地震解释技术

合集下载

地震勘探原理和方法

地震勘探原理和方法

地震勘探原理和方法地震勘探是一种地球物理勘探方法,通过研究地震波在地壳中的传播规律来推断地下岩层的性质和形态。

本文将介绍地震勘探的基本原理和方法,包括地震波传播原理、地震波探测方法、数据采集技术、数据处理技术、地质解释技术、地球物理测井技术和地震勘探仪器设备等方面。

1.地震波传播原理地震波是指地震发生时产生的波动,包括纵波和横波。

纵波是压缩波,在地壳中以波的形式传播,横波是剪切波,在地壳中以扭动的方式传播。

当地震波在地壳中传播时,遇到不同密度的岩层会发生反射、折射和透射等现象,这些现象是地震勘探的基础。

2.地震波探测方法地震波探测方法包括折射波法和反射波法。

折射波法是通过测量地震波在地壳中传播的速度和时间来推断地下岩层的性质和形态。

反射波法是通过测量地震波在地壳中反射回来的信号来推断地下岩层的性质和形态。

在实际应用中,通常采用折射波法和反射波法相结合的方式来提高地震勘探的精度和分辨率。

3.数据采集技术数据采集技术是地震勘探的关键之一,它包括野外数据采集和室内数据采集。

野外数据采集是在野外布置观测系统,通过激发地震波并记录地震信号来进行数据采集。

室内数据采集则是在室内通过计算机系统对野外采集的数据进行处理和分析。

4.数据处理技术数据处理技术是地震勘探的关键之一,它包括预处理、增益控制、滤波、叠加、偏移、反演等步骤。

预处理包括去除噪声、平滑处理等;增益控制包括调整信号的幅度和相位;滤波包括去除高频噪声和低频干扰;叠加是指将多个地震信号进行叠加,以提高信号的信噪比;偏移是指将反射回来的信号进行移动,以纠正地震信号的偏移;反演是指将地震信号转换为地下岩层的物理性质,如速度、密度等。

5.地质解释技术地质解释技术是地震勘探的关键之一,它包括构造解释、地层解释和储层解释等方面。

构造解释是指根据地震信号推断地下岩层的构造特征和形态;地层解释是指根据地震信号推断地下岩层的年代、沉积环境和地层组合;储层解释是指根据地震信号推断地下油气储层的性质和特征。

油气地质勘探中的地震数据处理和解释技术

油气地质勘探中的地震数据处理和解释技术

油气地质勘探中的地震数据处理和解释技术概述油气地质勘探中的地震数据处理和解释技术,是指通过采集、处理和解读地震波信号,来确定地下的油气储层分布、性质和储量大小等信息。

地震勘探是油气勘探中的基础和重要方法之一,其应用范围广泛,取得了很多成功的案例。

本文将从地震数据采集、预处理、成像、解释和评价等方面,对油气地质勘探中的地震数据处理和解释技术进行简要介绍,并结合相关案例进行分析。

一、地震数据采集地震勘探是基于地震波传播原理来寻找地球内部结构和特定物质分布的方法。

地震波源有爆炸、振动和震源三种方式,主要使用振动方式产生的地震波,因为其信号清晰、频率范围广、深度适中、对环境的影响小等优点。

地震波在地下沉积物中经过多次反射和折射后,经地表观测点接收并记录为地震记录,再对这些记录进行处理和解释。

地震数据采集需要经过工区选址、线网设计、设备布置、数据记录等步骤。

工区选址应考虑地质特征、地表条件、设备通信等方面因素,以保证采集到高质量的地震数据。

线网设计则要考虑采集目标、信噪比及经济效益等因素,以获得最优的数据效果。

二、地震数据预处理地震数据预处理包括噪声消除、去除仪器响应、补偿波场偏移等过程。

噪声消除是地震数据处理的重要环节之一,主要是为了减少信号中的噪声,提高数据的清晰度。

去除仪器响应可以提高数据稳定性和可靠性,同时也避免了数据重复处理所带来的偏差。

波场偏移补偿可以提高地震图像的清晰度和分辨率,从而更准确地表征地下结构。

三、地震数据成像地震数据成像是指建立地下模型的过程,是地震勘探的重点之一。

目的是根据地震数据,通过成像算法,建立地质模型,用以分析解释地质结构特征。

常用的成像方法有叠前和叠后成像。

叠前成像是指在地震数据处理过程中,对原始数据进行预处理,再应用成像算法,得到地下结构的影像。

叠前成像的主要优点是处理速度快,成像效果好,能较好地表征地下结构。

叠后成像则是指在处理和解释地震数据后,对已成图像进行后处理,通过地震反演等方法,更好地约束模型,准确表征地下结构特征,优点是更加准确,但计算成本高。

地震资料全三维精细构造解释技术研究

地震资料全三维精细构造解释技术研究

196地震勘探作业属于能源开发过程中了解地质构造的重要基础,地震勘探作业开展将会得到充足的地震资料,地震资料全三维精细构造解释技术的研究对于理解地球内部复杂结构至关重要,地球的内部不仅包含不同类型的岩石和矿物,还存在着各种地质构造,如断裂带、隆升带等[1]。

通过精细的三维解释,能够深入了解这些地质构造的几何形态、空间分布以及相互关系。

地球深部结构的详细解释可以帮助工作人员准确预测地下资源的分布,包括石油、天然气等,这对于有效开发和管理地球资源具有战略性意义,有助于提高勘探的成功率和资源的利用效率[2]。

研究主要是对相干数据体解释断层、全三维自动追踪解释层位以及变速做图等技术进行研究,为推动我国地质勘探领域的进一步发展奠定基础。

1 相干数据体解释断层1.1 相干数据体的技术原理在进行油气资源勘探作业时,相干数据体解释断层是一项关键的技术任务,断层是地球内部结构中的重要构造,它对油气运移和聚集具有重要影响。

相干数据体解释断层主要是通过地震勘探仪器获取地下反射波数据,这些数据记录了地下结构的变化,对采集到的地震数据进行预处理,包括去噪、校正、剖面叠加等步骤,以确保数据的质量[3]。

将地震数据从时间域转换到深度域,以获取地下结构的深度信息,通过速度分析,建立地下的速度模型,这对于后续的图像重建和解释非常关键。

利用地震道集数据,计算相干体来衡量不同深度层之间的相干性,相干体表示在多个地震剖面上,同一位置的地下结构信息的一致性程度,对相干体进行阈值处理,提取出地震资料全三维精细构造解释技术研究李潇中石化石油物探技术研究院有限公司 江苏 南京 211100摘要:针对地震资料全三维精细构造解释问题,首先对相干数据体解释断层进行分析,在此基础上,对全三维自动追踪解释断层问题进行探讨,最后,对变速做图技术进行深入研究,为推动我国地震资料全三维精细结构解释技术的进一步发展奠定基础。

研究表明:通过分析相干数据体以此实现断层的自动和半自动解释,可以理清目标区域中的断层系统,在引入全三维追踪层位技术以后,可以对目标层进行全面解释,对于地震波的传播速度而言,其将会随着岩性横向或者纵向的变化而变化,因此,在将T0图转化为深度构造图的过程中,可以引入变速做图技术,进而可以得到准确的地质构造信息,为井位的合理部署奠定基础。

地震资料解释基本方法及发展趋势

地震资料解释基本方法及发展趋势

地震资料的地质解释,指根据地震信息确定地质构造形态和空间位置,推测地层的岩性、厚度及层间接触关系,确定地层含油气的可能性,直接为钻探提供井位。

地震勘探的地质成效,在很大程度上取决于地震资料的正确与否。

而要正确地解释地震资料,必须了解地震剖面上的反射特性及其与地质剖面的内在联系;了解并掌握各种地质现象的变化规律及其地震响应;要善于识别和区分地震剖面上的假象;要正确认识和理解地震勘探的分辨率;也要明确,在沉积岩地区,地震剖面上大多数反射是干涉复合的结果;还要明确一点,地震资料的地质解释往往具有多解性和局限性。

地震资料的野外采集和室内处理涉及到基础资料的操作,而地震资料解释就是把这些资料转化成抽象的地质术语。

很显然,这种转化和转化的质量是每个解释人员的能力、想象力的综合表现,最终的成果体现在地质解释的合理性上。

地震资料中蕴藏着丰富的地质信息,主要有两大类:一类是运动学信息,另一类是动力学信息。

运动学信息主要是指地震波的反射时间t0及旅行时差,同相性和速度(平均速度、层速度)等,利用这些信息可以把地震时间剖面变为深度剖面,绘制地质构造图,进行地质构造解释,搞清岩层之间的界面、断层、褶皱的位置和展布方向等。

动力学信息主要是指地震反射特征,如反射波的振幅、频率、吸收衰减、极化特点、连续性,反射波的内部结构,外部几何形态等。

从这些地震信息中可以提取非常有用的地层岩性信息,借此确立地震层序、分析地震相、恢复盆地的古沉积环境、预测生储油相带的分布、寻找地层圈闭油气藏。

除此之外,借助于地震波的振幅,频率、极性等动力学信息并结合层速度、钻井、测井等资料,提取岩性和储层参数,如流体成分、储层厚度及性质、孔隙度等,进行地震资料的岩性分析及烃类检测。

地震资料解释大致可分为三个阶段,即构造解释、地层岩性解释和开发地震解释。

20世纪70年代以前,地震勘探方法和技术在解决地质问题过程中,主要以地震资料的构造解释为主,即利用由地震资料提供的反射波旅行时、速度等信息,查明地下地层的构造形态、埋藏深度、接触关系等。

地震波形解释技术讲解

地震波形解释技术讲解

地震波形解释技术讲解地震波形解释是地球物理学中的一项重要工作,它通过分析地震记录中的波形信息,了解地下岩石结构、地震发生机制以及地震破裂过程等相关信息。

地震波形解释技术在地质勘探、矿产资源探测、地震监测等领域都有广泛应用。

本文将介绍地震波形解释技术的基本概念、方法和应用。

一、地震波形解释技术概述地震波形解释技术是根据地震波在地下介质中的传播和反射、折射等现象,通过分析波形记录来确定地下岩石的物理性质和结构。

地震波形记录中包含了地震波在地震源和地表接收点之间传播的信息,将这些信息进行处理和解释,就可以获取地下结构的相关信息。

二、地震波形解释技术的方法1. 震相分析法震相分析法是一种常用的地震波形解释方法。

它通过分析地震记录中的不同震相的到达时间和振幅,来推断不同岩石层界面的位置和性质。

震相分析法包括初动到时提取、振幅分析和速度分析等步骤。

通过田间实测和实验室分析,可以建立震相的速度表,利用速度表来解释地震记录中的波形信息。

2. 反射波形解释法反射波形解释法是根据地震记录中的反射波形特征,来推断地下界面的形态和属性。

在地震记录中,反射波是震源发射的地震波在地下岩石界面上发生反射后返回地表接收到的波形。

通过分析反射波的振幅、频率、相位等特征,可以判断反射面的位置、走向、倾角和反射系数等参数,从而得到地下构造的信息。

3. 折射波形解释法折射波形解释法主要应用于地下介质存在不均匀性的情况。

当地震波从一个介质传播到另一个介质时,波的传播方向会发生改变,这就是折射现象。

通过分析折射波的特征,可以计算出介质的折射系数、折射角度等参数,进而推断地下介质的物理特性。

三、地震波形解释技术的应用1. 地质勘探地震波形解释技术在地质勘探中有着广泛的应用。

通过分析地震记录中的波形信息,可以了解地下岩石的层序、岩性、构造等特征,为勘探活动提供重要信息。

地震波形解释技术广泛应用于石油、天然气、矿产资源等勘探项目中。

2. 地震监测地震波形解释技术在地震监测中也发挥着重要作用。

地震资料综合解释资料

地震资料综合解释资料

名词解释:1.褶积模型:地震记录的褶积模型是当今地震勘探中三大环节的主要理论基础之一,其应用十分广泛,主要表现在三大方面:正演、反演和子波处理。

层状介质的一次反射波通常用线性褶积模型表示 ,即:式中:w(t)为系统子波;r(t)为反射系数函数,符号“*”表示褶积运算。

2.分辨率:分辨能力是指区分两个靠近物体的能力。

度量分辨能力强弱的两种表示:一是距离表示,分辨的垂向距离或横向范围越小,则分辨能力越强;二是时间表示,在地震时间剖面上,相邻地层时间间隔 dt 越小,则分辨能力越强。

时间间隔 dt 的倒数为分辨率。

垂向分辨率是指沿地层垂直方向所能分辨的最薄地层厚度。

横向分辨率是指横向上所能分辨的最小地质体宽度。

3.薄层解释原理:Dt<T/4 或 Dh 在 l/8 与 l/4 之间,合成波形的振幅与 Dt 近似成正比,可用合成波形的振幅信息来估算薄层厚度,这一工作称之为薄层解释原理。

4.时间振幅解释图版:我们把层间旅行时差Δ t 与实际地层的时间厚度Δ T 的关系曲线以及薄层顶底反射的合成波形的相对振幅Δ A 与实际地层的时间厚度Δ T 的关系曲线统称为时间-振幅解释图版。

5.协调厚度:在相对振幅ΔA 与实际地层时间厚度ΔT 的关系曲线上,ΔA 最大值所对应的地层厚度称为调谐厚度。

协调脉冲。

6.波长延拓:用数学的方法把波场从一个高度换算到另一个高度,习惯上称之为波场延拓。

7.同相轴:各接收点属于同一相位振动的连线。

8.波的对比:根据反射波的一些特征来识别和追踪同一反射界面反射波的工作,方法:相位对比、波组或波系对比、沿测网的闭合圈对比、研究异常波、剖面间的对比。

9.剖面闭合:相交测线的交点处同一反射波的 t0 时间应相等,是检验波的对比追踪是否正确的重要方法。

10.广义标定:是指利用测井、钻井资料所揭示的地质含义 (岩性、层厚、含流体性质等) 和地震属性参数(如振幅、波形、频谱、速度等)之间的对比关系,判别或预测远离或缺少井控制区域内地震反射信息 (如同相轴、地震相、各种属性参数等)的地质含义。

叠后偏移地震资料构造解释的原理

叠后偏移地震资料构造解释的原理

叠后偏移地震资料构造解释的原理随着地球科学领域的不断发展,地震勘探技术作为一种重要的地球物理勘探手段,在油气勘探、地质灾害预测等方面发挥着重要作用。

叠后偏移地震资料构造解释作为地震勘探中的重要环节之一,其原理对于准确解释地下构造具有至关重要的意义。

本文将从叠后偏移的概念、地震资料构造及解释的基本原理入手,深入探讨叠后偏移地震资料构造解释的原理。

一、概念叠后偏移是地震勘探中的一种重要处理手段,它通过将地震记录进行时间和空间的叠加,来提高地震资料的分辨率和解释质量。

在地震资料处理中,叠后偏移是一个重要的步骤,它能够帮助勘探人员更加清晰地观察地下构造,从而为油气勘探和地质灾害预测提供有力的支持。

二、地震资料构造原理1. 时间叠加时间叠加是叠后偏移的关键步骤之一,它通过将不同时间的地震信号叠加在一起,来增强信号的强度和分辨率。

在地震资料构造中,时间叠加可以帮助我们更加清晰地观测地下构造的细节,从而提高地震资料的解释质量。

2. 空间叠加空间叠加是叠后偏移的另一个重要步骤,它通过将不同空间位置的地震记录叠加在一起,来增强地震信号的强度和分辨率。

在地震资料构造中,空间叠加可以帮助我们更加清晰地观测地下构造的分布情况,从而提高地震资料的解释质量。

3. 叠后偏移叠后偏移是地震资料构造的最终步骤,它通过将经过时间和空间叠加处理的地震记录进行偏移校正,来获得更加准确的地震资料。

在地震勘探中,叠后偏移可以帮助我们更加清晰地观测地下构造的几何形态,从而提高地震资料的解释质量。

三、地震资料解释的基本原理1. 反射波分析反射波分析是地震资料解释的基本原理之一,它通过分析地震波在不同介质中的反射特征,来推断地下构造的性质和分布情况。

在地震资料解释中,反射波分析可以帮助我们更加清晰地观测地下构造的界面和变化情况,从而提高解释的准确性和可靠性。

2. 折射波分析折射波分析是地震资料解释的另一个基本原理,它通过分析地震波在不同介质中的折射特征,来推断地下构造的速度和密度情况。

地震数据处理与解释技术案例

地震数据处理与解释技术案例

地震数据处理与解释技术案例一、引言地震是自然界中一种常见的地壳运动现象,也是人类生活中可能面临的灾害之一。

为了更好地了解地震的发生机理和对应的破坏程度,地震数据的处理与解释技术就显得尤为重要。

本文将通过一个具体的地震数据处理与解释技术案例来说明其在实践中的应用和价值。

二、案例背景该案例发生在亚洲地区的一个地震频发地带,地震的发生频率和破坏程度给当地居民带来了严重的压力。

为了及早发现地震蛛丝马迹并提前做好防范措施,当地的地震部门决定进行更深入的地震数据处理与解释技术研究,并期望能找到一种更准确、更高效的方法来识别地震前兆,提前预警。

三、地震数据处理技术地震数据处理技术是地震学中的一项重要技术,旨在通过对采集到的地震数据进行加工处理,提取有用信息,进一步研究地震的规律和特性。

在该案例中,地震部门采用了三种主要的地震数据处理技术。

首先,地震波形数据处理技术被应用于对地震波数据的处理。

该技术通过对地震波形信号进行滤波、去噪等处理,提高地震波动的清晰度和准确性。

通过对地震波形数据的处理,地震部门能够更好地观察和解读地震波的传播规律,进而推测地震的震源位置和破坏程度。

其次,地震震源机制研究是另一项地震数据处理技术。

地震震源机制是指地震发生时地震波的传播路径和形态,通过对其进行研究,可以进一步了解地震产生的背后动力学机制。

在该案例中,地震部门通过分析地震波形数据中的S波和P波的到达时间差以及振幅比等参数,建立了多个地震发生的震源机制模型,进而对地震发生机理进行判定。

最后,地震事件的时空演化分析技术也被应用于该案例中。

时空演化分析技术是通过对一系列地震事件的发生时间、震级、震源位置等数据进行分析,以探究地震在时空上的变化规律。

在该案例中,地震部门将多次地震事件的数据进行整理和统计,并应用时空演化分析技术,成功地发现了地震发生的潜在规律。

这使得他们能够预测未来地震的可能发生位置和能量大小。

四、地震数据解释技术地震数据解释技术则是在经过地震数据处理后对处理后的数据进行分析和解释。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随着锦州油田油气勘探开发的不断深入,先进的三维地震解释技术及相关的属性分析技术的使用凸显重要。

利用最新采集处理的三维地震资料,采油厂加大了相关地震配套软件的使用,2011年锦州采油厂计划引进SeisWare地震解释系统及landmark地震解释工作站,使得利用各种地震属性研究储层的技术得到了加强。

利用高精度三维地震叠前时间偏移数据体,可以在精细地层小层对比、整体解剖精细评价的基础上针对目标层段内的砂泥岩薄互层砂组进行多种地震属性的处理,引进landmark解释工作站的多体多属性地层追踪及快速高效的储层描述方法,能从整体上描述储层的空间展布及小断块内储层的分布特征,
计算机技术的飞速发展及相应的层位自动追踪技术、三维可视化技术等解释手段的发展极大地提高了解释工作的效率及准确度,同时最大限度地发挥了三维数据体的优势。

利用最新采集处理的三维地震资料,经过地震资料品质分析后,优选具有较高的信噪比,偏移归位合理,目的层波组特征明显的资料,在合成记录标定的基础上,搭建格架剖面并进行人工解释,然后采用人机联合波形对比层位自动追踪技术进行全区层位解释,采用相干、倾角扫描以及层面光滑度分析技术进行断层平面组合分析,能精细落实研究区的构造特征和断层展布特征。

LandMark 一体化系统通过强有力的可视化技术提供给用户一个真三维的解释平台,可对海量的三维地震数据进行快速准确地构造解释,能快速搜索地质目标,精确雕刻;并提供了一个多学科协同和决策环境,可以实现构造解释、储层预测、叠前AVO分析、可视化处理以及井轨迹设计和钻井实时监控。

其三维可视化手段可应用于地震资料处理、构造解释、全区目标搜索、精细目标解释、储层预测等三维连片解释的所有阶段。

LandMark 一体化系统特点:
储层自动追踪ezTracker
基于波形的层位自动追踪,可同时拾取多个种子点,可以保存种子点信息,灵活定义追踪的波形时窗,对追踪结果可进行多种灵活编辑,如遗传删除、门槛值调整和多边形删除
点集自动追踪Autopick
可根据种子点值的大小,或人工定义数据体值的范围,快速追踪地质体。

也可利用多种属性(如在波阻抗体和相位体上)共同约束追踪地质体三维形态,如河道、扇体等,直接形成地质体顶底t0面。

点集可自由转换为层位。

三维体雕刻Geobody
可用三维体追踪点集,层位,断面作为约束条件雕刻三维地质体,利用透明度和颜色来彰显地质异常体,突出空间展布。

异常体快速搜索GeoAnomaly
依据多数据体振幅值和数据连通性,快速搜索满足定义条件的异常体。

SeisWare软件的地震地质解释功能灵活方便,适于在勘探/开发阶段进行综合地震解释、随钻跟踪分析、油气层识别、储量计算以及新区预探、老区扩边、部署调整等研究工作。

其特点包括:
多工区,不同类型地震资料的连片解释;
断层追踪识别功能
可以直观方便的显示地震剖面上断层的平面要素,实时地观察断层面的空间走向及展布趋势。

欢西油田是一个地质条件和油藏来信十分复杂的断块油田,断距从十几米至几百米不等的不同级次断层纵横交错,断块分隔凌乱,油层埋藏差异大,储层沉积特征不一,发育不稳定,诸多因素都给地质研究带来困难。

面对复杂断块,Seisware地震解释系统的技术优势是,可以直观方便地显示地震剖面上断层的平面要素,实时地观察断层面空间走向及展布趋势,并使三维数据断层解释过程自动化。

地震解释人员可以能够在较短时间内进行高精度的断层解释,即使在构造情况复杂地区或资料品质较差地区也能实现,其直观的编辑功
能允许快速构建一个精确的断层框架,从而提高对构造复杂地区的认识。

欢西油田下台阶含油层位深度跨度大,完钻井少,现有钻井资料不能很好的进行构造、储层发育研究,landmark的层位自动追踪模块基于波形的层位自动追踪,可同时拾取多个种子点,可以保存种子点信息,灵活定义追踪的波形时窗,对追踪结果可进行多种灵活编辑,较好的解决目前的技术难题。

同时针对欢西油田下台阶沙三段岩性油气藏发育的问题,可以采用landmark的相干性分析和属性分析等模块进行多角度落实,对地震数据本身进行相干体计算即可得到一个高分辨率、反映真实数据特征的成象数据体,这不仅简化了解释过程,而且还大大提高了解释的准确性、可靠性。

相关文档
最新文档