江苏省太仓市第二中学七年级数学上册《53展开与折叠(1)》课件苏科版
合集下载
《53 展开与折叠(1)》(苏科版七年级上)PPT课件

数学七年级上册
5.3 展开与折叠(1)
1
这些包装盒漂亮吗?它们是怎样制作的?
2
圆 柱 圆 锥
3
三 棱 锥
4
三 棱 柱
5
长 方 体
6
想一想 图中纸筒纸盒沿红线或侧棱剪开,能展开
成平面图形吗?会是什么形状呢?
B
D
A
C
A
B
C
D
导入 活动一 活动二 活动三 练习 小结 上一 下一 7
牛刀小试 1、下列图形是哪些几何体 的表面展开图?
(2)
16
(3)
(4)
18
(5)
19
(6)
20
(7)
21
(8)
22
(9)
23
(10)
24
(11)
25
(12)
26
(13)
27
(14)
28
(15)
29
(16)
30
(17)
31
(18)
32
考考你 下面两图是正方体的表面展图。
1、如果“你”在前面,那么谁在后面?
了!
到距它最远的另一个顶点B去,哪条路
径最短? B
B
●
B
展开
A
●
A
这样的路径有几条?
A
B
37
提问与解答环节
Questions And Answers
38
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
5.3 展开与折叠(1)
1
这些包装盒漂亮吗?它们是怎样制作的?
2
圆 柱 圆 锥
3
三 棱 锥
4
三 棱 柱
5
长 方 体
6
想一想 图中纸筒纸盒沿红线或侧棱剪开,能展开
成平面图形吗?会是什么形状呢?
B
D
A
C
A
B
C
D
导入 活动一 活动二 活动三 练习 小结 上一 下一 7
牛刀小试 1、下列图形是哪些几何体 的表面展开图?
(2)
16
(3)
(4)
18
(5)
19
(6)
20
(7)
21
(8)
22
(9)
23
(10)
24
(11)
25
(12)
26
(13)
27
(14)
28
(15)
29
(16)
30
(17)
31
(18)
32
考考你 下面两图是正方体的表面展图。
1、如果“你”在前面,那么谁在后面?
了!
到距它最远的另一个顶点B去,哪条路
径最短? B
B
●
B
展开
A
●
A
这样的路径有几条?
A
B
37
提问与解答环节
Questions And Answers
38
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
【苏科版】数学七年级上册:5.3《展开与折叠》课件

探究
1.下面是正方体的表面展开图(每个面都标有字),你 知道面“正”、“方”的对面各是哪个面吗?
展 正 方体 开
图
2.如图,这是一个正方体的展开图,如果将它组成原 来的正方体,哪些点与点C重合?
N C BA
M LK
D EF G
IJ H
讲一讲
这节课你最大 的收获是什么?
作业
1.请你将一个长方体纸盒沿棱剪开展开成平面图形, 试画出展开后的平面图形并与同学交流.
•
11、人总是珍惜为得到。2021/4/1202 1/4/120 21/4/1 Apr-211 -Apr-21
•
12、人乱于心,不宽余请。2021/4/12 021/4/1 2021/4 /1Thurs day, April 01, 2021
•
13、生气是拿别人做错的事来惩罚自 己。202 1/4/12 021/4/1 2021/4 /12021 /4/14/1 /2021
想一想
你会将下列几何体展开成平面 图形吗?画出示意图.
圆柱的表面展开图是:两个圆(作底面)和一个长方形(作侧 面) .
圆锥的表面展开图是:一个圆(作底面)和一个扇形(作侧 面) .
做一做
如何把一个正方体的表面沿棱剪开,展开成一个 平面图形?分组讨论并尝试剪一剪.
注意:剪开正方体棱的过程中,正方体的6个面中 每个面至少有一条棱与其他面相连 .
对其中不能围成正方体的图形,如何移动其中 一个小正方形到新的位置使它能折叠成正方体?
(1)
(2)
(3)
(4)
5.下面图形经过折叠能否围成棱柱?
(1)
(2)
(3)
(1)侧面数(4个)≠底面边数(3条),不能围成棱柱.
苏科版七年级数学上册5.3《展开与折叠》 .ppt课件

解:
A
动动手
把一个正方体的外表 沿某些棱剪开,展成一 个平面图形,能得到哪 些平面图形?请与同伴 进展交流。
第一类,中间四连方,两侧各一个,共六种。
第二类,中间三连方,两侧各有一、二个,共三 种。
第三类,中间二连方,两侧各有二个,只需一种。
第四类,两排各三个,只需一种。
展开与折叠〔1〕
指前实验学校 倪霞
思索:
〔1〕假设将它的侧面展开,会变成什么样的图形? 〔2〕假设将它的外表展开,会变成什么样的图形?
圆锥
扇形
想一想: 下面几个图形是一些常见几 何体的展开图,他能正确说出这些几 何体的名字么?
一个无盖的正方体纸盒,下底面 标有字母A,沿图中的红线将该纸 盒剪开,请画出它的表示图。
A
1、 知道了简单几何体〔如圆柱、棱 锥、圆锥、正方体等〕的平面展开图, 知道按不同的方式展开会得到不同的 展开图。
2、学会了动手实际,与同窗协作。 3、友谊提示:不是一切立体图形都 有平面展开图,比如球体。AB NhomakorabeaC
D
2.如图是一多面体的展开图形,每个面都标有字母,请根据 要求回答提问: 〔1〕假设面A在多面体的底部,那么面 在上面; 〔2〕假设面F在前面,从左面看是面B,那么面 在上面; 〔3〕从右面看面C,面D在后面,面 在上面。
A
B CD EF
考考他
1、假设“他〞在前面,那么谁在后面?
了! 太棒 他们
总结规律: 中间四个面 上、下各一面
中间三个面 一、二隔河见 中间两个面 楼 梯 天 天 见 中间没有面 三、三 连一线
牛刀小试 下面的图形都是正方体的展开图吗?
下面的图形都是正方体的展开图吗?
将相对的两个面涂上一样的颜色,正 方体的平面展开图共有以下11种:
A
动动手
把一个正方体的外表 沿某些棱剪开,展成一 个平面图形,能得到哪 些平面图形?请与同伴 进展交流。
第一类,中间四连方,两侧各一个,共六种。
第二类,中间三连方,两侧各有一、二个,共三 种。
第三类,中间二连方,两侧各有二个,只需一种。
第四类,两排各三个,只需一种。
展开与折叠〔1〕
指前实验学校 倪霞
思索:
〔1〕假设将它的侧面展开,会变成什么样的图形? 〔2〕假设将它的外表展开,会变成什么样的图形?
圆锥
扇形
想一想: 下面几个图形是一些常见几 何体的展开图,他能正确说出这些几 何体的名字么?
一个无盖的正方体纸盒,下底面 标有字母A,沿图中的红线将该纸 盒剪开,请画出它的表示图。
A
1、 知道了简单几何体〔如圆柱、棱 锥、圆锥、正方体等〕的平面展开图, 知道按不同的方式展开会得到不同的 展开图。
2、学会了动手实际,与同窗协作。 3、友谊提示:不是一切立体图形都 有平面展开图,比如球体。AB NhomakorabeaC
D
2.如图是一多面体的展开图形,每个面都标有字母,请根据 要求回答提问: 〔1〕假设面A在多面体的底部,那么面 在上面; 〔2〕假设面F在前面,从左面看是面B,那么面 在上面; 〔3〕从右面看面C,面D在后面,面 在上面。
A
B CD EF
考考他
1、假设“他〞在前面,那么谁在后面?
了! 太棒 他们
总结规律: 中间四个面 上、下各一面
中间三个面 一、二隔河见 中间两个面 楼 梯 天 天 见 中间没有面 三、三 连一线
牛刀小试 下面的图形都是正方体的展开图吗?
下面的图形都是正方体的展开图吗?
将相对的两个面涂上一样的颜色,正 方体的平面展开图共有以下11种:
苏科版七上数学课件5.3展开与折叠

2、展开后有公共边或公共顶点的两个正方形不 可能是相对面,字母不相同。
下图是一个正方体的展开图,标注了字 母A的面是正方体的正面,如果正方体 的左面与右面所标注代数式的值相等,
求 x的值.
-2
3 -4 1
A 3x-2
-2
3 -4 1
A 3x-2
下图需再添上一个面,折叠后才能围成一个正方 体,下面是四位同学补画的情况(图中阴影部分),
了!
左
下
太棒
上
后
你们
前
右
KEY: 棒
如图所示的立方体,如果把它展开,可以是下列图形中的( D )
(A)
(B)
(C)
(D)
如图,将正方体展开图折叠后可粘成A、B、C中哪个正方体? (A )
A
B
C
请你找到对面的朋友:(相同字母 代表相对面)
AB C AC B
AB CA
CBC
BC
ABA
字母分布规律:
1、展开后,在一直线上的三个连续正方形,两 端的两个正方形是相对面,字母相同。
初中数学课件
金戈铁骑整理制作
初中数学 七年级(上册)
5.3 展开与折叠
说出下列立体图形的表面展开图的名称。
.
B
B
可口可乐
.
A
.A
圆柱体的表面展开图:长方形+2个圆 。
说出下列立体图形的表面展开图的名称。
A A 圆锥体的表面展开图: 扇形+圆 。
下面图形经过折叠能否围成棱柱?
(1)
(2)
(3)
其中正确的是( ) B
A
B
C
D
下面这些图形中,能通过折叠围成正方体的 是(1)、(2)、(3) .
苏科版七年级上册展开与折叠课件

• 如图所示的硬纸板上有10个无阴影 的正方形,从中选出一个,与图中 5个有阴影的正方形一起制作成一 个正方体包装盒。
12 3
4
5
67
8
9 10
点此演示
◆马小虎准备制作一个封闭的正方体盒子 ,他先用5个大小一样的正方形制成如下 图所示的拼接图形(实线部分),经折叠后 发现还少一个面,请你在下图中帮助他用 ■画出来.
考考你1
将下面几何体与能围成它们的图形连结起来
1
2
3
4
5
6
1
2
3
4
5
6
将相对的两个面涂上相同的颜色,正 方体的平面展开图共有以下11种:
牛刀小试 图形都是正方体的展开图吗?
探索
无上盖的正方体展开 图会是怎样的呢?
C B
C1 B1
D A
D1 A1
C B
Q· ·S
·
P
C1 D1
D
A
B1 A1
●二行
C B
C1 D1
D
A
B1 A1
●二行
C B
C1 D1
D
A
B1 A1
●二行
三种
●三行
●三行
五种
●两行(共3种) ●三行(共5种)
考考你
要使平面展开图,折叠围 成立体图形后,相对两面上的 数和相等,则图中的x与y的值 分别为多少?
点击看图
展 开 前 后
T·
T· S·
苏科版七年级上册展开 与折叠课件
2020/9/24
想一想 图中纸筒纸盒沿红线或侧棱剪开,能展
开成平面图形吗?会是什么形状呢?
B
D
A
C
12 3
4
5
67
8
9 10
点此演示
◆马小虎准备制作一个封闭的正方体盒子 ,他先用5个大小一样的正方形制成如下 图所示的拼接图形(实线部分),经折叠后 发现还少一个面,请你在下图中帮助他用 ■画出来.
考考你1
将下面几何体与能围成它们的图形连结起来
1
2
3
4
5
6
1
2
3
4
5
6
将相对的两个面涂上相同的颜色,正 方体的平面展开图共有以下11种:
牛刀小试 图形都是正方体的展开图吗?
探索
无上盖的正方体展开 图会是怎样的呢?
C B
C1 B1
D A
D1 A1
C B
Q· ·S
·
P
C1 D1
D
A
B1 A1
●二行
C B
C1 D1
D
A
B1 A1
●二行
C B
C1 D1
D
A
B1 A1
●二行
三种
●三行
●三行
五种
●两行(共3种) ●三行(共5种)
考考你
要使平面展开图,折叠围 成立体图形后,相对两面上的 数和相等,则图中的x与y的值 分别为多少?
点击看图
展 开 前 后
T·
T· S·
苏科版七年级上册展开 与折叠课件
2020/9/24
想一想 图中纸筒纸盒沿红线或侧棱剪开,能展
开成平面图形吗?会是什么形状呢?
B
D
A
C
5.3展开与折叠(课件)-七年级数学上册(苏科版)【01】

02 知识精讲 注意:下列平面图形不是正方体的展开图哦~
正方体的展开图
L型
田字型
凹字型
02 知识精讲
探究2:为什么要剪7条棱, 才能得到正方体的展开图呢?
∵正方体共12条棱, 每种展开图内都有5条棱相连, ∴要剪7条棱。
03 典例精析
例1、下列七个图形中是正方体的平面展开图的有( B )
“二二二”型,√
02 知识精讲
同一个正方体展开所得到的平面图形有11种, 在展成平面图形的过程中,一共剪了7条棱。
02 知识精讲 探究1:11种展开图,如何快速记忆呢?
做好分类就行 啦~
“一四一”型
02 知识精讲 “三三”型
“二三一”型 “二二二”型
02 知识精讲
正方体的展开图
“一四一”型:6个 “二三一”型:3个 “三三”型:1个 “二二二”型:1个
× “一四一”型,√
×
×
A. 1个
×
B. 2个
×
C. 3个
D. 4个
03 典例精析
例2、如图是一个正方体,如图哪个选项是它的展开图( B )
A.
B.
C.
D.
03 典例精析 例3、一个正方体的表面展开图如图所示,把它折成正方体后
,与“山”字相对的字是(D )
A.水 B.绿 C.建 D.共
正方体找某一面的对面的口诀: 隔面有面是对面,隔面无面就拐弯。
例3、如图是一个不完整的正方体平面展开图,需再添上一个面, 折叠后才能围成一个正方体.下列添加方式(图中阴影部分)正
确的是( D )
A.
×
B.
×
C.
×
D.
√常见几何体的侧面展开图:来自(1)圆柱:矩形(长方形) (2)圆锥:扇形 (3)正方体:矩形(长方形)
苏科版七年级数学上册5.3《展开与折叠》 课件 (共30张PPT)

1、如图,哪些图形沿虚线折叠可以围成(面 与面之间不重叠)一个棱柱形的包装盒?
(1)先想一想,再动手折一折,验证你的想法。
1、如图,哪些图形沿虚线折叠可以围成(面 与面之间不重叠)一个棱柱形的包装盒?
(1)先想一想,再动手折一折,验证你的想法。
(2)折叠成的棱柱共有多少条棱?哪些棱的长 相等?
通过实际操作进一步感悟立体图形 与平面图形的关系:
1、有些立体图形可以展开成平面 图形。
2、有些平面图形也可以折叠成立 体图形。
先想一想,再动手折一折,并与同学交流。
1、如图所示的纸板上有10个无阴影的正方形。 从中选出1个,与图中5个有阴影的正方形一起 折成一个正方体包装盒。
先想一想,再动手折一折,并与同学交流。
正多面体:各条棱相等,各个面是相同的 正多边形,如图,这些几何体分别是正四面体、 正六面体、正八面体、正十二面体、正二十面 体。
2
六棱柱 12 8 18
2
七棱柱 14 9 21
2
8、
(2)根据上面表格中的数据,你能归纳出 f、v、e之间的等量关系吗?
f+v-e=2 (3)根据你归纳的相等关系,判断是否存在 这样一个棱柱,它有50条棱,32个顶点, 18个面。并说说你的理由。
因为f+v-e=18+32-50=0≠2, 所以不存在这样的棱柱。
请数一数每一种几何体的顶点数(V)、棱数 (E)、和面数(F)。计算V+F-E,你 发现了什么?
正四 面体
顶点数 棱数 面数 V+F-E
正六 面体
正八 面体
正十 二面
体
正二 十面
体
正四 面体
顶点数 4 棱数 6 面数 4 V+F-E 2
新苏科版七年级数学上册5.3《展开与折叠》精品课件

如图:一只圆桶的下方有一只壁虎,上方 有一只蚊子,壁虎学科网要想尽快吃到蚊子,应 该走哪条路径?
你有何高招 ?
● 蚊子
壁虎 ●
● 蚊子 壁虎 ●
蚊子
●
●
壁虎
练习:
1.一个正方体木块的2个 相距最远的顶点处停了一 只壁虎和一只蚊子,那么 壁虎可以从哪条最短的路 径爬到蚊子处?说明理由
点击思维
有一只壁虎在正方体的一个顶点A, 要爬到距它最远的另一个顶点B去,哪 条路径最短?
B
●
●
A
zxxk
点击思维
有一只虫子在正方体的一个顶点A, 要爬到距它最远的另一个顶点B去,哪 条路径最短?
B
●
B
展开
A
●
B
A
这样的路径有几条?
A
1、 学会了简学单科网 几何体(如三棱锥, 正方体等)的平面展开图,知道按不 同的方式展开会得到不同的展开图。
2、 学会了动手实践,与同学合作。
3、友情提醒:不是所有立体图形都 有平面展开图,比如球体。
苏科版初中数学网站
五棱锥
三棱柱
练一练
1.如图,哪一个是棱锥侧面展开图?
(1)
(2)
(3)
5.下面图形经过折叠能否围成棱柱?
(1)
(2)
(3)
(1)侧面数(4个)≠底面边数(3条),不能围成棱柱.
(2)可以折成棱柱.
(3)两底面在侧面展开图的同一端,不在两端,所以不能 围成棱柱.
小壁虎的难题:
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/82021/11/82021/11/811/8/2021 •7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/82021/11/8November 8, 2021 •8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/82021/11/82021/11/82021/11/8
你有何高招 ?
● 蚊子
壁虎 ●
● 蚊子 壁虎 ●
蚊子
●
●
壁虎
练习:
1.一个正方体木块的2个 相距最远的顶点处停了一 只壁虎和一只蚊子,那么 壁虎可以从哪条最短的路 径爬到蚊子处?说明理由
点击思维
有一只壁虎在正方体的一个顶点A, 要爬到距它最远的另一个顶点B去,哪 条路径最短?
B
●
●
A
zxxk
点击思维
有一只虫子在正方体的一个顶点A, 要爬到距它最远的另一个顶点B去,哪 条路径最短?
B
●
B
展开
A
●
B
A
这样的路径有几条?
A
1、 学会了简学单科网 几何体(如三棱锥, 正方体等)的平面展开图,知道按不 同的方式展开会得到不同的展开图。
2、 学会了动手实践,与同学合作。
3、友情提醒:不是所有立体图形都 有平面展开图,比如球体。
苏科版初中数学网站
五棱锥
三棱柱
练一练
1.如图,哪一个是棱锥侧面展开图?
(1)
(2)
(3)
5.下面图形经过折叠能否围成棱柱?
(1)
(2)
(3)
(1)侧面数(4个)≠底面边数(3条),不能围成棱柱.
(2)可以折成棱柱.
(3)两底面在侧面展开图的同一端,不在两端,所以不能 围成棱柱.
小壁虎的难题:
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/82021/11/82021/11/811/8/2021 •7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/82021/11/8November 8, 2021 •8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/82021/11/82021/11/82021/11/8