高中必修1第一章集合复习(讲义+例题+练习)
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};【答案解析】:{x |x=2k, k=1, 2, 3, 4, 5}.(2)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数;【答案解析】:{1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321}.(3) {x∈N|3<x<7};【答案解析】:{4, 5, 6}.(4)中国古代四大发明.【答案解析】:{指南针,活字印刷,造纸术,火药}.4.用适当的方法表示下列集合:(1)二次函数y=x²-4的函数值组成的集合;【答案解析】: {y | y≥-4}.(2)反比例函数y=2/x的自变量组成的集合;【答案解析】:{x | x≠0}.(3)不等式3x≥4- 2x的解集.【答案解析】:{x |x≥4/5}.三、拓广探索5.集合论是德国数学家康托尔于19 世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.【答案解析】:略.1.2 集合间的基本关系练习1.写出集合{a, b,c}的所有子集.【答案解析】由0个元素构成的子集: ∅;由1个元素构成的子集: {a}, {b}, {c};由2个元素构成的子集: {a, b}, {a,c}, {b, c};由3个元素构成的子集: {a, b, c};综上,可得集合{a,b, c}的所有子集有: 0, {a}, {b}, {c}, {a, b}, {a,c}, {b, c}, {a, b, c}.2.用适当的符号填空:(1) a__ {a,b,c}; (2) 0__ {x|x²=0};(3) B___ {x∈R|x²+1=0}; (4) {0,1}___N(5) {0}___ {x|x²=x}; (6) {2, 1}___{x|x²-3x+2=0}.【答案解析】:(1)∈;(2)=;(3)=;(4)⊆;(5)⊆;(6)=.3.判断下列两个集合之间的关系:(1) A={x|x<0}, B={x|x<l};(2) A={x|x=3k,k∈N},B={x|x=6z,z∈N};(3) A={x∈N₋|x是4与10的公倍数},B={x|x=20m, m∈N₊}.【答案解析】:⫋A B B A A=B习题1.2一、复习巩固1.选用适当的符号填空:(1)若集合A={x|2x-3<3x}, B={x|x≥2},则-4___B,-3___ A, {2}___B,B___ A;【答案解析】:∵集合A= {x|2x-3< 3x}= {x|x>-3},B = {x|x≥2},则∴-4∉B,-3∉A,{2}B,B A.故答案为:∉,∉,,。
(完整)人教版高一数学必修一集合知识点以及习题,推荐文档

高一数学必修1第一章集合一、集合有关概念1.集合的含义:一定范围的、确定的、可区别的事物,当作一个整体来看待,就叫作集合,简称集,其中各事物叫作集合的元素或简称元。
2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z有理数集Q 实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2},{x| x-3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:4、集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合 例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆注意:有两种可能(1)A是B的一部分,;(2)AB与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集例题1.下列四组对象,能构成集合的是( )A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个 3.若集合M={y|y=x 2-2x+1,x R},N={x|x≥0},则M 与N 的关系是 .∈4.设集合A=,B=,若A B ,则的取值范围是 }{12x x <<}{x x a <⊆a 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人。
高一数学(必修一)集合经典复习

高一数学(必修一)集合1.1.1集合的含义与表示(一)集合的含义1.我们在初中接触过“正数的集合”、“负数的集合”等,集合的含义又是什么呢?•①解不等式2x-1>3得x>2,所有大于2的实数集在一起称为这个不等式的解集.•②平面几何中,圆是到定点的距离等于定长的点的集合.•③自然数的集合0,1,2,3,……•④高一(5)班全体同学组成一个集合.•请想一想,集合这个概念应该怎样描述?•一般地,我们把所研究的对象如点、自然数、高一(5)班的同学统称为,把一些组成的总体叫做,通常用表示.•(二)集合中元素具的有几个性质特征(或称三要素)•⑴确定性-因集合是由一些元素组成的总体,当然,我们所说的“一些元素”是确定的.•⑵互异性-即集合中的元素是互不相同的,如果出现了两个(或几个)相同的元素就只•能算一个,即集合中的元素是不重复出现的.•⑶无序性-即集合中的元素没有次序之分.•例题(1)给定的集合中的元素必须是确定的.•“我国的小河流”能不能组成一个集合,你能用集合的知识解释吗?•.•例题(2)集合中的元素必须是互不相同的,•由1,-1,1,3组成的集合为;若a∈{a2,1}则a=.•例题(3)若构成两集合的元素是一样的,则称两集合,若集合{1,2}与集合{a,1}相等,则a=. •例子 1 A={1,3},问3,5哪个是A的元素? 2 B={素质好的人}能否表示成为集合?•• 3 C={2,2,4}表示是否正确?• 4 D={太平洋,大西洋} E={大西洋,太平洋} 集合D ,E是不是表示相同的集合?••(三)常用的数集及其记法•我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,…表示集合中的元素.•全体非负整数组成的集合称为自然数集,记为N•所有正整数组成的集合称为正整数集,记为N+•全体整数组成的集合称为整数集,记为Z•全体有理数组成的集合称为有理数集,记为Q•全体实数组成的集合称为实数集,记为R•常见的数集符号:自然数集:;正整数集:;整数集:;有理数集:;实数集:. •(四)集合的表示方法•1.把集合中的元素一一列举出来.•并用括起来表示集合的方法叫做,如大于-1且小于10的偶数构成的集合可表示为•练习题:用列举法表示下列集合:•(1)方程(x2-1)(x2+2x-8)=0的解集为.•(2)方程|x-1|=3的解集为.(3)绝对值小于3的整数的集合为.•2.用集合所含元素的表示集合的方法,称作描述法.•具体方法是:在花括号内先写上表示这个集合元素的,再画一条竖线,在这条竖线后面写出这个集合中元素所具有的.它的一般形式是{x∈A|p(x)}或{x|p(x)}.“”为代表元素,“”为元素x必须具有的共同特征,当且仅当“x”适合条件“p(x)”时,x才是该集合中的元素,此法具有抽象概括、普遍性的特点,当元素个数较多时,一般选用此法.•练习题1°试用描述法表示下列集合:•(1)方程x2-3x+2=0的解集为.(2)不等式3x+2>0的解集为.•(3)大于1小于5的整数组成的集合为.•练习题2°用列举法表示下列集合:•(1)6的正约数组成的集合.________(2)不等式2x-1<5的自然数解组成的集合.________ •(3)古代我国的四大发明组成的集合.________•本节重点:集合的概念,集合中元素的三个特性及集合的表示方法.•本节难点:集合中元素的性质的理解.•正确理解概念,准确使用符号,熟练进行集合不同表示方法的转换是学好本节的关键.•1.要辩证理解集合和元素这两个概念:•(1)符号∈和∉是表示元素和集合之间关系的,不能用来表示集合之间的关系.元素与集合之间是个体与整体的关系,不存在大小与相等关系.•(2)集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件.•2.深刻认识集合中元素的四种属性•(1)任意性:集合中的元素可以是任意的对象,无论是数、式、点、线、人,还是其它的某种事或物,只要它们具有某种共同属性,集中在一起就能组成一个集合,我们把集合的这一性质称为元素的任意性;在中学,我们主要研究对象是一系列的数的集合或点的集合.•(2)确定性:判断一些对象是否可以组成一个集合,主要方法是,在观察任意一个对象时,应该可以确定这一对象要么属于这一集合,要么它不属于这一集合.例如:给出集合{地球上的四大洋},它的元素是:太平洋、大西洋、印度洋、北冰洋.其它对象都不属于这个集合.如果说“由接近3的数组成的集合”这里“接近3的数”是没有严格标准、比较模糊的概念.它不能构成集合.如“好人”、“较大的树”等都不能成为集合.••(3)无序性:在表示一个集合时,我们只需将某些指定的对象集在一起,虽然习惯上会将元素按一定顺序来写出,但却不强调它们的顺序,当两个集合中的元素相同,即便放置顺序完全不同时,它们也表示同一集合.•例如:{a,b}和{b,a}表示同一个集合.•(4)互异性:对于任意一个集合而言,在这一集合中的元素都是互不相同的个体.如:给出集合{1,a 2},我们根据集合中元素的互异性,就已经得到了关于这个集合的几点信息,即这一集合中有两个不同的元素,其中的一个是实数1,而另一个一定不是1,所以a ≠1,且a ≠-1. • 3.正确理解列举法• (1)元素间用分隔号“,”隔开;(2)元素不重复;• (3)对于含较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律显示清楚后才能用省略号.• 4.合理选用集合的表示方法• 列举法与描述法各有优点,列举法可以看清集合的元素,描述法可以看清集合元素的特征,一般含有较多或无数多个元素时不宜采用列举法,因为不能将集合中的元素一一列举出来,而没有列举出来的元素往往难以确定.• 5.要正确理解描述法• 用描述法表示集合时注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)等.(2)元素具有怎样的属性?• 用描述法表示集合时,若需要多层次描述属性时,可选用联结词“且”与“或”等联结;若描述部分出现元素记号以外的字母时,要对新字母说明其含义或指出其取值范围.• 6.特别注意以下几种集合,这是我们研究集合时的主要研究对象.• (1)一般数集.(2)特殊数集:如方程的解集;不等式的解集等.(3)平面点集.(4)图形集. • 7.集合语言• 集合语言是现代数学的基本语言,也就是用集合的有关概念和符号来叙述问题的语言.包括文字语言、符号语言、图形语言.• 要熟练地将集合的三种语言进行相互转化.• 8.解集合问题的关键• 解决集合问题的关键是弄清集合由哪些元素所构成.如何弄清呢?关键在于把抽象问题具体化、形象化.也就是把用描述法表示的集合用列举法来表示,或用图示法来表示抽象的集合,或用图形来表示集合.• 例如,在判断集合A ={x |x =4k ±1,k ∈Z }与集合B ={y |y =2n -1,n ∈Z }是否为同一集合时,若从代表元素入手来分析它们之间的关系,则比较抽象,而用列举法来表示两个集合,则它们之间的关系就一目了然.即A ={…,-1,1,3,5,…},而B ={…,-1,1,3,5…}• ∴A 与B 是同一集合.基础练习1.已知A ={x|3-3x>0},则下列各式正确的是( )A .3∈AB .1∈AC .0∈AD .-1∉A2.下列四个集合中,不同于另外三个的是( )A .{y|y =2}B .{x =2}C .{2}D .{x|x 2-4x +4=0}3.下列关系中,正确的个数为________.①12∈R ;②2∉Q ;③|-3|∉N *;④|-3|∈Q .4.已知集合A ={1,x ,x 2-x},B ={1,2,x},若集合A 与集合B 相等,求x 的值.巩固练习一、选择题(每小题5分,共20分)1.下列命题中正确的()①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x -2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}可以用列举法表示.A.只有①和④B.只有②和③C.只有②D.以上语句都不对2.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1} C.{x=1} D.{x2-2x+1=0} 3.已知集合A={x∈N*|-5≤x≤5},则必有()A.-1∈A B.0∈A C.3∈A D.1∈A4.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0 B.2 C.3 D.6二、填空题(每小题5分,共10分)5.已知集合A={1,a2},实数a不能取的值的集合是________.6.已知P={x|2<x<a,x∈N},已知集合P中恰有3个元素,则整数a=________.三、解答题(每小题10分,共20分)7.选择适当的方法表示下列集合集.(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;(2)大于2且小于6的有理数;(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.8.设A表示集合{a2+2a-3,2,3},B表示集合{2,|a+3|},已知5∈A且5∉B,求a的值.9.(10分)已知集合A={x|ax2-3x-4=0,x∈R}.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.。
必修一第一章集合全章练习题(含答案)

》第一章集合与函数概念§集合1.集合的含义与表示第1课时集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念·(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.4—5.____一、选择题1.下列语句能确定是一个集合的是( )!A.著名的科学家B.留长发的女生C.2010年广州亚运会比赛项目D.视力差的男生2.集合A只含有元素a,则下列各式正确的是( )A.0∈A B.a∉AC.a∈A D.a=A3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( )#A.直角三角形 B.锐角三角形C.钝角三角形 D.等腰三角形4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是( ) A.1 B.-2 C.6 D.25.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为( ) A.2 B.3C.0或3 D.0,2,3均可6.由实数x、-x、|x|、x2及-3x3所组成的集合,最多含有( )#A .2个元素B .3个元素C .4个元素D .5个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号) ①不超过π的正整数; ②本班中成绩好的同学;③高一数学课本中所有的简单题; ④平方后等于自身的数.@8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________. 9.用符号“∈”或“∉”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z . 三、解答题10.判断下列说法是否正确并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合; (2)未来世界的高科技产品构成一个集合;(3)1,,32,12组成的集合含有四个元素;^(4)高一(三)班个子高的同学构成一个集合.`11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .'。
高一数学第一章集合,典型例题及基础训练

则下列正确的是(C ) A
QP
BQ RC Nhomakorabea
Q PR
D Q PR
13)若 1 A 1,2,3,4,5, 且A中所有元素 之和为奇数的集合A的个数 是 7
14)已知集合 M a2 , a 1,3, N a 3,2a 1, a2 1 ,若 M N 3 ,则a的值为 -1 15)若集合A1、A2满足 A1 A2 A ,则 称(A1,A2)为集合A的一种分拆,并规 定当且仅当A1=A2时,(A1,A2)与 (A2,A1)为集合A的同一种分拆,则集 合A={1,2,3}的不同分拆种数是 27
对于集合运算与不等式问题,要注意 正确借助图形来表示.
例9 A={x | -2≤x≤5} B={x | m+1≤x≤2m-1} 若B A,求实数m的取值范围。 解:当B=ф时 m+1>2m-1 ∴m<2 当B≠φ 要使B A
m 1 2m 1 m 2 m 3 2 m 3 m 1 2 2m 1 5 m 3
总结:
在研究问题时要抓住元素a,b,c所满 足的特征.
你能解决这道题吗? 集合A= {x x a b 2 , a Z , b Z } 证明:(1) x1,x2
(2)
A 则x1+x2 A A 则x1x2 A
x1,x2
例6 若-3 {a 3,2a 1, a
2
2
这三个集合是不一样的
例5集合A= {x x 3n 1, n Z}, B {x 3n 2, n Z}
C= {x x 6n 3, n Z}
(1)若c C ,问是否有 a A , b B 使 c ab 成立? (2)对于任意 a A , b B 是否一定 有 a b C ?并证明你的结论.
高一上册数学第一章1《集合综合复习》讲义

知识一、集合的含义与表示1、集合的性质:_____________、_____________、_____________.2、集合的表示方法:_____________、_____________、_____________.3、空集的性质:空集是任何集合子集;空集是任何非空集合的真子集.4、集合的分类:无限集;有限集.5、特殊集合的表示:实数集________;整数集________;有理数集________;自然数集________;正整数集________.例1、若{}4,12,332---∈-a a a ,求实数a 的取值.变式1:已知集合},,|),{(},5,4,3,2,1{A y x A y A x y x B A ∈-∈∈==,则B 中所含元素的个数为______________. 变式2:若集合}2,0{},1,1{=-=B A ,则集合},,|{B y A x y x z z ∈∈+=中元素的个数为______________. 例2、已知集合}023|{2=+-=x ax x A .(1)若∅=A ,求实数a 的取值范围; (2)若A 是单元素集,求a 的值及集合A ;(3)求集合}|{∅≠∈=A R a M .变式1:设集合},244|{},,45|{22R a a a y y N R a a a x x M ∈++==∈+-==.则下列关系正确的是( ) N M A =. N M B ⊃. N M C ⊂. N M D ⊆.例3、定义集合运算:},,|{*B y A x xy z z B A ∈∈==,设}2,1{=A ,}2,0{=B ,则集合B A *的所有元素之和为A. 0B. 2C. 3D. 6变式1:已知Q P ,是两个非空集合,定义新运算}|{Q P x Q P x x Q P ∉∈=⊗且.若}|{},|{22x y y B x y x A ====,则B A ⊗=_____________.知识点二、集合间的基本关系1、元素与集合的关系:如果a 是集合A 的元素,可以表示为______;如果a 不是集合A 的元素,可表示为_______.2、集合与集合的关系:若A 是B 的子集,则可表示为B A ⊆;若集合A 是B 的真子集,则可表示为B A ⊂.3、集合相等---定义:如果两个集合中的元素完全相同,则两集合相等.表示方法:集合A 与集合B 相等可表示为________. 如果集合A 与集合B 满足B A ⊆且A B ⊆,则A 与B 相等. 例4、已知集合}01)1(2|{22=-+++=a x a x x A ,}04|{2=+=x x x B ,若B A ⊆,求实数a 的取值范围.变式1:设}4|{},4|{2<=<=x x Q x x P ,则( )A.Q P ⊆B.P Q ⊆C.Q C P R ⊆D.P C Q R ⊆变式2:已知关于x 的不等式41≤≤-ax 的解集为A ,关于不等式02322≤--x x 的解集为B.(1)若A ∈2,求实数a 的取值范围; (2)若B A ⊆,求实数a 的取值范围.例5、集合},,,,{e d c b a S =,包含},{b a 的S 的子集共有 ( )A. 2个B. 3个C. 5个D. 8个变式1:已知非空集合}5,4,3,2,1{⊂M ,且若M a ∈,则M a ∈-6,那么集合M 的个数为( )A. 5个B. 6个C. 7个D. 8个变式2:设A 是整数集的一个非空子集,对于A k ∈,如果A k ∉-1,且A k ∉+1,那么称k 是A 的一个“孤立元”. 给定}8,7,6,5,4,3,2,1{=S ,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有_________个. 知识点三、集合的基本运算1、集合间的运算:集合A 和集合B 的交集可表示为________;集合A 和集合B 的并集可表示为________; 若U 为全集,集合A 的补集可表示为________.2、集合间的逻辑运算(1)设U 为全集. 交集:∅=∅=⊆⊆⊆ A A A A U B A B B A A B A ,,,,;并集:A A A A A U B A A B A B B A =∅=⊆⊇⊇ ,,,,;补集:U A C A A C A U C U C A A C C U U U U U U =∅==∅∅==)(,)(,,,)((2)设有限集合A ,)()(*N n n A card ∈=,则 ① A 的子集个数是 ________;② A 的真子集个数是 ________; ③ A 的非空子集个数是 ________; ④ A 的非空真子集个数是 ________.(3)设有限集合A 、B 、C ,则 ① )()()()(B A card B card A card B A card -+=;② )()()()()()(C B card B A card C card B card A card C B A card --++=-)()(C B A card C A card + ③ B A B B A B A A B A ⊆⇔=⊆⇔= ,; ④ )()()(B A C B C A C U U U =;⑤ )()()(B A C B C A C U U U =.例6、设集合}31|{},06|{2≤≤=<-+=x x N x x x M ,则N M =_____________.变式1:已知集合}0)3)(1(|{},023|{>-+=>+∈=x x x B x R x A ,则=B A _________.变式2:设集合}|{},1,0,1{2x x x N M ≤=-=,则=N M _______________.例7、设集合}4,2,1{},6,5,4,3,2,1{==M U ,则=M C U ________________.变式1:设集合}032|{},41|{2≤--=<<=x x x B x x A ,则)(B C A R =_____________.变式2:设集合}9,8,7,4,3{},9,7,5,4{==B A ,全集B A U =,则集合)(B A C U 中的元素共有__________个. 例8、某试验班有21个学生参加数学竞赛,17个学生参加物理竞赛,10个学生参加化学竞赛,他们之间既参加数学 竞赛又参加物理竞赛的有12人,既参加数学竞赛有参加化学竞赛的有6人,既参加物理竞赛又参加化学竞赛的 有5人,三科都参加的有2人.现在参加竞赛的学生都要到外地学习参观,问需要预订多少张火车票?变式1:某班有30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运 动但不喜爱乒乓球运动的人数为_______.变式2:某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、 化学小组的分别有26人、15人、13人,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人, 则同时参加数学和化学小组的有__________人.知识点四、集合的综合问题例9、设}01)1(2|{},04|{222=-+++==+=a x a x x B x x x A .(1)若B B A = ,求a 的值; (2)若B B A = ,求a 的值.变式1:已知集合}02|{},1,1{2=+-=-=b ax x x B A ,若∅≠=B B A ,求实数b a ,的值.变式2:已知集合}50|{≤-<=a x x A ,}62|{≤<-=x a x B . (1)若A B A = ,求a 的取值范围; (2)若A B A = ,求a 的取值范围.课下作业:1、已知集合A B A m B m A === },,1{},,3,1{,则=m _______________.2、已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若∅=M C N I ,则N M =_______________.3、满足},,,{4321a a a a M ⊆,且},{},,{21321a a a a a M = 的集合M 的个数是______.4、已知全集B A U =中有m 个元素,)()(B C A C U U 中有n 个元素.若B A 非空,则B A 的元素个数为 mn A . n m B +. m n C -. n m D -.5、设集合},1|||{R x a x x A ∈<-=,},51|{R x x x B ∈<<=.若∅=B A ,则实数a 的取值范围是( )}60|.{≤≤a a A }4,2|.{≥≤a a a B 或 }6,0|.{≥≤a a a C 或 }42|.{≤≤a a D。
高一数学必修一 第1章 集合 章末复习课

题型一 集合间的基本关系解答与集合有关的问题时,应首先认清集合中的元素是什么,是数集还是点集,再进行相关的运算,以免混淆集合中元素的属性.分清集合中的两种隶属关系,即元素与集合、集合与集合的关系是解答集合问题的先决条件,也是正确使用集合有关术语和符号的基础.应明确:元素与集合的关系是“个体与集体的关系”,而集合与集合的关系是“集体与集体的关系”.例1 若集合P ={x |x 2+x -6=0},S ={x |ax +1=0},且S ⊆P ,求由a 的可能取值组成的集合.解 由题意得,P ={-3,2}.当a =0时,S =∅,满足S ⊆P ;当a ≠0时,方程ax +1=0的解为x =-1a, 为满足S ⊆P ,可使-1a =-3,或-1a=2, 即a =13,或a =-12. 故所求集合为⎩⎨⎧⎭⎬⎫0,13,-12. 跟踪训练1 已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.答案 4解析 由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4},而B =(-∞,a ),由于A ⊆B ,如图所示,则a >4,即c =4.题型二 集合的交、并、补运算集合与集合之间的交集、并集和补集有如下性质:(1)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A .(2)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A .(3)A ∩(B ∪C )=(A ∩B )∪(A ∩C ).(4)A ∪(B ∩C )=(A ∪B )∩(A ∪C ).(5)A ∩∁U A =∅,A ∪∁U A =U .(6)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A .(7)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).(其中集合A 与集合B 为全集U 的子集).例2 设集合A ={x |x +1≤0或x -4≥0},B ={x |2a ≤x ≤a +2}.(1)若A ∩B ≠∅,求实数a 的取值范围;(2)若A ∩B =B ,求实数a 的取值范围.解 A ={x |x ≤-1或x ≥4}.(1)∵A ∩B ≠∅,∴⎩⎪⎨⎪⎧ 2a ≤a +2,a +2≥4或⎩⎪⎨⎪⎧ 2a ≤a +2,2a ≤-1,∴⎩⎨⎧ a ≤2,a ≥2或⎩⎪⎨⎪⎧a ≤2,a ≤-12.∴a =2或a ≤-12. 故a 的取值范围是{a |a ≤-12}∪{2}. (2)∵A ∩B =B ,∴B ⊆A ,有三种情况:①⎩⎪⎨⎪⎧ 2a ≤a +2,a +2≤-1,得a ≤-3; ②⎩⎪⎨⎪⎧2a ≤a +2,2a ≥4,得a =2; ③B =∅,得2a >a +2,a >2.∴a 的取值范围是(-∞,-3]∪[2,+∞).跟踪训练2 已知集合U ={x |0≤x ≤6,x ∈Z },A ={1,3,6},B ={1,4,5},则A ∩(∁U B )=________.答案 {3,6}解析 ∵U ={0,1,2,3,4,5,6},B ={1,4,5},∴∁U B ={0,2,3,6},又∵A ={1,3,6},∴A ∩(∁U B )={3,6}.题型三 数形结合思想的应用集合的运算有交、并、补这三种常见的运算,它是集合这一单元的核心内容之一.在进行集合的交集、并集、补集运算时,往往由于运算能力差或考虑不全面而极易出错,此时,数轴分析(或Venn 图)是个好帮手,能将复杂问题直观化,是数形结合思想具体应用之一.在具体应用时要注意检验端点值是否适合题意,以免增解或漏解.例3 已知集合A ={x |0≤x ≤2},B ={x |a ≤x ≤a +3}.(1)若(∁R A )∪B =R ,求a 的取值范围.(2)是否存在a 使(∁R A )∪B =R 且A ∩B =∅?解 (1)A ={x |0≤x ≤2},∴∁R A ={x |x <0或x >2}.∵(∁R A )∪B =R .∴⎩⎪⎨⎪⎧a ≤0,a +3≥2,∴-1≤a ≤0. (2)由(1)知(∁R A )∪B =R 时,-1≤a ≤0,而a +3∈[2,3],∴A ⊆B ,这与A ∩B =∅矛盾.即这样的a 不存在.跟踪训练3 若全集U =R ,集合A ={x |x ≥1}∪{x |x ≤0},则∁U A =________.答案 {x |0<x <1}解析在数轴上表示出集合A ,如图所示.则∁U A ={x |0<x <1}.题型四 转化与化归思想的应用转化与化归思想方法用在研究、解决数学问题时思维受阻或寻求简单方法,从一种情况转化为另一种情况,也就是转化到另一种情境,使问题得到解决,这种转化是解决问题的有效策略,同时也是成功的思维方式.例 已知集合A ={x ∈R |mx 2-2x +1=0},在下列条件下分别求实数m 的取值范围.(1)A =∅;(2)A 恰有两个子集;(3)A ∩⎝⎛⎭⎫12,2≠∅.解 (1)若A =∅,则关于x 的方程mx 2-2x +1=0没有实数解,所以m ≠0,且Δ=4-4m <0,所以m >1.(2)若A 恰有两个子集,则A 为单元素集,所以关于x 的方程mx 2-2x +1=0恰有一个实数解,讨论:①当m =0时,x =12,满足题意; ②当m ≠0时,Δ=4-4m =0,所以m =1.综上所述,m 的集合为{0,1}.(3)若A ∩⎝⎛⎭⎫12,2≠∅,则关于x 的方程mx 2=2x -1在区间⎝⎛⎭⎫12,2内有解,这等价于当x ∈⎝⎛⎭⎫12,2时,求m =2x -1x 2=1-⎝⎛⎭⎫1x -12的值域,所以m ∈(0,1]. 跟踪训练4 已知集合A ={x |x 2-ax +a 2-12=0},B ={x |x 2-5x +6=0},是否存在实数a ,使得集合A ,B 同时满足下列三个条件:①A ≠B ;②A ∪B =B ;③∅(A ∩B )?若存在,求出a 的值;若不存在,试说明理由.解 B ={x |x 2-5x +6=0}={2,3},由A ∪B =B ⇒A ⊆B ⇒A ∩B =A ,又∅(A ∩B ),即∅A ⇒A ≠∅,而A ≠B ,所以A ={2}(经验证A ≠{3}).所以方程x 2-ax +a 2-12=0有两个相等的实根2.由⎩⎪⎨⎪⎧ 2+2=a 2×2=a 2-12⇒⎩⎪⎨⎪⎧ a =4a 2=16⇒a =4, 此时A ={x |x 2-4x +4=0}={2}符合题意,故存在实数a =4同时满足题设中的三个条件.。
人教版数学必修一1.1集合整章教案加练习题含答案

1.1集合1.1.1集合的含义与表示一、教学重点、难点:重点:集合的含义与表示方法.难点:集合中元素的三要素:确定性、互异性、无序性 二、相关概念用6分钟时间预习教材P2~P5,完成下列内容: (1)、集合:一般地,我们把 统称为元素,把一些元素组成的 叫做集合,简称为: 。
(2)、集合元素的三要素(三特征): 、 、 ; 若两个集合相等,那么必须有: 。
(3)、元素与集合的关系:若a 是集合A 的元素,则记作:a A ; 若a 不是集合A 的元素,则记作:a A 。
(4)、常用数集的记法:自然数集: ; 有理数集: ; 整数集: ; 实数集: ; 正实数集: ; 正整数集: .(5)集合的表示方法列举法:把集合中的元素 ,并用 括起来表示集合的方法叫列举法描述法:用集合所含元素的 表示集合的方法称为描述法,具体方法是: 在 内写上表示这个集合元素的 及取值(或变化)范围,再画 , 最后在 后写出这个集合中元素所具有的共同特征。
只要构成两个集合的元素是一样的,我们就称这两个集合是 相等 的。
三、回归课本(1)1~20以内所有的质数;(2)我国在1991~2003年这13年内所发射的所有人造卫星; (3)某汽车厂2003年生产的所有汽车;(4)2004年1月1日之前与我国建立外交关系的所有国家; (5)所有的正方形;(6)到直线l 的距离等于定长d 的所有的点;(7)方程0232=-+x x 的所有实数根;(8)新华中学2013年9月入学的高一学生的全体.教师组织学生分组讨论:这8个实例的共同特征是什么? 一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set )(简称为集)。
注意:教师应该特别强调指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.1、判断以下元素的全体是否组成集合,并说明理由:(1)不大于10的正偶数;(2)高一年级的胖子.(3)高一学习成绩好的人 (4)个字高的学生2、如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(6)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.数学中一些常用的数集及其记法全自然数集(非负数集):N 正整数集:N*或N + 整数集:Z 有理数集:Q 实数集:R 正实数集:R +集合的表示方法:列举法:把集合中的元素 一一列举出来,并用 花括号 括起来表示集合的方法叫列举法 描述法:用集合所含元素的 共同特征 表示集合的方法称为描述法,具体方法是:在 花括号 内写上表示这个集合元素的 一般符号 及取值(或变化)范围,再画 一条竖线 , 最后在 竖线 后写出这个集合中元素所具有的共同特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合章节复习1.集合元素的三个特性:确定性,互异性,无序性.2.元素与集合有且只有两种关系:∈,∉.(属于、不属于)3.集合表示方法有列举法,描述法,韦恩图法,常用数集字母代号.4.集合间的关系与集合的运算符号定义Venn图子集A⊆B x∈A⇒x∈B真子集A B A⊆B且存在x0∈B但x0∉A并集A∪B {x|x∈A或x∈B}交集A∩B {x|x∈A且x∈B}补集∁U A(A⊆U) {x|x∈U且x∉A}5.常用结论(1)∅⊆A.(2)A∪∅=A;A∪A=A;A∪B=A⇔A⊇B.(3)A∩∅=∅;A∩A=A;A∩B=A⇔A⊆B.(4)A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A.1.若A ={}x ,|x |,则x <0.( √ ) 2.任何集合至少有两个子集.( × )3.若{}x |ax 2+x +1=0有且只有一个元素,则必有Δ=12-4a =0.( × ) 4.设A ,B 为全集的子集,则A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B .( √ )类型一 集合的概念及表示法例1 下列表示同一集合的是( ) A .M ={(2,1),(3,2)},N ={(1,2)} B .M ={2,1},N ={1,2}C .M ={y |y =x 2+1,x ∈R },N ={y |y =x 2+1,x ∈N }D .M ={(x ,y )|y =x 2-1,x ∈R },N ={y |y =x 2-1,x ∈R } 答案 B解析 A 选项中M ,N 两集合的元素个数不同,故不可能相同;B 选项中M ,N 均为含有1,2两个元素的集合,由集合中元素的无序性可得M =N ;C 选项中M ,N 均为数集,显然有NM ;D 选项中M 为点集,即抛物线y =x 2-1上所有点的集合,而N 为数集,即抛物线y =x 2-1的值域,故选B.反思与感悟 要解决集合的概念问题,必须先弄清集合中元素的性质,明确是数集,还是点集等.跟踪训练1 设集合A ={(x ,y )|x -y =0},B ={(x ,y )|2x -3y +4=0},则A ∩B =________. 答案 {(4,4)}解析 由⎩⎪⎨⎪⎧ x -y =0,2x -3y +4=0,得⎩⎪⎨⎪⎧x =4,y =4.∴A ∩B ={(4,4)}.类型二 集合间的基本关系例2 若集合P ={x |x 2+x -6=0},S ={x |ax +1=0},且S ⊆P ,求由a 的可能取值组成的集合.解 由题意得,P ={-3,2}. 当a =0时,S =∅,满足S ⊆P ;当a ≠0时,方程ax +1=0的解为x =-1a ,为满足S ⊆P ,可使-1a =-3或-1a =2,即a =13或a =-12.故所求集合为⎩⎨⎧⎭⎬⎫0,13,-12.反思与感悟 (1)在分类时要遵循“不重不漏”的原则,然后对于每一类情况都要给出问题的解答.(2)对于两集合A ,B ,当A ⊆B 时,不要忽略A =∅的情况. 跟踪训练2 下列说法中不正确的是________.(填序号) ①若集合A =∅,则∅⊆A ;②若集合A ={x |x 2-1=0},B ={-1,1},则A =B ; ③已知集合A ={x |1<x <2},B ={x |x <a },若A ⊆B ,则a >2. 答案 ③解析 ∅是任何集合的子集,故①正确; ∵x 2-1=0,∴x =±1,∴A ={-1,1}, ∴A =B ,故②正确;若A ⊆B ,则a ≥2,故③错误.类型三集合的交、并、补运算命题角度1用符号语言表示的集合运算例3设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁R A)∩B.解把全集R和集合A,B在数轴上表示如下:由图知,A∪B={x|2<x<10},∴∁R(A∪B)={x|x≤2或x≥10},∵∁R A={x|x<3或x≥7}.∴(∁R A)∩B={x|2<x<3或7≤x<10}.反思与感悟求解用不等式表示的数集间的集合运算时,一般要借助于数轴求解,此法的特点是简单直观,同时要注意各个端点的画法及取到与否.跟踪训练3已知集合U={x|0≤x≤6,x∈Z},A={1,3,6},B={1,4,5},则A∩(∁U B)等于() A.{1} B.{3,6}C.{4,5} D.{1,3,4,5,6}答案 B解析∵U={0,1,2,3,4,5,6},B={1,4,5},∴∁U B={0,2,3,6},又∵A={1,3,6},∴A∩(∁U B)={3,6},故选B.命题角度2用图形语言表示的集合运算例4设全集U=R,A={x|0<x<2},B={x|x<1}.则图中阴影部分表示的集合为____________.答案{x|1≤x<2}解析图中阴影部分表示的集合为A∩(∁U B),因为∁U B={x|x≥1},画出数轴,如图所示,所以A∩(∁U B)={x|1≤x<2}.反思与感悟解决这一类问题一般用数形结合思想,借助于Venn图和数轴,把抽象的数学语言与直观的图形结合起来.跟踪训练4学校举办了排球赛,某班45名同学中有12名同学参赛,后来又举办了田径赛,这个班有20名同学参赛,已知两项都参赛的有6名同学,两项比赛中,这个班共有多少名同学没有参加过比赛?解设A={x|x为参加排球赛的同学},B={x|x为参加田径赛的同学},则A∩B={x|x为参加两项比赛的同学}.画出V enn图(如图),则没有参加过比赛的同学有:45-(12+20-6)=19(名).答这个班共有19名同学没有参加过比赛.类型四关于集合的新定义题例5设A为非空实数集,若对任意的x,y∈A,都有x+y∈A,x-y∈A,且xy∈A,则称A 为封闭集.①集合A={-2,-1,0,1,2}为封闭集;②集合A={n|n=2k,k∈Z}为封闭集;③若集合A1,A2为封闭集,则A1∪A2为封闭集;④若A为封闭集,则一定有0∈A.其中正确结论的序号是________.答案②④解析①集合A={-2,-1,0,1,2}中,-2-2=-4不在集合A中,所以不是封闭集;②设x,y∈A,则x=2k1,y=2k2,k1,k2∈Z,故x+y=2(k1+k2)∈A,x-y=2(k1-k2)∈A,xy=4k1k2∈A,故②正确;③反例是:集合A1={x|x=2k,k∈Z},A2={x|x=3k,k∈Z}为封闭集,但A1∪A2不是封闭集,故③不正确;④若A为封闭集,则取x=y,得x-y=0∈A.故填②④. 反思与感悟新定义题是近几年高考中集合题的热点题型,解答这类问题的关键在于阅读理解,也就是要在准确把握新信息的基础上,利用已有的知识来解决问题.跟踪训练5 设数集M =⎩⎨⎧⎭⎬⎫x ⎪⎪ m ≤x ≤m +34,N =⎩⎨⎧⎭⎬⎫x ⎪⎪n -13≤x ≤n ,且M ,N 都是集合{x |0≤x ≤1}的子集,如果b -a 叫做集合{x |a ≤x ≤b }(b >a )的“长度”,那么集合M ∩N 的“长度”的最小值是( ) A.13 B.23 C.112 D.512 答案 C解析 方法一 由已知可得⎩⎪⎨⎪⎧m ≥0,m +34≤1,⎩⎪⎨⎪⎧n -13≥0,n ≤1,解得0≤m ≤14,13≤n ≤1.取字母m 的最小值0,字母n 的最大值1,可得M =⎩⎨⎧⎭⎬⎫x ⎪⎪0≤x ≤34,N =⎩⎨⎧⎭⎬⎫x ⎪⎪23≤x ≤1, 所以M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪ 0≤x ≤34∩⎩⎨⎧⎭⎬⎫x ⎪⎪ 23≤x ≤1=⎩⎨⎧⎭⎬⎫x ⎪⎪ 23≤x ≤34, 此时得集合M ∩N 的“长度”为34-23=112.方法二 集合M 的“长度”为34,集合N 的“长度”为13.由于M ,N 都是集合{x |0≤x ≤1}的子集, 而{x |0≤x ≤1}的“长度”为1,由此可得集合M ∩N 的“长度”的最小值是⎝⎛⎭⎫34+13-1=112.1.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( ) A .2个 B .4个 C .6个 D .8个答案 B2.下列关系中正确的个数为( ) ①22∈R ;②0∈N +;③{-5}⊆Z . A .0 B .1 C .2 D .3答案 C解析 ①③正确.3.已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∪B 等于( ) A .{x |-1<x <3} B .{x |-1<x <0} C .{x |0<x <2} D .{x |2<x <3}答案 A解析 由A ={x |-1<x <2},B ={x |0<x <3}, 得A ∪B ={x |-1<x <3}.故选A.4.设全集I ={a ,b ,c ,d ,e },集合M ={a ,b ,c },N ={b ,d ,e },那么(∁I M )∩(∁I N )等于( ) A .∅ B .{d } C .{b ,e } D .{a ,c } 答案 A5.已知集合U =R ,集合A ={}x |x <-2或x >4,B ={}x |-3≤x ≤3,则(∁U A )∩B =________. 考点 交并补集的综合问题 题点 无限集合的交并补运算 答案{}x |-2≤x ≤3.解析 由图知(∁U A )∩B ={}x |-2≤x ≤3.1.要注意区分两大关系:一是元素与集合的从属关系,二是集合与集合的包含关系. 2.在利用集合中元素相等列方程求未知数的值时,要注意利用集合中元素的互异性这一性质进行检验,忽视集合中元素的性质是导致错误的常见原因之一.课时对点练一、选择题1.若集合M={x|(x+4)(x+1)=0},N={x|(x-4)·(x-1)=0},则M∩N等于() A.{1,4} B.{-1,-4}C.{0} D.∅答案 D解析因为M={x|(x+4)(x+1)=0}={-4,-1},N={x|(x-4)(x-1)=0}={1,4},所以M∩N =∅,故选D.2.已知集合A={x|x+3>0},B={x|x≥2},则下列结论正确的是()A.A=B B.A∩B=∅C.A⊆B D.B⊆A考点集合的包含关系题点集合包含关系的判定答案 D解析A={x|x>-3},B={x|x≥2},结合数轴可得:B⊆A.3.已知集合A,B均为集合U={1,3,5,7,9}的子集,若A∩B={1,3},(∁U A)∩B={5},则集合B等于()A.{1,3} B.{3,5}C.{1,5} D.{1,3,5}答案 D解析画出满足题意的Venn图,由图可知B={1,3,5}.4.设集合M={-1,0,1},N={a,a2},若M∩N=N,则a的值是()A.-1 B.0 C.1 D.1或-1答案 A解析由M∩N=N得N⊆M.当a=0时,与集合中元素的互异性矛盾;当a=1时,也与集合中元素的互异性矛盾;当a=-1时,N={-1,1},符合题意.5.设全集U=R,已知集合A={x|x<3或x≥7},B={x|x<a}.若(∁U A)∩B≠∅,则a的取值范围为()A.a>3 B.a≥3C.a≥7 D.a>7答案 A解析因为A={x|x<3或x≥7},所以∁U A={x|3≤x<7},又(∁U A)∩B≠∅,则a>3.6.定义差集A-B={x|x∈A,且x∉B},现有三个集合A,B,C分别用圆表示,则集合C-(A-B)可表示下列图中阴影部分的为()答案 A解析如图所示,A-B表示图中阴影部分,故C-(A-B)所含元素属于C,但不属于图中阴影部分,故选A.二、填空题7.设全集U=R,若集合A={1,2,3,4},B={x|2≤x≤3},则A∩(∁U B)=________.答案{1,4}解析∵∁U B={x|x<2或x>3},∴A∩(∁U B)={1,4}.8.设集合A={1,-1,a},B={1,a},A∩B=B,则a=______.答案0解析∵A ∩B =B ,即B ⊆A ,∴a ∈A . 要使a 有意义,a ≥0. ∴a =a ,∴a =0或a =1, 由元素互异,舍去a =1.∴a =0.9.已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么集合M ∩N =________. 答案 {(3,-1)}解析 M ,N 中的元素是平面上的点,M ∩N 是集合,并且其中的元素也是点,解方程组⎩⎪⎨⎪⎧ x +y =2,x -y =4, 得⎩⎪⎨⎪⎧x =3,y =-1.∴M ∩N ={(3,-1)}.10.已知集合A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5},若A ∩B =∅,则a 的取值范围是________.答案 ⎩⎨⎧⎭⎬⎫a ⎪⎪-12≤a ≤2或a >3 解析 ①若A =∅,则A ∩B =∅, 此时2a >a +3,即a >3.②若A ≠∅,如图,由A ∩B =∅,可得⎩⎪⎨⎪⎧2a ≥-1,a +3≤5,2a ≤a +3,解得-12≤a ≤2.综上所述,a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪-12≤a ≤2或a >3. 三、解答题11.如图,用适当的方法表示阴影部分的点(含边界上的点)组成的集合M .解结合图形可得M=⎩⎨⎧⎭⎬⎫(x,y)⎪⎪xy≥0,-2≤x≤52,-1≤y≤32.12.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若A∪B=A,求实数m的取值范围;(2)当A={x∈Z|-2≤x≤5|}时,求A的非空真子集的个数;(3)若A∩B=∅,求实数m的取值范围.考点集合各类问题的综合题点集合各类问题的综合解(1)因为A∪B=A,所以B⊆A,当B=∅时,由m+1>2m-1,得m<2,符合;当B≠∅时,根据题意,可得⎩⎪⎨⎪⎧2m-1≥m+1,m+1≥-2,2m-1≤5,解得2≤m≤3.综上可得,实数m的取值范围是{m|m≤3}.(2)当x∈Z时,A={x∈Z|-2≤x≤5}={-2,-1,0,1,2,3,4,5},共有8个元素,所以A的非空真子集的个数为28-2=254.(3)当B=∅时,由(1)知m<2;当B≠∅时,根据题意作出如图所示的数轴,可得⎩⎪⎨⎪⎧2m-1≥m+1,2m-1<-2或⎩⎪⎨⎪⎧2m-1≥m+1,m+1>5,解得m>4.综上可得,实数m 的取值范围是{m |m <2或m >4}.13.设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若B ⊆A ,求实数a 的取值范围.解 因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此知0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根, 则⎩⎪⎨⎪⎧ Δ=4(a +1)2-4(a 2-1)>0,-2(a +1)=-4,a 2-1=0,解得a =1;②当B ≠∅且B A 时,B ={0}或B ={-4},并且Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足题意;③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,解得a <-1.综上所述,所求实数a 的取值范围是a ≤-1或a =1.四、探究与拓展14.已知全集U ={2,4,a 2-a +1},A ={a +4,4},∁U A ={7},则a =________.答案 -2解析 由题意,得a 2-a +1=7,即a 2-a -6=0,解得a =-2或a =3.当a =3时,A ={7,4},不合题意,舍去,故a =-2.15.对于集合A ,B ,我们把集合{}(a ,b )|a ∈A ,b ∈B 记作A ×B .例如,A ={}1,2,B ={}3,4,则有:A ×B ={}(1,3),(1,4),(2,3),(2,4),B ×A ={}(3,1),(3,2),(4,1),(4,2),A ×A ={}(1,1),(1,2),(2,1),(2,2),B ×B ={}(3,3),(3,4),(4,3),(4,4). 据此,试回答下列问题:(1)已知C ={}a ,D ={}1,2,3,求C ×D ;(2)已知A ×B ={}(1,2),(2,2),求集合A ,B ;(3)若集合A 中有3个元素,集合B 中有4个元素,试确定A ×B 中有多少个元素. 考点 集合各类问题的综合题点 集合各类问题的综合解析 (1)C ×D ={}(a ,1),(a ,2),(a ,3).(1,2),(2,2),(2)因为A×B={}所以A={}1,2,B={}2.(3)由题意可知A×B中元素的个数与集合A和B中的元素个数有关,即集合A中的任何一个元素与B中的任何一个元素对应后,得到A×B中的一个新元素.若A中有m个元素,B中有n个元素,则A×B中应有m×n个元素.于是,若集合A中有3个元素,集合B中有4个元素,则A×B中有12个元素.。