的长度之和为8 cm,AC与BC的长度之差为2 cm,那么这个三角形按边分类是( )A.不等边三角形B.等腰三角形C.等边三角形D.等腰直角三角形6.下列说法正确的有( )①等腰三角形是等边三角形;②三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;③三角形的外角与和它相邻的内角互补;④三角形按角分类可分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④7.已知a、b、c是一个三角形的三边长,且满足(a-b)·(b-c) ·(a-c)=0,则这个三角形是( )A.直角三角形B.等腰三角形C.等边三角形D.钝角三角形8.如果一条边是两个三角形的公共边,则称这两个三角形为“共边三角形”,图中以BC为公共边的“共边三角形”有( )A.3对B.4对C.5对D.6对9.已知△ABC的三边a,b,c满足(a-b)2+|b-c|=0,则△ABC的形状是()A.钝角三角形B.直角三角形C.等边三角形D.以上都不对三角形的中线、角平分线和高一、选择题(共10小题,每小题4分,共40分)1.如图,D、E分别是△ABC的边AC、BC的中点,那么下列说法中不正确的是( )A.DE是△BCD的中线B.BD是△ABC的中线C.AD=DC,BE=EC D.AD=EC,DC=BE2.如图,已知P是△ABC的重心,连结AP并延长交BC于点D,若△ABC的面积为20,则△ADC的面积为()A.10 B.8 C.6 D.53.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若△DEF的面积是2,那么△ABC的面积为( )A.12 B.14 C.16 D.184.如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为( )A.40° B.45° C.80° D.85°5. 如图所示,AD是△ABC的角平角线,AE是△ABD的角平分线,若∠BAC=80°,则∠EAD的度数是( )A.20°B.30°C.45°D.60°6.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,若∠BOC=120°,则∠A等于( )A.30°B.45 C.60°D.70°7.如果一个三角形的三条高的交点恰是这个三角形的一个顶点,那么这个三角形是() A.锐角三角形 B.钝角三角形C.直角三角形D.等边三角形8.下列线段一定在三角形内部的是()①三角形的三条中线;②三角形的三条高;③三角形的三条角平分线.A.①②B.①③C.②③D.①②③9.下列说法正确的是( )A.三角形的角平分线是射线B.过三角形的顶点,且过对边中点的直线是三角形的中线C.直角三角形同一直角边上的中线、高及这条边所对的角的平分线中,高最短D.三角形的高、中线、角平分线一定在三角形的内部10. 如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A.75° B.80° C.85° D.90°11.(6分) 已知AD为△ABC的中线,AB=5 cm,且△ACD的周长比△ABD的周长少2 cm,则AC的长度是多少?12.(8分)如图,AD是△ABC的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是∠EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.13.(8分) 如图,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABD的面积为6,且BD边上的高为3,求BC的长.。

浙教版数学八年级上册《1.1认识三角形》说课稿3

浙教版数学八年级上册《1.1认识三角形》说课稿3

浙教版数学八年级上册《1.1 认识三角形》说课稿3一. 教材分析《认识三角形》是浙教版数学八年级上册的第一课时,本节课的主要内容是让学生了解三角形的定义、性质以及三角形的基本分类。

通过本节课的学习,学生能够掌握三角形的基本概念,理解三角形的性质,并能运用所学知识解决一些实际问题。

在教材的编排上,浙教版数学八年级上册将三角形的认识放在了第一课时,这是因为三角形是初中数学中非常重要的一个几何图形,很多后续的几何知识都会涉及到三角形。

因此,让学生在初中阶段一开始就对三角形有一个清晰的认识,有助于他们更好地学习后续的几何知识。

二. 学情分析八年级的学生已经具备了一定的几何知识,他们已经学习了直线、射线、线段等基本几何概念,也对图形的分类有一定的了解。

但是,他们对三角形的认识还比较肤浅,大多数学生可能只停留在三角形是一个有三条边的图形的层面上。

因此,在本节课的学习过程中,需要引导学生深入理解三角形的定义和性质,提升他们对几何图形的认识。

三. 说教学目标根据教材内容和学情分析,本节课的教学目标设定如下:1.让学生了解三角形的定义和性质,能正确识别各种类型的三角形。

2.培养学生运用几何知识解决实际问题的能力。

3.提升学生对几何图形的审美能力,培养他们的空间想象能力。

四. 说教学重难点1.教学重点:三角形的定义、性质和分类。

2.教学难点:三角形的高的概念和性质,以及三角形在实际问题中的应用。

五. 说教学方法与手段本节课采用讲授法、案例分析法、小组讨论法等多种教学方法,结合多媒体课件、几何模型等教学手段,引导学生从直观到抽象的认识三角形,提高他们的学习兴趣和参与度。

六. 说教学过程1.导入:通过展示一些生活中的三角形实例,如自行车的三角架、三角尺等,引导学生关注三角形,激发他们的学习兴趣。

2.新课导入:介绍三角形的定义和性质,让学生通过观察、操作、思考,理解三角形的本质特征。

3.案例分析:分析一些具体的三角形实例,让学生掌握三角形的基本分类,并能识别各种类型的三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(上)认识三角形同步练习题1、(10分)一个等腰三角形的两个内角度数之比为4∶1,
求这个三角形各角度数.
2、(10分)如图,已知:在ABC
∆中,AC
AB=,CD
BE=,︒
=
∠68
B,CF
BD=.
求:EDF
∠的度数.
3、(10分)已知△ABC中AB=AC,AD⊥BC于D,
若△ABC、△ABD的周长分别是25cm和
21cm,•求AD的长.
4、(10分)如图,已知:BD
BC
ADB
ACB=

=
∠,. B C
A
求证:AD
AC=.
5、(15分)如图,已知:AD是ABC
∆的角平分线,且BC
EF
AC
AE//
,
=交AC于点F.
求证:CE平分DEF
∠.
6、(15分)如图,已知AB=AC,E、D分别在AB、AC上,
BD与CE交于点F,•且∠ABD=•∠ACE.
求证:BF=CF.
7、(15分)如图,在△ABC中BA=BC,
E D
C
A
B
F
E
D
C
A
B
F
点D是AB延长线上一点,
DF⊥AC于F交BC于E.
求证:△EDB是等腰三角形.
8、(15分)如图,已知:BO、CO分别为ABC
∠的平分线,
∠和ACB
,
OE//
//.
OF
AC
AB
求证:OEF
∆的周长等于BC的长.
命题意图:
认识三角形共有8道同步练习题,主要围绕知识点三角形的概念及其构成元素以及三角形的分类而设计,其中的1、2题为基础训练题,让学生单独完成即可。

其中的3、4、5、6题能力提高题,在学生充分思考的前提下,教师要适当点拨、引导。

第7题和第8题为中等难度题,经过前面能力提高题的点拨、引导,让学生讨论完成。

该同步练习题主要突出了等腰三角形的性质及其各个性质之间的转化利用。

该练习题立足于教材知识,既夯实基础,又训练能力,学生不仅能从中形成扎实的基本功,而且在对能力题的探究中,开拓思维,开拓知识面,对解题的方法和技巧可以得到不同程度的提高。

衡阳市第十六中学胡桑敏。

相关文档
最新文档