分子荧光分析法
分子荧光光谱法

磷光是分子吸光成为激发态分子,在返回基态时 的发光现象.
荧光:受光激发的分子从第一激发单重态的最低 振动能级回到基态所发出的辐射。
磷光: 从第一激发三重态的最低振动能级回到基 态所发出的辐射。
1~3 ;
荧光分析法的特点
★★★
因应能试
为用提样
有范供用
态.当吸收一定频率的电磁辐射发生能级跃迁时,可上升到不同激发态
的各振动能级,其中多数分子上升至第一激发单重态这一过程约需10-
15秒.
激发
2 去活化过程
激发态分子的失活: 激发态分子不稳定,它要以辐射 或无辐射跃迁的方式回到基态
☆振动驰豫 (Vibrational relaxation)
☆荧光发射(Fluorescence)
荧光分析法的应用
无机物分析 无机离子中除少数例外一般不发荧光.但很多 无机离子能怀一些有机试剂形成荧光络合物,而进行定量 测定.
生物化学及生理医学方面的应用 荧光法对于生物中许多 重要的化合物具有很多的灵敏度和较好的物效性,故广用 于生物化学分析,生理医学和临床分析.
药物分析
目前还采用荧光分光光度计作为高效液相色谱,薄层色谱 和高效毛细管电泳等的检测器,使有效的分离手段与高灵 敏度,高选择性的测定方法结合起来,可用于测定复杂的混 合物.
荧光与环境因素的关系
★温度降低会使荧光强度增大; ★PH 带有酸性或碱性取代基的芳 香化合物的荧光与pH有关; ★溶剂 溶剂极性增加有时 会使荧光强度增加,荧光波长红移; 若溶剂和荧光物质形成氢键或使荧 光物质电离状态改变,会使荧光强度 、荧光波长改变;含重原子的溶剂 (碘乙烷、四溴化碳)使荧光减弱。 ★溶解氧的存在往往使荧光强度 降低。 ★激发光的照射
分子荧光法测定实验报告

一、实验目的1. 熟悉分子荧光法的基本原理和操作步骤。
2. 掌握荧光光谱仪的使用方法。
3. 通过实验,测定罗丹明B的荧光光谱,分析其激发光谱和发射光谱。
4. 掌握荧光定量分析的方法。
二、实验原理分子荧光法是一种灵敏的定量分析方法,基于物质在特定波长范围内吸收光能后,电子从基态跃迁到激发态,再回到基态时释放出一定波长的荧光。
罗丹明B作为一种荧光物质,在特定波长范围内具有明显的荧光特性。
通过测定罗丹明B的激发光谱和发射光谱,可以确定其最佳激发波长和发射波长,从而进行定量分析。
三、实验仪器与试剂1. 仪器:荧光光谱仪、紫外-可见分光光度计、移液器、容量瓶、试管等。
2. 试剂:罗丹明B标准溶液、无水乙醇、蒸馏水等。
四、实验步骤1. 准备罗丹明B标准溶液:准确移取一定量的罗丹明B标准溶液,用无水乙醇稀释至100mL,配制成一定浓度的罗丹明B标准溶液。
2. 测定激发光谱:在荧光光谱仪上,设定罗丹明B标准溶液的浓度为1.0×10^-5 mol/L,以无水乙醇为参比溶液,扫描激发光谱,记录激发波长范围内荧光强度的变化。
3. 测定发射光谱:在荧光光谱仪上,设定罗丹明B标准溶液的浓度为1.0×10^-5 mol/L,以无水乙醇为参比溶液,以激发光谱中最大激发波长为激发波长,扫描发射光谱,记录发射波长范围内荧光强度的变化。
4. 荧光定量分析:取一定量的罗丹明B样品溶液,按照上述步骤测定其激发光谱和发射光谱,计算样品溶液中罗丹明B的浓度。
五、实验结果与讨论1. 激发光谱:罗丹明B的激发光谱显示,在激发波长为540nm附近,荧光强度达到最大值。
因此,选择540nm作为激发波长。
2. 发射光谱:罗丹明B的发射光谱显示,在发射波长为590nm附近,荧光强度达到最大值。
因此,选择590nm作为发射波长。
3. 荧光定量分析:根据罗丹明B的激发光谱和发射光谱,以及标准曲线,计算样品溶液中罗丹明B的浓度为1.2×10^-5 mol/L。
分子荧光分析法

能发射荧光物质条件: ①物质分子在紫外-可见光区有较强吸收的特定结构。 ②分子必须有较高的荧光效率。 ③Фf=发射荧光的量子数/吸收激发光的量子数
第五章 分子荧光分析法
2.分子结构与荧光的关系 (1)共轭双键结构:芳环杂环化合物,含共轭双键
脂肪烃π-π激 (2)分子的刚性平面:效应增加,可使荧光效率增
标作图E荧-λ激 (2)荧光光谱:固定入激以λ荧为横坐标,E荧纵坐
标作图E荧-λ荧
第五章 分子荧光分析法
4.激发光谱和荧光光谱的关系: (1)荧光发射光谱不随激发波长而改变。只强度改
变。因此荧光光谱只有一个谱带。 (2)激发光谱和荧光光谱呈现镜像对称关系。
第五章 分子荧光分析法
二、分子结构与荧光关系
第五章 分子荧光分析法
2.荧光的产生:分子跃迁到较高能级后,以无辐射 跃迁的形式下降到第一电子激发态的最低振动 能级,以光的形式放出所吸收的能量,由第一 电子激发态的最低振动能级回到基态各振动能 级,这种光称为荧光。
3.激发光谱和荧光光谱:是定性和定量分析的基础 (1)激发光谱:固定入荧以λ激为横坐标,E荧纵坐
第五章 分子荧光分析法
第一节 基本原理
一、分子荧光的发生过程
1ቤተ መጻሕፍቲ ባይዱ分子的激发态 (1)去活化过程:当分子吸收一定能量后,处于激
发态的分子不稳定,其电子以辐射跃迁或无辐射 跃迁释放出多余的能量回到基态,这个过程为分 子去活化过程。 (2)单线态:分子受辐射激发时,电子从最高占有 轨道跃迁到较高空轨道,受激电子自旋仍保持方 向相反,称激发单线态。 (3)三线态:受激电子自旋方向反转,电子自旋为 平行时是激发三线态。
构造:激发光源——单色器——样品池——单色 器——检测器等四部分
分子荧光分析法

第五章 分子荧光分析法
第一节 基本原理
一、分子荧光的发生过程
1.分子的激发态 (1)去活化过程:当分子吸收一定能量后,处于激
发态的分子不稳定,其电子以辐射跃迁或无辐射 跃迁释放出多余的能量回到基态,这个过程为分 子去活化过程。 (2)单线态:分子受辐射激发时,电子从最高占有 轨道跃迁到较高空轨道,受激电子自旋仍保持方 向相反,称激发单线态。 (3)三线态:受激电子自旋方向反转,电子自旋为 平行时是激发三线态。
构造:激发光源——单色器——样品池——单色 器——检测器等四部分
1.激发光源:能发出强度较大,连续稳定的光 源。
主要有:溴钨灯、氢灯、高压汞灯、氙弧灯 2.分光系统: 第一单色器(激发单色器):位于光源与液槽
间,滤去非选择波长的激发光。 第二单色器(发射单色器):位于液槽与检测器
之间,滤去反色光,散色光和杂质产生的荧 光。
第五章 分子荧光分析法
3.样品池:石英材质,四面透光。玻璃吸收323nm 以下紫外光。
4.检测器:荧光弱,检测器灵敏度要高。 光二极管阵列检测器。
二、仪器的类型 1.光电荧光计:滤光片荧光计。
溴钨灯,滤光片,光电管。 2.荧光分光光度计:氙灯,光栅,狭缝,
光电倍增管。
第五章 分子荧光分析法
第三节 定性定量分析
第五章 分子荧光分析法
第一节 第二节 第三节 第四节
基本原理 仪器 定性定量分析 荧光新技术和应用实例
第一节 基本原理
一、分子荧光的发生过程 分子的激发态 荧光的产生 激发光谱和荧光光谱 激发光谱和荧光光谱的关系 二、分子结构与荧光关系 荧光效率 分子结构与荧光的关系 影响荧光强度的外界因素 荧光强度与荧光物质浓度的关系
卫生化学笔记:分子荧光分析法

分子荧光分析法物质吸收外界能量后,其电子能级由基态跃迁到激发态,物质的激发态分子以无辐射跃迁的形式释放能量,之后降至第一电子激发单线态的最低振动能级,并以光的形式释放能量回到基态的各个振动能级,此时,分子发射的光即称之为荧光分子荧光分析法:通过测定物质分子所发射荧光的特征和强度,对物质进行定性和定量分析的方法。
(一)基本原理一、分子荧光的产生1. 单线态:当物质处于基态时,电子成对地填充在能量最低的各轨道中,一个给定轨道中的两个电子具有相反的自旋(自旋量子数S分别为1/2和 -1/2),即总自旋量子数S为0,分子中电子能级的多重度M=2S+1=1。
此种状态称为单线态。
• 激发单线态:当物质受到光照射,吸收紫外光或可见光时,物质分子内可发生电子能级的跃迁。
若吸收能量后电子在跃迁过程中不发生自旋方向的变化,即总自旋量子数S为0,分子中电子能级的多重度为1。
则该分子所处的能级状态称为激发单线态。
• 激发三线态:当物质受到光照射,吸收紫外光或可见光时,物质分子内可发生电子能级的跃迁。
若吸收能量后电子在跃迁过程中还伴随自旋方向的变化,即分子具有两个自旋平行的电子,其总自旋量子数S为1,分子中电子能级的多重度M=2S+1=3,则该分子所处的能级状态称为激发三线态。
2. 振动弛豫:同一电子能级内的荧光物质分子与溶剂分子相碰撞,以热能量交换的形式由高振动能级至低振动能级间的跃迁。
3. 内部转移:两个电子能级非常接近时,电子从较高电子能级以非辐射跃迁形式转移至较低电子能级,此过程称为能量的内部转移。
4. 荧光发射:处于激发单线态的电子经过振动弛豫和能量内部转移,回到第一电子激发单线态的最低振动能级,以辐射的形式回到基态的各个振动能级,此过程称为荧光发射。
5. 系间跨越:受激发分子的电子在激发态发生自旋反转,使分子的多重态发生变化的过程。
由第一激发单线态(S1)跃迁至第一激发三线态(T1),使原来两个自旋配对的电子不再配对。
分子荧光光谱法

菲
线状环结构比非线状 结构的荧光波长长
• 芳香族化合物因具有共轭的不饱和体系, 芳香族化合物因具有共轭的不饱和体系, 多数能发生荧光 • 多环芳烃是重要的环境污染物,可用荧光 多环芳烃是重要的环境污染物, 法测定 • 3,4 - 苯并芘是强致癌物 , 苯并芘是强致癌物
λ ex = 386 nm λem = 430 nm
(二)荧光与有机化合物结构的关系
物质只有吸收了紫外可见光,产生π 物质只有吸收了紫外可见光,产生π → π*,n → π* 跃迁, 跃迁,产生荧光 跃迁相比,摩尔吸收系数大10 π → π*与n → π*跃迁相比,摩尔吸收系数大102~103, 寿命短 跃迁常产生较强的荧光, π → π*跃迁常产生较强的荧光, n → π*跃迁产生的 荧光弱
1. 电子自旋状态的多重性
大多数分子含有偶数电子,基态分子每一个轨道 大多数分子含有偶数电子, 中两个电子自旋方向总是相反的↑↓ 中两个电子自旋方向总是相反的↑↓ ,处于基态单 重态。 当物质受光照射时, 重态。用 “S0” 表示 ;当物质受光照射时,基态 分子吸收光能产生电子能级跃迁, 分子吸收光能产生电子能级跃迁,由基态跃迁至 更高的单重态,电子自旋方向没有改变, 更高的单重态,电子自旋方向没有改变,净自旋 = 0 .这种跃迁是符合光谱选律的 第一激发单重态 S1
VR S2 IC VR S1 ISC
VR:振动驰豫 : IC:内部转换 : ISC:系间窜跃 :
T1
S0 吸光 吸光
S0
3. 荧光光谱的产生—辐射去激 荧光光谱的产生—
处于S 处于S1或T1态的电子返回S0态时,伴随有发光现 态的电子返回S 态时, 象,这种过程叫辐射去激 发光 S0 S1或T1 荧光: (1)荧光: 当电子从第一激发单重态S 当电子从第一激发单重态S1的最低振动能级回到基 态S0各振动能级所产生的光辐射叫荧光 荧光是相同多重态间的允许跃迁,产生速度快, 荧光是相同多重态间的允许跃迁,产生速度快, 10-9~10-6s,又叫快速荧光或瞬时荧光,外部光源停 又叫快速荧光或瞬时荧光, 止照射, 止照射,荧光马上熄灭 无论开始电子被激发至什么高能级,它都经过无辐 无论开始电子被激发至什么高能级, 射去激消耗能量后到S 的最低振动能级,发射荧光, 射去激消耗能量后到S1的最低振动能级,发射荧光, 荧光波长比激发光波长长。 荧光波长比激发光波长长。 λ 荧>λ激
分析化学 第十一章 荧光分析法

h
29
㈡环境因素
荧光分子所处的溶液环境对其荧光发射有直接的 影响。适当的选取实验条件有利于提高荧光分析的 灵敏度和选择性。 ⑴溶剂效应 ①溶剂的极性:
溶剂的极性增大,π→π*跃迁的能量减小,红 移。 ②溶剂的粘度
溶剂的粘度降低,分子间碰撞机会增加,无辐 射跃迁几率增加,荧光减弱。
h
30
⑵温度的影响
激发态分子与溶剂和其它溶质分子间的相 互作用及能量转换等过程称为外部能量转换。
外转换过程是荧光或磷光的竞争过程,因该
过程发光强度减弱或消失,该现象称为“猝灭” 或
“熄灭”。
h
10
⑸体系间跨越 系间跃迁是不同多重态之间的一种无辐射跃迁
该过程是激发态电子改变其自旋态,是分子的多 重性发生变化的结果。
当两种能态的振动能级重叠时,这种跃迁的几 率增大。
的吸收(或激发)光谱的波长长。荧光发射这种波长 位移的现象称为Stokes位移。
原因:处于激发态的分子一方面由于振动弛豫 等损失了部分能量,另一方面溶剂分子的弛豫作用 使其能量进一步损失,因而产生了发射光谱波长的 位移。
Stokes位移表明在荧光激发和发射之间所产生 的能量损失。(见P220图11-3)
①对于含有酸性或碱性基团的荧光物质而言, 溶液的pH将对这类物质的荧光强度产生较大的 影响。 如:在pH7~12的溶液中,苯胺以分子形式存 在,产生蓝色荧光;
当pH<3、 pH>13时,苯胺以阳离子、 阴离子形式存在,均无荧光。 ②溶液的pH也影响金属配合物的荧光性质。
h
32
⑷荧光猝灭
荧光猝灭:荧光分子与溶剂或其它溶质分子之间相互 作用,使荧光强度减弱的作用。
F0/eF0eKf
则K= 1/τf,将其带入 Ft F0eKt
分析化学第11章--荧光分析法

概述 基本原理 定量分析方法 荧光分析技术及应用
11.1 概述
1.光致发光:物质受到光照射时,除 吸收某种波长的光之外还会发射出比 原来所吸收光的波长更长的光,这种 现象称为光致发光。
2.荧光(fluorescence):物质分子接受 光子能量被激发后,从激发态的最低 振动能级返回基态时发射出的光。
低一些。 2.荧光的产生 1)激发过程: 基态分子 hv 激发单重态(s1*,s2*)
激发三重态
2)激发态能量传递途径
传递途径
辐射跃迁
无辐射跃迁
荧光 磷光 系间跨越内转换 外转换 振动弛豫
1.无辐射跃迁
a.振动驰豫(vibrational relexation):
处于激发态各振动能级的分子通过 与溶剂分子的碰撞而将部分振动能 量传递给溶剂分子,其电子则返回 到同一电子激发态的最低振动能级 的过程。
2)电子能态的多重性:
M=2S+1
S:总自旋量子数。S=s1+s2 对于 S=1/2 +(-1/2)=0
M=2S+1=1
对应基线单重态;
对于激发态
s1=1/2,s2=1/2,
S=1/2+1/2=1, M=2×1+1=3 三重态
• 单重态与三重态的区别 1)电子自旋方向不同; 2)激发三重态的能量稍
8-羟基喹啉
8-羟基喹啉镁
弱荧光
强荧光
刚性和共面性增加,可以发射荧光或增 强荧光。
c.位阻效应
NaO3S
N(CH3)2
NaO3S
N(CH3)2
1-二甲氨基萘-7-磺酸钠 f=0.75
1-二甲氨基萘-8-磺酸钠 f =0.03
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作用:鉴别荧光物质; 选择适当的荧光测定波长。
激发光谱和荧光光谱类似“镜像对称”关系
荧 光 强 度
300nm
400nm
500nm
硫酸奎宁的激发光谱(虚线)及荧光光谱(实线)
3 溶液荧光光谱的特征
A 斯托克斯位移:Stokes shift
1852年,Stokes首先观察到:溶液荧光光谱中, 荧光波长总是大于激发光波长。
称荧光。
荧光的波长总比激发光的波长要长?
④ 外转换:external conversion 如果分子在溶液中被激发,激发态分子与溶 剂分子及其它溶质分子之间相互碰撞而失去能 量,以热能形式放出,此过程称为外转换。 通常发生在第一激发单线态或第一激发三线 态的最低振动能级向基态转换的过程中,会降 低荧光或磷光强度。
外转换、体系间跨越。
三、激发光谱与发射光谱
1激发光谱:excitaton spectrum
不同激发波长的辐射引起物质发射某一波长 荧光的相对效率。即固定荧光波长,以荧光 强度(F)为纵坐标,激发波长(λex)为横 坐标作图可得。
2 发射光谱:fluorescence spectrum
即荧光光谱,使激发光的波长和强度保持不 变,通过发射单色器扫描以检测各种波长下 相应的荧光强度,记录荧光强度(F)对发射 波长(λem)的关系曲线。
② 内转换:internal conversion
当两电子激发态之间能量相差较小以致其振动 能级有重叠时,受激分子将多余的能量转变为 热能而跃迁至较低电子能级。
③ 荧光发射:
无论分子最初处于哪一个激发单线态,通过内 转换及振动弛豫,均可返回至第一激发单线态 的最低振动能级上,然后再以辐射形式发射光 量子而返回到基态的任一振动能级上,所发射 的光量子即
体系间跨越
V1
V0
VV23
V1
T1
V0
S0
VV23
V1
V0
荧光与磷光产生示意图
发射荧光过程约为 109 ,10返7回S 基态 时,可停留在任一振动能级上,因此,可得几
个非常靠近的荧光峰谱线。
有关概念: ① 振动弛豫:vbrational relexation
物质分子被激发后,其电子可能跃迁到第一电 子激发态或更高的电子激发态的几个振动能级 上,在溶液中,激发态分子通过与溶剂分子碰 撞而将部分振动能量传递给溶剂分子,其电子 则返回到同一电子激发态的最低振动能级上, 此过程称为~。
⑤ 体系间跨越:intersystem crossing
指处于激发态分子的电子发生自旋反转而使 分子的多重性发生变化的过程。如果第一激 发单线态的最低振动能级同激发三线态的最 高振动能级重叠,那么激发态分子的电子发 生自旋反转,分子由激发单线态跨越到激发 三线态,荧光强度减弱或熄灭。
含有重原子如Br2、I2等的分子,体系间跨 越最常见,因为电子的自旋与轨道运动之间 的相互作用较大,有利于电子自反转的发生。 溶液中存在的氧分子等顺磁性物质也容易发 生体系间跨越,从而使荧光减弱。
发射荧光的光子数
吸收激发光的光子数
任何物质的 在0~1之间,如荧光素在水中 =0.65,蒽在乙醇中 =0.30,菲在乙醇中 =0.10。
除电子自旋方向改变外,能量亦不相同。
E
基态 激发单线态 激发三线态
3 荧光的产生
荧光的产生过程:
基态吸收辐射 激发单线态 内转换、振动驰豫 第一激发单线态的最低振动能级 发射荧光 基态的各振动能级外转换、振动驰豫 基态的最低振动能级
S
2
VV23
V1
V0
内转换
S1
VV23
荧光分析法检出限为1010 1012 g / ml
二 基本原理 1 有关概念 单线态:
大多数分子含偶数个电子,成对地填充 在能量最低的各轨道中,根据Pauli不相 容原理,轨道中的两个电子具有相反方 向的自旋,即自旋量子数为+1/2和-1/2, 其总自旋量子数为0。用2S+1表示电子 能态的多重性,基态所处的电子能态为 单线态。
原因:内转换、振动驰豫达到第一激发单线态 的最低振动能级;激发态分子与溶剂相互作 用;激发态分子返回到基态的各不同振动能 级,进一步损失能量。
B 荧光光谱的形状与激发波长无关:荧光发射 通常发生于第一电子激发态的最低振动能级; 而与激发到哪一个电子激发态无关。
四 分子结构与荧光的关系
物质能否产生荧光,主要取决于物质结构及 环境条件。 1 物质产生荧光的必要条件 ① 物质分子必须有强的紫外-可见吸收。 ② 物质必须具有较高的荧光效率。 荧光效率(fluorescence efficiency)又称荧光 量子产率(fluorescence quantum yield)
当基态分子的一个电子吸收光辐射被激 发而跃迁至较高的电子能级时,电子不发 生自旋方向的改变,此时分子处于激发的 单线态。
激发三线态:
电子在跃迁过程中自旋方向改变,分子 具有两个自旋不配对的电子,总自旋量子 数为1,处于激发的三线态(2S+1=3)。
2 基态、激发单线态、激发三线态比较
如图所示,激发三线uorometry
根据物质的荧光谱线位置及其强度进行 物质鉴定和物质含量测定的方法。 X射线荧光分析法 X-ray fluorometry 原子荧光分析法 atomic fluorometry 分子荧光分析法 molecular fluorometry
3.优点:
灵敏度高,选择性好。 紫外 可见分光光度法检出限 107 g / ml
⑥ 磷光发射: 激发单线态最低振动能级体系间跨越激发
三线态高振动能级 振动驰豫 激发三线态 最低振动能级(存活) 发射磷光 基态 各振动能级振动驰豫、外转换基态最低振动能级
与荧光比较:过程比荧光长( 104 )10S
磷光波长较荧光长?
综上所述的能量释放方式中:
辐射跃迁:荧光、磷光的发射。 无辐射跃迁:振动弛豫、内转换、
一、概述
1 光致发光:
当某些物质受到光的照射时,除吸收某种波 长的光之外还发射波长相同或比吸收波长更长 的光,这种现象叫光致发光。
荧光 fluorescence:
物质分子吸收光子能量而被激发,然后从激发 态的最低振动能级返回至基态时发射出的光。
磷光 phosphorescence:
吸收光子 激发 三线态最低