八年级数学下册-一次函数第4课时导学案 (2)
人教版数学八年级下册导学案:19.2.2一次函数(2)

19.2.2一次函数(2) 姓名__________学习目标:1、会画一次函数的图象.2、能利用一次函数的图象探究一次函数的性质. 重点、难点:重点:一次函数的图象及性质. 难点:k 、b 的值与图象的位置关系. 学习过程: 一、 课前回顾:1、正比例函数y=kx(k 是常数,k ≠0)的图像是一条经过 点的直线.2、在画正比例函数y=kx 图象时,只需确定_____点,通常是( , )和( , )3、当k>0时,直线y=kx 经过 象限,从左到右呈 趋势,即y 随x 的增大而 .4、当k<0时,直线y=kx 经过 象限,从左到右呈 趋势,即y 随x 的增大而 .5、一次函数的解析式:y=_________(__、___是常数,___≠0•),当b=0时,一次函数y =kx +b 成为_________函数. 二、探究新知:例1:在同一个直角坐标系中画出函数x y 2=,32+=x y ,32-=x y 的图像思考:这三个函数的图象形状都是_______________,并且倾斜程度_________;函数y=2x 的图象经过(0,0);函数y=2x+3的图象与y 轴交于点(_____,_____),即它可以看作由直线y=2x 向______平移______个单位长度而得到的;函数y=2x-3的图象与y 轴交点是(____,_____),即它可以看作由直线y=2x 向____平移______个单位长度而得到的;归纳:一次函数y=kx+b 的图象是一条___________,我们称它为直线y=__________,它可以看作由直线y=kx 平移_______个单位长度而得到(当b>0时,向______平移;当b<0时,向_____平移).想一想:对于一次函数y=kx+b(其中k 、b 为常数,k ≠0)的图象是一条直线,你认为有没有更为简便的方法?由于一次函数的图像是直线,所以只要确定_____个点就能画出它,一般选取直线与x 轴,y 轴的交点.即(0,_____)点和(_____,0)点.例2 :分别画出下列函数的图像. (1)21y x =-(2)0.51y x =-+填表:比较函数式y=2x-1与y=-0.5x+1及图象的特点:函数式 k 值 图象从左到右的趋势 增减性 y=2x-1 y=-0.5x+1三、课堂小结:1、一次函数y=kx+b 的图象是一条___________,我们称它为直线y=__________,它可以看作由直线y=kx 平移_______个单位长度而得到(当b>0时,向______平移;当b<0时,向_____平移).k 值相同时,直线一定平行。
人教版数学八年级下册19.2.2《一次函数与实际问题(第4课时)教案

人教版数学八年级下册19.2.2《一次函数与实际问题(第4课时)教案一. 教材分析人教版数学八年级下册19.2.2《一次函数与实际问题(第4课时)》教案,主要讲述了如何将一次函数应用于实际问题中。
本节课通过具体案例,使学生理解一次函数在现实生活中的应用,提高学生运用数学知识解决实际问题的能力。
教材内容丰富,案例贴近生活,有利于激发学生的学习兴趣。
二. 学情分析八年级的学生已经掌握了了一次函数的基本知识,对一次函数的图像和性质有一定的了解。
但学生在应用一次函数解决实际问题方面还需加强。
因此,在教学过程中,教师要注重引导学生将所学知识与实际问题相结合,提高学生运用一次函数解决实际问题的能力。
三. 教学目标1.理解一次函数在实际问题中的应用;2.学会将实际问题转化为一次函数问题,提高解决实际问题的能力;3.培养学生的数学思维能力和创新意识。
四. 教学重难点1.一次函数在实际问题中的运用;2.将实际问题转化为一次函数问题。
五. 教学方法1.情境教学法:通过设置生活情境,引导学生理解一次函数在实际问题中的应用;2.案例分析法:分析具体案例,让学生学会将实际问题转化为一次函数问题;3.小组讨论法:分组讨论,培养学生的合作精神和数学思维能力。
六. 教学准备1.准备相关的生活案例,用于引导学生分析实际问题;2.准备一次函数的图像和性质资料,方便学生复习巩固知识;3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用生活案例,如商场打折问题,引导学生思考如何用一次函数表示折扣,激发学生的学习兴趣。
2.呈现(10分钟)呈现一次函数的图像和性质,让学生回顾一次函数的基本知识。
3.操练(10分钟)让学生尝试将实际问题转化为一次函数问题,如打车费用问题、手机套餐费用问题等。
教师引导学生进行分析,找出关键信息,列出一次函数关系式。
4.巩固(10分钟)学生分组讨论,分享各自解决的实际问题,互相交流心得。
教师点评并指导,帮助学生巩固所学知识。
八年级数学下册19.2一次函数(第4课时)教案(新版)新人教版

一次函数第4课时.教学目标1. 总结函数三种表示方法.2. 了解三种表示方法的优缺点.3. 会根据具体情况选择适当方法.教学重点1. 认清函数的不同表示方法,知道各自优缺点.2. 能按具体情况选用适当方法.教学难点函数表示方法的应用.一、导入新课我们在前几节课里知道函数解析式、列表格、画函数图象,都可以表示具体的函数.这三种表示函数的方法,分别称为解析式法、列表法和图象法.思考一下,从前面的例子看,你认为三种表示函数的方法各有什么优缺点?在遇到具体问题时,该如何选择适当的表示方法呢?二、新课教学从前面几节课所见到的或自己做的练习可以看出.列表法比较直观、准确地表示出函数中两个变量的关系.解析式法则比较准确、全面地表示出了函数中两个变量的关系.至于图象法它则形象、直观地表示出函数中两个变量的关系.相比较而言,列表法不如解析式法全面,也不如图象法形象;而解析式法却不如列表法直观,不如图象法形象;图象法也不如列表法直观准确,不如解析式法全面.从全面性、直观性、准确性及形象性四个方面来总结归纳函数三种表示方法的优缺点.从所填表中可清楚看到三种表示方法各有优缺点.在遇到实际问题时,就要根据具体情况、具体要求选择适当的表示方法,有时为了全面地认识问题,需要几种方法同时使用.例4 一个水库的水位在最近5 h内持续上涨.下表记录了这5 h内6个时间点的水位高度,其中t表示时间,y 表示水位高度.(1)在平面直角坐标系中描出表中数据对应的点,这些点是否在一条直线上?由此你能发现水位变化有什么规律吗?(2)水位高度y是否为时间t的函数?如果是,试写出一个符合表中数据的函数解析式,并画出这个函数的图象.这个函数能表示水位的变化规律吗?(3)据估计这种上涨规律还会持续2 h,预测再过2 h水位高度将为多少米.解:(1)如下图,描出上表中数据对应的点.可以看出,这 6 个点在一条直线上.再结合表中数据,可以发现每小时水位上升0.3 m.由此猜想,如果画出这5 h内其他时刻(如t=2.5 h等)及其水位高度所对应的点,它们可能也在这条直线上,即在这个时间段中水位可能是始终以同一速度均匀上升的.(2)由于水位在最近5 h内持续上涨,对于时间t 的每一个确定的值,水位高度y都有唯一的值与其对应,所以y是t的函数.开始时水位高度为3 m,以后每小时水位上升0.3 m.函数y=0.3t+3(0≤t≤5)是符合表中数据的一个函数,它表示经过t h水位上升0.3t m,即水位y为(0.3t+3)m.其图象是下图中点A(0,3)和点B(5,4.5)之间的线段AB.如果在这5 h 内,水位一直匀速上升,即升速为0.3 m/h,那么函数y=0.3t+3(0≤t≤5)就精确地表示了这种变化规律.即使在这5 h内,水位的升速有些变化,而由于每小时水位上升0.3 m 是确定的,因此这个函数也可以近似地表示水位的变化规律.(3)如果水位的变化规律不变,则可利用上述函数预测,再过2 h,即t=5+2=7 (h)时,水位高度y=0.3×7+3=5.1(m).把本例第一幅图中的函数图象(线段AB)向右延伸到t=7 所对应的位置,得到第二幅图,从中也能看出这时的水位高度约为5.1 m.三、课堂练习:教材第81页练习1、2、3.四、布置作业:习题第19.2第11、12、13题.教学反思:中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
八年级数学下册导学案一次函数(二)

第一标 设置目标【学习目标】经历实践动手画出一次函数图象的过程,进一步认识一次函数与正比例函数的关系,会读函数图象,理解一次函数的图象和性质,体会函数数形结合的变化特点。
【任务1】1.点(2,3),(2,1),(0,3),(3,0)在y=2x-3上的是 。
2.一次函数y=kx+b 的图象是 ,因此,作一次函数图象时,只要确定 点,再过 作 就可以了,一次函数y=kx+b的图象也称为 。
4.作函数图象的一般步骤是 , , 。
w W w .x K b 1.c o M3.例1.作出一次函数y=2x+1的图象。
4.(1)作出一次函数y=-2x+5的图象。
(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5。
(3)满足y=-2x+5的x ,y 所对应的点(x ,y )都在一次函数y=-2x+5的图象上吗?(4)一次函数y=-2x+5的图象上的点(x ,y )都满足关系式y=-2x+5吗?5.甲乙两人在一次赛跑中,路程s 与时间t 的关系如图6-3-2所示,那么:(1)这是一次 米的赛跑;(2)甲乙二人中先到达终点的是 ;(3)乙在这次赛跑中的速度是 。
第三标 反馈目标(18分钟)赋分 学成情况: ;家长签名:1.已知点A (a+1,1-a )在函数y=2x+1的图象上,a= 。
2.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内剩余油量P (升)与行驶时间t (时)的函数关系,用图象表示就为 。
3.已知直线y=(2m-1)x+1-3m ,(1)当m= 时,直线与y 轴交于点(0,2);(2)当m= 时,直线与x 轴交于点(21,0)。
4.已知直线y=2x+3与x ,y 轴的交点A.B 。
(1)试求A.B 两点的坐标;X|k |B| 1 . c|O |m(2)试求△AOB 的面积。
A B C D。
人教版数学八年级下册19.2.2《一次函数与实际问题(第4课时)教学设计

人教版数学八年级下册19.2.2《一次函数与实际问题(第4课时)教学设计一. 教材分析人教版数学八年级下册19.2.2《一次函数与实际问题(第4课时)》主要讲述了如何运用一次函数解决实际问题。
本节课通过具体的实例,让学生了解一次函数在实际生活中的应用,培养学生的应用意识。
教材内容主要包括一次函数的定义、一次函数图像的特点以及如何根据实际问题列出一次函数等。
二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念,一次函数的定义和图像特点。
但学生在解决实际问题时,往往会把理论知识和实际应用相脱离,不能很好地将一次函数运用到解决实际问题中。
因此,在教学过程中,教师需要注重引导学生将理论知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.知识与技能目标:理解一次函数在实际问题中的应用,学会如何根据实际问题列出一次函数,并能运用一次函数解决简单的实际问题。
2.过程与方法目标:通过观察、分析实际问题,培养学生的抽象思维能力,提高学生运用一次函数解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极参与数学学习的积极性,培养学生的应用意识。
四. 教学重难点1.教学重点:一次函数在实际问题中的应用,如何根据实际问题列出一次函数。
2.教学难点:如何引导学生将实际问题抽象为一次函数,并运用一次函数解决实际问题。
五. 教学方法1.情境教学法:通过创设实际问题的情境,引导学生观察、分析,激发学生的学习兴趣。
2.案例教学法:通过分析具体的实例,使学生了解一次函数在实际问题中的应用。
3.互动教学法:在教学过程中,教师与学生积极互动,引导学生主动参与学习,提高学生的动手操作能力。
4.启发式教学法:教师引导学生从实际问题中发现规律,培养学生独立思考的能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,设计好教学过程和教学活动。
2.学生准备:预习相关知识,了解一次函数的基本概念和图像特点。
2021年八年级数学一次函数 第4课时教案 新课标 人教版

2021年八年级数学一次函数第4课时教案新课标人教版【目标预设】一、知识与能力。
了解一次函数的性质,会用性质解决有关问题。
二、过程与方法。
结合一次函数的图象,理解一次函数的性质。
三、情感、态度、价值观。
培养学生的观察、归纳的能力,进一步向学生进行数形结合的思想方法的教育。
【教学重难点】重点:一次函数的性质。
难点:由函数图象归纳得出函数的性质及对性质的理解。
【预习导学】预习书本P30 得出具体性质如下:当k>0 时,y随x的增大而。
当k<0时,y随x的增大而。
【教学过程】一、创设情景,谈话导入。
前面我们在学习正比例函数的性质时,知道当k>0时,y随x的增大而增大,当k<0时,y随x 的增大而减小,那么在一次函数中,该结论是否仍成立呢?二、精讲点拨、质疑问难。
1、直线所经过的象限与k 、b 的关系。
首先根据给定的函数关系式中b 值的正、负确定出直线与y 轴交点的大致位置。
(若b>0,则直线与y 轴交点在y 轴正半轴;若b<0,则交点在y 轴负半轴)。
之后根据k 值的正、负确定(1) k>0b>0(2) k>0 b=0(3) k>0 b<0(4) k>0b>0(5) k<0b=0(6) k<0b<02.一次函数y=kx+b (k≠0)的增减性当k>0 时,y随x的增大而增大;当k<0时,y随x的增大而减小。
三、课堂活动、强化训练。
例1.当k取的实数时,函数y=(1–2k)x+5 随x的增大而减小。
例2. 如果一次函数y=kx+(k–1)的图象经过第一、三、四象限,求k的取值范围。
四、延伸拓展、巩固内化。
例3.已知一次函数y=(1–a)x+4a–1的图象与y轴交于正半轴,且随x的增大而增大,求a的取值范围。
五、布置作业、当堂反馈。
《自主学习•当堂反馈》P22–23【教后反思】qf35491 8AA3 誣•38448 9630 阰26030 65AE 斮24329 5F09 弉My31919 7CAF 粯36831 8FDF 迟23882 5D4A 嵊s。
八年级数学《一次函数4》导学案
14.2.2一次函数(4)【知识脉络】【学习目标】1.会根据题意求出分段函数的解析式并画出函数图象.2.在多变量的问题的解决中,能合理选择某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.【要点检索】分段函数的初步认识与简单多变量问题的解决。
【方法导航】从数与形的角度全面感受分段函数的特点,并在与正比例函数、一次函数的比较中加深理解,完善认知。
达到在多变量的问题的解决中,能合理选择某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.【头脑风暴】右面的图象所表示的函数是正比例函数?是一次函数?你是怎样认为的?【我回顾,我思考】1、若点(3,a )在一次函数y=3x+1的图象上,则a= ;一次函数 y=kx-1的图象经过点(-3,0),则k= 。
2. 已知一次函数的图象经过点(2,5)和(-1,-1)两点.(1)求这个一次函数的解析式;(2)设该一次函数的图象向上平移2个单位后,与x轴、y轴的交点分别是点A、点B,试求△AOB的面积.【我自学,我探索】自学课本118——119页例5,5分钟后回答下列问题:1、购买种子数量与付款金额之间是单一的一次函数关系,还是正比例函数关系?与什么量有关?2、某市自来水公司为鼓励居民节约用水,采取分段计费的方法按月计算每户家庭的水费。
月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3计费,超过部分按2.6元/m3计费。
分别写出每户家庭月用水量与应交水费之间的函数解析式,并画出图象。
【我掌握,我应用】1、一根弹簧的原长为12 cm,它能挂的重量不能超过15 kg并且每挂重1kg就伸长0.5cm写出挂重后的弹簧长度y(cm)与挂重x(kg)之间的函数关系式是_______________.当所挂物体为4千克时,弹簧的长度为 cm.2、课本119页练习题3、如图是某长途汽车站旅客携带行李收费示意图.试说明收费方法,求出行李费y(元)与行李重量x(千克)之间的函数关系.【我总结,我反思】通过本节课的学习,我的收获是:我还需要解决的困难是:(60,20)(60,20)【达标检测】一、选择题1.一次函数y=(m-2)x+(3-2m)的图像经过点(-1,-4),则m的值为().A.-3 B.3 C.1 D.-12.函数y=-x-1的图像不经过()象限.A.第一B.第二C.第三D.第四3.若直线y=3x+6与坐标轴围成的三角形的面积为S,则S等于().A.6 B.12 C.3 D.244.若一次函数y=(1-k)x+k中,k>1,则函数的图像不经过第()象限.A.一B.二C.三D.四5.一次函数y=kx+b满足x=0时y=-1;x=1时,y=1,则一次函数的表达式为().A.y=2x+1 B.y=-2x+1 C.y=2x-1 D.y=-2x-1 6.如图,线段AB对应的函数表达式为()A.y=-32x+2 B.y=-23x+2C.y=-23x+2(0≤x≤3)D.y=-23x+20(0<x<3)7.已知函数y=x-3,若当x=a时,y=5;当x=b时,y=3,a和b的大小关系是()A.a>b B.a=b C.a<b D.不能确定8.若点P(a,b)在第二象限内,则直线y=ax+b不经过().A.第一象限B.第二象限C.第三象限D.第四象限二、填空题1.若一次函数y=(2-m)x+m的图像经过第一、•二、•四象限,•则m•的取值范围是______.2.在函数y=(m+6)x+(m-2)中,当_______时是一次函数.3.已知点A(m,1)在直线y=2x-1上,则m=_________.4.一次函数y=3x+m-1的图像不经过第二象限,则m的取值范围是________.5.已知一次函数y=-kx+5,如果点P1(x1,y1),P2(x2,y2)都在函数的图像上,且当x1<x2时,有y1<y2成立,那么系数k的取值范围是________.6.已知直线y=kx+b和直线y=-3x平行,且过点(0,-2),•则此直线与x•轴的交点为________.7.直线y=-x+a与直线y=x+b的交点坐标是(m,8),则a+b=________.8.若一次函数y=2x+b的图像与坐标轴围成的三角形的面积是9,则b=_______.9.小芳以200米/分钟的速度起跑后,先匀加速跑5分钟,又匀速跑10分钟.请写出这段时间里她的跑步速度y(米/分钟)随跑步时间x(分钟)变化的函数关系式___________.三、解答题1.学校组织学生到距离学校6km的海洋科技馆参观,小亮因有事没能乘上学校的包车,•于是他准备在学校门口乘出租车去.•出租车的收费标准是:•行驶里程不超过3km,收费8元;超过3km,每增加1km,加收1.8元.(1)写出出租车行驶里程数x(x>3)与费用y(元)之间的关系式.(2)小亮只有14元钱,他乘出租车到海洋科技馆,车费够不够?2.一台拖拉机工作时,每小时耗油6L,已知油箱中有油40L.(1)设拖拉机的工作时间为t(h),油箱中的剩余油量为QL,求出Q(L)与t(h)• 之间的函数关系式.(2)当油箱内剩余油10L时,这台拖拉机已工作了几小时?探究应用拓展性训练1.(学科内综合题)已知等腰三角形ABC的周长为10cm,底边BC的长为ycm,腰AB的长为xcm,试求y与x之间的函数关系式,并求x的取值范围.2.(学科内综合题)已知一次函数y=(m-2)x+m2-6的图像与y轴相交,交点的纵坐标是-2,求m的值.3.(2004年宁夏卷)某种拖拉机的油箱可储油40L,加满油并开始工作后,•油箱中的余油量y(L)与工作时间x(h)之间为一次函数关系,如图所示.(1)求y与x的函数解析式.(2)一箱油可供拖位机工作几小时?4.(2004年哈尔滨卷)小明同学骑自行车去郊外春游,下图表示他离家的距离y(km)与所用的时间x(h)之间关系的函数图像.(1)根据图像回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发2.5h离家多远.(3)求小明出发多长时间距家12km.。
八年级数学下册19.2.2一次函数第4课时导学案新版新人教版2
19.2.2 一次函数(第四课时) 学习目标:1、我会用待定系数法求函数的解析式。
2、我能根据图像确定一次函数的解析式,提升数形结合解决问题的能力。
学习重点:会用待定系数法求函数的解析式。
学习难点:会寻找条件确定一次函数的解析式。
一、自主学习:直线b kx y +=(K ≠0)中,k,b 的取值决定直线的位置:k 确定函数的 性,b 确定图像与 的交点。
因此,要确定一次函数的解析式b kx y +=(K ≠0),就必须确定k 与b 的值,常使用待定系数法来确定k 和b 。
(一)、已知一次函数的图像经过点(3,5)与(-4,-9),求这个一次函数的解析式。
分析:求一次函数b kx y +=的解析式,关键是求出k ,b 的值,从已知条件可以列出关于k ,b 的二元一次方程组,并求出k ,b 。
解:设函数解析式为b kx y +=(K ≠0),∵一次函数b kx y +=的图像经过点(3,5)与(-4,-9)∴⎩⎨⎧______________________ 解得⎩⎨⎧==__________b k∴一次函数的解析式为:像上面这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个 式子的方法,叫做待定系数法。
y二、合作交流与展示:1.求下图中直线的函数解析式:Y--X x2、已知直线b kx y +=经过点(9,0)和点(24,20),求这条直线的函数解析式。
三、当堂检测:(1、2、3、5题是必做题,6、、7题是选做题)1、已知一次函数2+=kx y ,当x= 5时,y= = 4,(1)k = ,(2)当2-=x 时,y =2、若一次函数y =mx-(m-2)过点(0,3),求m 的值。
3、若y+3与x 成正比例,且x=2时,y=5,则x=5时,y=4、直线y=7x+5,过点( ,0),(0, )5、写出经过点(1,2)的一次函数的解析式: (写出一个即可)6、一次函数的图象经过点A (-2,-1),且与直线y=2x-3平行,•则此函数的解析式为( )A .y=x+1B .y=2x+3C .y=2x-1D .y=-2x-57、已知函数3)12(-++=m x m y(1)、若函数图像经过原点,求m 的值。
最新八年级下册.2一次函数第4课时一次函数与实际问题教案新人教版
1第4课时 一次函数与实际问题1.根据问题及条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,能够将实际问题转化为一次函数的问题.(重点)一、情境导入联通公司手机话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x (分钟).(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱? 二、合作探究探究点:一次函数与实际问题【类型一】 利用一次函数解决最值问题广安某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据计划购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,列出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x 千克,则购进乙种水果(140-x )千克,根据题意可得5x+9(140-x )=1000,解得x =65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W ,由题意可得W =3x +4(140-x )=-x +560.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x ≤3x ,解得x ≥35.∵-1<0,∴W 随x 的增大而减小,则x 越小W 越大.∴当x =35时,W 最大=-35+560=525(元),140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元. 方法总结:利用一次函数增减性得出函数最值是解题关键. 【类型二】利用一次函数解决有关路程问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1h 后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2h 装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地的时间x (h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多久与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远? 解析:(1)由“速度=路程÷时间”就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追及问题设邮政车出发a h 与自行车队首次相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以求出D 的坐标,由待定系数法求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得自行车队行驶的速度为72÷3=24(km/h). (2)由题意得邮政车的速度为24×2.5=60(km/h).设邮政车出发a h 与自行车队首次相2遇,由题意得24(a +1)=60a ,解得a =23.答:邮政车出发23h 与自行车队首次相遇;(3)由题意得邮政车到达丙地的时间为135÷60=94(h),∴邮政车从丙地出发返回甲地前共用时为94+2+1=214(h),∴B (214,135),C (7.5,0).自行车队到达丙地的时间为135÷24+0.5=458+0.5=498(h),∴D (498,135).设直线BC 的解析式为y 1=k 1+b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0=7.5k 1+b 1,解得⎩⎪⎨⎪⎧k 1=-60,b 1=450.∴y 1=-60x +450.设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72=3.5k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24x -12.当y 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出函数的解析式是关键.【类型三】 利用一次函数解决图形面积问题如图①,底面积为30cm 2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h (cm)与注水时间t (s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题: (1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm 3/s)为多少?(2)若“几何体”的下方圆柱的底面积为15cm 2,求“几何体”上方圆柱的高和底面积.解析:(1)根据图象,分三个部分:注满“几何体”下方圆柱需18s ;注满“几何体”上方圆柱需24-18=6(s),注满“几何体”上面的空圆柱形容器需42-24=18(s).再设匀速注水的水流速度为x cm 3/s ,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm ,根据圆柱的体积公式得a ·(30-15)=18×5,解得a =6,于是得到“几何体”上方圆柱的高为5cm ,设“几何体”上方圆柱的底面积为S cm 2,根据圆柱的体积公式得5×(30-S )=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm ,两个实心圆柱组成的“几何体”的高度为11cm ,水从刚满过由两个实心圆柱组成的“几何体”到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm 3/s ,则18·x =30×3,解得x =5,即匀速注水的水流速度为5cm 3/s ;(2)由图②知“几何体”下方圆柱的高为a cm ,则a ·(30-15)=18×5,解得a =6,所以“几何体”上方圆柱的高为11-6=5(cm).设“几何体”上方圆柱的底面积为S cm 2,根据题意得5×(30-S )=5×(24-18),解得S =24,即“几何体”上方圆柱的底面积为24cm 2.方法总结:本题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型四】利用一次函数解决销售问题牌的羽毛球拍,每副球拍配x (x ≥2)个羽毛球,供社区居民免费借用.该社区附近A 、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A 超市:所有商品均打九折(按标价的90%)销售;B 超市:买一副羽毛球拍送2个羽毛球. 设在A 超市购买羽毛球拍和羽毛球的费用为y A (元),在B 超市购买羽毛球拍和羽毛球的费用3 为y B (元).请解答下列问题:(1)分别写出y A 、y B 与x 之间的关系式; (2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.解析:(1)根据购买费用=单价×数量建立关系就可以表示出y A 、y B 的解析式;(2)分三种情况进行讨论,当y A =y B 时,当y A >y B 时,当y A <y B 时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.解:(1)由题意得y A =(10×30+3×10x )×0.9=27x +270;y B =10×30+3(10x -20)=30x +240;(2)当y A =y B 时,27x +270=30x +240,得x =10;当y A >y B 时,27x +270>30x +240,得x <10.∵x ≥2,∴2≤x <10;当y A <y B 时,27x +270<30x +240,得x >10;∴当2≤x <10时,到B 超市购买划算,当x =10时,两家超市一样划算,当x >10时,在A 超市购买划算;(3)由题意知x =15,15>10,∴只在一家超市购买时,选择A 超市划算,y A =27×15+270=675(元).在两家超市购买时,先选择B 超市购买10副羽毛球拍,送20个羽毛球,然后在A 超市购买剩下的羽毛球:(10×15-20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B 超市购买10副羽毛球拍,然后在A 超市购买130个羽毛球.方法总结:本题考查了一次函数的解析式的运用,分类讨论的数学思想的运用,方案设计的运用,解答时求出函数的解析式是关键.【类型五】 利用图表信息解决实际问题某工厂生产甲、乙两种不同的产品,所需原料为同一种原材料,生产每吨产品所需原材料的数量和生产过程中投入的生产成本的关系如表所示:若该工厂生产甲种产品m 吨,乙种产品n 吨,共用原材料160吨,销售甲、乙两种产品的利润y (万元)与销售量x (吨)之间的函数关系如图所示,全部销售后获得的总利润为200万元.(1)求m 、n 的值;(2)该工厂投入的生产成本是多少万元? 解析:(1)求出甲、乙两种产品每吨的利润,然后根据两种原材料的吨数和全部销售后的总利润,列出关于m 、n 的二元一次方程组,求解即可;(2)根据“生产成本=甲的成本+乙的成本”,列式计算即可得解.解:(1)由图可知,销售甲、乙两种产品每吨分别获利6÷2=3(万元)、6÷3=2(万元).根据题意可得⎩⎪⎨⎪⎧m +2n =160,3m +2n =200,解得⎩⎪⎨⎪⎧m =20,n =70;(2)由(1)知,甲、乙两种产品分别生产20吨、70吨,所以投入的生产成本为20×4+70×2=220(万元).答:该工厂投入的生产成本为220万元. 方法总结:本题考查了一次函数的应用,主要利用了列二元一次方程组解决实际问题,根据表格求出两种产品每吨的利润,然后列出方程组是解题的关键.三、板书设计1.利用一次函数解决最值问题 2.利用一次函数解决有关路程问题 3.利用一次函数解决图形面积问题 4.利用一次函数解决销售问题 5.利用图表信息解决实际问题本节课的设计,力求体现新课程改革的理念,结合学生自主探究的时间,为学生营造宽松、和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养学生的探索能力和创新能力,激发学生学习的积极性.在学生选择解决问题的诸多方法的过程中,不过多地干涉学生的思维,而是通过引导学生自己去探究选择合适的办法解决问题.。
八年级数学下册 第4章 一次函数 4.2 一次函数(第4课时)教案 (新版)湘教版
(2)当m=时,y= 是一次函数。
(3)请写出一个正比例函数,且x=2时,y=-6
请写出一个一次函数,且x=-6时,y=2
(4)我国是一个水资源缺乏的国家,大家要节约用水.据统计,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.李丽同学在洗手时,没有把水龙头拧紧,当李丽同学离开x小时后水龙头滴了y毫升水.则y与x之间的函数关系式是
A.一次函数不一定是正比例函数。
B.不是一次函数就不一定是正比例函数。
C.正比例函数是特殊的一次函数。
D.不是正比例函数就一定不是一次函数。
(2)下列函数中一次函数的个数为()
①y=2x;②y=3+4x;③y= ;④y=ax(a≠0的常数);⑤xy=3;⑥2x+3y-1=0;
A.3个B 4个C 5个D 6个
一次函数
教学目标
1.知识与技能:理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展数学应用能力。
2.过程与方法:经历一般规律的探索过程,发展抽象思维能力。
3.情感态度与价值观:从实际问题的提出,有利于激发学生的学习兴趣
重点难点
1、重点: 理解一次函数和正比例函数的概念;能根据所给条件写出简单的一次函数表达式
(5)设圆的面积为s,半径为R,那么下列说法正确的是()
A S是R的一次函数B S是R的正比例函数
C S是 的正比例函数D以上说法都不正确
6、说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数(第4课时)导学案【教材分析】
教学目标知识
技能
利用一次函数知识解决相关实际问题.
理解分段函数的意义.
过程
方法
经历函数模型解决实际问题的过程,体会利用函数思想解决问题的方法.
情感
态度
在数学建模的过程中,发展创新实践能力,培养学生的数学应用意识.
重点灵活运用知识解决相关问题.
难点分类讨论方法.
【教学流程】
环节导学问题师生活动二次备课
情境引入【问题1】今年某地区发生严重干旱,自来
水公司为了鼓励市民节约用水,采取分段
收费标准,若某户居民每月应交水费y
(元)是用水量x(吨)的函数,当0≤x≤5
时,y=0.72x,当x>5时,y=0.9x-0.9.
(1)画出函数的图象;
(2)利用函数图象,说出当市民本月用
水10吨时,应缴水费多少元.
分析:本题y随x变化的规律分成两
段:当0≤x≤5时,y=0.72x,当x>5时,y
=0.9x-0.9. 画图象时也要分成两段来
画,且要注意各自变量的取值范围.
教师出示问题,学生自主尝试,合作交
流,师生共同评价
解:(1)图象如下
(2)根据图象可知,当x=10时,y=8.1
(元)
自主探究
合作交流
自主探【问题2】“黄金1号”玉米种子的价格为
5元/千克,如果一次购买2千克以上的种
子,超过2千克部分的种子的价格打8折.
(1)填表:
(2)写出购买种子数量与付款金额之间
的函数解析式,并画出函数图象?
【分析】付款金额与种子价格相关,种子
价格是变化的,它与购买的种子数量有
关.设购买x千克种子,当x取
______________时,种子的价格为5元/千
克;当x取___________时,种子的价格分
两部分:2千克按5元/千克,其余的(即
超出部分)___________按8折,即
教师出示问题,学生合作交流,师
生共同评价
解:(1)
(2)当02
x
≤≤时,5
y x
=,当
2
x>时,4(2)1042
y x x
=-+=+也可
以写成
5(02)
42(2)
x x
y
x x
≤≤
⎧
=⎨
+>
⎩
图象如图所示
究
合
作
交
流
_________计价.
因此,写函数解析式与画图时,应对
______________和_________________分
段讨论.
我们把这种函数叫做分段函数.在解决函
数问题时,要特别注意自变量取值范围的
划分,既要科学合理,又要符合实际.
尝
试
应
用
1.如图,某航空公司托运行李的费用与托
运行李重量的关系为线型函数,由图可知
行李的重量只要不超过______公斤,就可
免费托运.
教师出示问题,学生先自主,再合
作,交流展示,师生共同评价
1.解:本题只给出了一次函数的图象,
若能求得一次函数的解析式,问题即可
解决.
根据图象不难发现直线过以下三点:
(30,330)、(40,630)、(50,930),
任选其中两点可求出
一次函数解析式为:y=30x-570.
于是,令y=0得一次
函数与x轴交点为 (19,0),
可知当x≤19时,行李就可免费托
运.
2. 2,6,
成
果
展
示
欣赏自我:本节课你学会了什么?
完善自我:对本课的内容,你还有哪些疑
惑?
教师引导学生归纳总结、反思、梳
理知识,帮助学生形成知识体系.
补
偿
提
高
3.某农户种植一种经济作物,总用水量
y(3
米)与种植时间x(天)之间的函数
关系式如图所示.
(1)第20天的总用水量为多少3
米?
(2)当x≥20时,求y与x之间的函数
关系式.
(3)种植时间为多少天时,总用水量达
教师出示问题,学生先自主,再合
作,交流展示,师生共同评价
3.解:
(1) 第20天的总用水量为1000米3
(2) 当20
x≥时,设y=kx+b
∵函数图象经过点(20, 1 000),
(30,4 000).。