导数证明不等式的问题(练习)
高考数学利用导数研究不等式问题(解析版)题型一:构造法证明不等式

题型一:构造法证明不等式1.(2021·山东德州·高三期中)已知函数()2(1)x f x xe a x =++(其中常数e 2.718=是自然对数的底数).(1)当0a <时,讨论函数()f x 的单调性;(2)证明:对任意1a ≤,当0x >时,()()23231f x ex a x x x -≥-++.【答案】(1)答案见解析(2)证明见解析(1)由()()()()12(1)12x x f x x e a x x e a =+++=++,令()0f x '=,解得1x =-,()ln 2x a =-, ①当102a e-<<, 由()0f x '>,解得()ln 2x a <-或1x >-,由()0f x '<,解得()ln 21a x -<<-,故()f x 在()(),ln 2a -∞-,()1,-+∞上单调递增;在()()ln 2,1a --上单调递减, ②当12a e=-,()0f x '≥,()f x 在R 上单调递增; ③当12a e<-,由()0f x '>,解得1x <-或()ln 2x a >-, 由()0f x '<,解得()1ln 2x a -<<-故()f x 在(),1-∞-,()()ln 2,a -+∞上单调递增;在()()1,ln 2a --上单调递减, 综上所述,当102a e-<<时, ()f x 在()(),ln 2a -∞-,()1,-+∞上单调递增;在()()ln 2,1a --上单调递减, 当12a e=-,()f x 在R 上单调递增; 当12a e<-,()f x 在(),1-∞-,()()ln 2,a -+∞上单调递增; 在()()1,ln 2a --上单调递减.(2)证明:对任意1a ≤,当0x >时,要证()()23231f x ex a x x x --++≥,需证,20x e a a ax e x x+---≥, 令()2x e a g x a ax e x x=+---, 则()()()21x x e ax a g x x ---'=, 令()x h x e ax a =--,则()x h x e a '=-,因为0x >,1a ≤,所以()0x h x e a '=->,所以()()010h x h a >=-≥,所以()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∈+∞时,()0g x '>,()g x 单调递增,所以()()10g x g ≥=,即20x e a a ax e x x+---≥,原不等式成立. 2.(2021·河南驻马店·高三月考(文))已知函数()()248ln x a x x f a x +--=.(1)求()f x 的单调区间;(2)当2a =时,证明:()242e 64x f x x x >-++.【答案】(1)答案不唯一,见解析(2)证明见解析(1)由题意知()f x 的定义域为(0,)+∞.由已知得()()2()()8188x a x x a x a f x x x-++--'== 当0a ≤时,()()0,f x f x '>在(0,)+∞上单调递增,无单调递减区间.当0a >时,令()0f x '>,得8a x >;令()'0f x <,得08a x <<, 所以()f x 在0,8a ⎛⎫ ⎪⎝⎭上单调递减,在,8a ⎛+∞⎫ ⎪⎝⎭上单调递增. 综上,当0a ≤时,()f x 的单调递增区间为(0,)+∞,无单调递减区间;当0a >时,()f x 的单调递减区间为0,8a ⎛⎫ ⎪⎝⎭,单调递增区间为,8a ⎛+∞⎫ ⎪⎝⎭. (2)证明:原不等式等价于()e ln 20x x x ϕ=-->,则()1e x x xϕ'=-,易知()x ϕ'在(0,)+∞上单调递增,且()120,1e 102ϕϕ⎛⎫''<=-> ⎪⎝⎭, 所以()x ϕ'在1,12⎛⎫ ⎪⎝⎭上存在唯一零点0x ,此时()x ϕ在()00,x 上单调递减,在()0,x +∞上单调递增, 要证()0x ϕ>即要证()00x ϕ>,由001e 0x x -=,得001e x x =,001ex x =,代入()000e ln 2x x x ϕ=--,得()00012x x x ϕ=+-, 因为()0001220x x x ϕ=+->=, 所以()242e 64x f x x x >-++.3.(2021·湖北武汉·高三月考)已知函数()e 21x f x a x =+-(1)讨论函数()f x 的单调性;(2)证明:对任意的1a ≥,当0x >时,()()f x x ae x ≥+.【答案】(1)答案见解析(2)证明见解析(1)解:()e 2x f x a '=+.①当0a ≥时,()0f x '>,函数()f x 在R 上单调递增;②当0a <时,由()0f x '>解得2ln x a ⎛⎫<- ⎪⎝⎭,由()0f x '<解得2ln x a ⎛⎫>- ⎪⎝⎭. 故()f x 在2,ln a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭上单调递增,在2ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递减. 综上所述,当0a ≥时,()f x 在R 上单调递增;当0a <时,()f x 在2,ln a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭上单调递增,在2ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递减. (2)证明:原不等式等价于()2(1)x a e ex x -≥-.令()x g x e ex =-,则()e e x g x '=-.当1x <时,()0g x '<;当1x >时,()0g x '>.∴()()10g x g ≥=,即0x e ex -≥,当且仅当1x =时等号成立.当1x =时,()2(1)x a e ex x -≥-显然成立;当0x >且1x ≠时,0x e ex -≥.欲证对任意的1a ≥,()2(1)x a e ex x -≥-成立,只需证2(1)x e ex x -≥-()()()()2g 1'21x x x e ex x g x e e x =---=---,令()()(),2x h x g x h x e ''==-,令()0,ln 2h x x ='= ()ln 2,0,x h x '<<()g x '递减,()ln 2,0,x h x '>>()g x '递增()()()'ln 222ln 2142ln 20,030g e e g e =---==-=-'故存在()00,ln 2x ∈,使()00g x '=又由(1)0g '=,所以00x x <<时,()0g x '>,()g x 递增,01x x <<时,()0g x '<,()g x 递减,1x >时,()0g x '>,()g x 递增,又()()g 00,10g ==,故0x >时,()0g x ≥.综上所述,结论得证。
利用导数证明数列不等式(含解析)

利用导数证明数列不等式利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型. 1、常见类型:(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源:(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式.(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式. 3、常见恒成立不等式:(1) 对数→多项式 (2) 指数→多项式4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种:(1)倒序相加:通项公式具备第项与第项的和为常数的特点.(2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减).(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消. 注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑.5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式.6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向.7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等).ln 1x x <-1x e x >+n n k 1n k -+⨯2nn a n =⋅n a8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件的联系).【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性; (2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(xf x eg x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 2.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(1)讨论函数()f x 的单调性;(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈. (1)讨论函数()f x 的单调性;(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈.(1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<.【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 【答案】(1)单调递增区间为(0,)e ,单调递减区间为(,)e +∞;(2)[1,)+∞;(3)证明见解析.【解析】(1)当2k =时,()2ln f x x x x =-,'()1ln f x x =-,由'()0f x >,解得0x e <<;由'()0f x <,解得x e >,因此函数()f x 单调递增区间为(0,)e ,单调递减区间为(,)e +∞.(2)()ln f x kx x x =-,故'()1ln f x k x --=.当1k时,因为01x <≤,所以10ln k x -≥≥,因此'()0f x ≥恒成立,即()f x 在(]0,1上单调递增,所以()(1)f x f k ≤=恒成立.当1k <时,令'()0f x =,解得1(0,1)k x e -=∈.当1(0,)k x e -∈,'()0f x >,()f x 单调递增;当1(,1)k x e -∈,'()0f x <,()f x 单调递减; 于是1(1))(k f ef k -=>,与()f x k ≤恒成立相矛盾.综上,k 的取值范围为[1,)+∞.(3)由(2)知,当01x <≤时,ln 1x x x -≤. 令x =21n *()n N ∈,则21n +22nln 1n ≤,即22ln 1n n -≤, 因此ln 1n n +≤12n -. 所以ln1ln 2ln 011(1) (2312224)n n n n n --+++≤+++=+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈.【答案】(1)见解析;(2)[1,+∞);(3)证明见解析. 【解析】(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增; 当01a <<时,由0y '>可得x > ∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立, 当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立, 综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证.3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 【答案】(1)答案见解析(2)证明见解析.【解析】(1)因为()x xf x e ea -'=+-,且2x x e e -+≥,所以当2a ≤时,()0f x '≥,所以()f x 在R 上为增函数,当2a >时,由()0f x '>,得0x x e e a -+->,所以2()10x xe ae -+>,所以22()124x a a e ->-,所以2x ae ->或2xa e -<,所以2xa e +>2xa e -<,所以24ln2aa x 或24ln2aa x ,由()0f x '<,得0x x e e a -+-<,解得2244ln22aa aax ,所以()f x 在ln 22a a ⎛⎫⎪ ⎪⎝⎭上递减,在,ln2a ⎛--∞ ⎪⎝⎭和ln 2a ⎛⎫++∞ ⎪ ⎪⎝⎭上递增.(2)由(1)知,当2a =时,()2xxf x e e x -=--在R 上为增函数,所以1()(ln )2ln g x f x x x x==--在(0,)+∞上为增函数, 所以当*n N ∈且2n ≥时,13()(2)22ln 2ln 422g n g ≥=--=-=32ln 04e >, 即12ln 0n n n-->,所以212211ln 1(1)(1)11n n n n n n n >==---+-+, 所以211111ln 2ln 23ln 34ln 4ln ni i i n n==++++∑ 1111111121213131414111n n >-+-+-++--+-+-+-+ 111121n n =+--+2322(1)n n n n --=+, 所以22132ln 2(1)ni n n i i n n =-->+∑.4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(∈)函数()f x 可化为ln ,()ln ,0x x a x af x a x x x a --≥⎧=⎨--<<⎩,当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x'-=-=,此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(∈)由(∈)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x <-.所以 222222ln 2ln 3ln 23n n+++22211111123n <-+-+-222111123n n ⎛⎫=--+++⎪⎝⎭11112334(1)n n n ⎛⎫<--+++⎪⨯⨯+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性;(2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---. 【答案】(1)当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明见解析 【解析】(1)解:()1ln (0)f x x a x x =-->,()1af x x'∴=-.∈若0a ,则()0f x '>,()f x ∴在(0,)+∞内单调递增;∈若0a >,则()f x '在(0,)+∞内单调递增,且()0f a '=,∴当(0,)x a ∈时,()0f x '<;当(,)x a ∈+∞时,()0f x '>,()f x ∴在(0,)a 内单调递减,在(,)a +∞内单调递增.综上所述,当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明:当1a =时,()1ln =--f x x x .由(1)知()(1)0f x f =,ln 1x x ∴-,当且仅当1x =时,等号成立, 令()*,2x n n N n =∈,ln 1n n ∴<-,33ln 1111(1)1n n n n n n n n n n -∴<==---++. 从而3ln 2112223<--, 3ln 3113334<-- …3ln 111n n n n n <--+, 累加可得333ln 2ln3ln 11223321n n n n ++⋯+<----+, 111212n -<+, 333ln 2ln3ln 122332n n n ∴++⋯+<---,证毕.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(x f x e g x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 【答案】(1)证明见解析;(2) 2.【解析】(1)令()()()1xF x f x g x e x =-=--,则()1xF x e '=-∴当(),0x ∈-∞时,()0F x '<;当()0,x ∈+∞时,()0F x '>()F x ∴在(),0-∞上单调递减;在()0,∞+上单调递增()()0min 0010F x F e ∴==--=,即()()()0F x f x g x =-≥恒成立 ()()f x g x ∴≥恒成立(2)由(1)知:13113n n e +≤221111113333332111111333n n n e e e e++⋅⋅⋅+⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤⋅⋅⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又211111111133********13nn n⎛⎫⨯- ⎪⎛⎫⎝⎭++⋅⋅⋅+==⨯-<⎪⎝⎭- 11112322111111333n n e e ⎛⎫⨯- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又2111111333n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立 12m e ∴≥ m 为正整数 m ∴的最小值为:22.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 【答案】(1)()f x 单调递增区间为()3+∞,;() f x 单调递减区间为()03,;(2)43a ≥;(3)详见解析. 【解析】(1)因为()()3246x f x x ex x -=-+-,所以()()()()3332632x x f x x ex x e --=-+-='-+,令()0f x '=得3x =,当3x >时,()0f x '>,()f x 单调递增; 当03x <<时,()0f x '<,()f x 单调递减;所以函数()f x 在()0+∞,上的单调递增区间为()3+∞,,单调递减区间为()03,; (2)由(1)知()()()332x f x x e-'=-+,当3x ≥时,()0f x '≥恒成立,故()0h x ≥恒成立;当3x <时,()0f x '<,又因为()()(){}0h x max f x g x '=≥,恒成立,所以()0g x ≥在()03,上恒成立, 所以11ln 03a x x ⎛⎫---≥ ⎪⎝⎭,即11ln 3xa x+-≥在()03,上恒成立, 令()()1ln 03x F x x x +=<<,则()13max a F x -≥, 由()()221ln 1ln x xF x x x-+-'==, 令()0F x '=得1x =,易得()F x 在()01,上单调递增,在[)13,上单调递减,所以()()11max F x F ==,所以113a -≥,即43a ≥, 综上可得43a ≥.(3)证明:设()()10xm x e x x =-->,则()10xm x e '=->,所以()m x 在()0+∞,上单调递增,所以()()00m x m >=,即1x e x >+, 所以1111111111312312333112313n n n nn n n nn n n n n ee eeen n n n n++++++++++++=⋅⋅⋅⋅⋅⋅⋅>⋅⋅⋅⋅⋅⋅⋅⋅++- 123331231n n n nn n n n +++>⋅⋅⋅⋅⋅⋅⋅=++-,所以11111ln 312313n n n n n+++++>++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 【答案】(1)()f x 在区间()–1,0和()0,∞+上单调递减;(2)证明见解析. 【解析】(1)由题意得:()f x 的定义域为()()–1,00,+∞,且()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x=-++则()()21x g x x -'=+,()–1,0x ∈时,()0g x '>; ()0,x ∈+∞时,()0g x '<.即()g x 在()–1,0上单调递增,在()0,∞+上单调递减.因为()00g =,则在()–1,0和()0,∞+上()0g x <. 因为20x >,所以在()–1,0和()0,∞+上()0f x '<, 即函数()f x 在区间()–1,0和()0,∞+上单调递减. (2)由(1)可知,当02x <≤时,()()ln 322x f f =≥,即()ln 3ln 12x x +≥, 当2n ≥时,2021n <≤-,则2ln 3ln 111n n ⎛⎫+≥⎪--⎝⎭, 即()()2ln 3ln 1ln 1ln 111n n n n ⎛⎫+=+--≥ ⎪--⎝⎭, 所以()()()ln 1ln 1ln ln 2ln 4ln 2ln3ln1n n n n +--+--++-+-111ln 31122n n ⎛⎫≥++++ ⎪--⎝⎭整理得:()111ln 1ln ln 2ln1ln 31122n n n n ⎛⎫++--≥++++⎪--⎝⎭, 即2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥,不等式得证.4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈. 【答案】(1) 见详解;(2)1k;(3)证明见解析.【解析】(1)()f x 的定义域为()0 +∞,,()()()221'21p x p p f x p x x x-+=+-=,当1p >时,()'0f x >,故()f x 在()0,∞+单调递增; 当0p ≤时,()'0f x <,故()f x 在()0,∞+单调递减;当10p -<<时,令()'0f x =,解得x =则当x ⎛∈ ⎝时,()'0f x >; x ⎫∈+∞⎪⎪⎭,时,()'0f x <.故()f x 在⎛ ⎝单调递增,在 ⎫+∞⎪⎪⎭,单调递减. (2)因为0x >,所以:当1p =时,()f x kx ≤恒成立11ln ln kx xx k x+⇔+≤⇔≥, 令()1ln xh x x +=,则()max k x h ≥, 因为()2ln 'xh x x-=,由()'0h x =得x =1, 且当()0,1x ∈时,()'0h x >;当()1,x ∈+∞时,()'0h x <.所以()h x 在()0,1上递增,在()1,+∞上递减,所以()()max 11h x h ==, 故1k .(3)取,则代入由题设可得,取,并将上述各不等式两边加起来可得()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈.(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<. 【答案】(1)()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单减;(2)1,2⎛⎤-∞- ⎥⎝⎦;(3)证明见解析. 【解析】()'f x a =+.(1)当0a ≥时,()'0f x ≥,所以()f x 在()1,-+∞上单调递增; 当0a <时,由()'0f x >解得21114x a -<<-, 所以()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单调递增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(2)当0a ≥时,()()2000f x a x =+≥+=,故不合题意;当0a <时,由(∈)知()max 21104x f f a ⎛⎫=-≤ ⎪⎝⎭,211(21)(21)20141244a a f a a a a a a +-⎛⎫=-+- ⎪⎝-+=≤⎭102a a <∴≤-,综上,a 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.(3)由(2)知,取12a =-112x ≤+成立.当()1,2,3,,20482020kx k ==时,1111220204040k k =≤⨯+=⨯+,⋅⋅⋅+()11234204820484040++++++<20491024204826004040⨯=+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈. (1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)函数()f x 的定义域为:()0,∞+,()'f x = 222a a x x x x++=∈当0a ≥时,()'0f x >,所以()f x 在()0,∞+上单调递增∈当0a <时,令()'0f x =,解得x =当0x <<时,220a x +<,所以()'0f x <, 所以()f x 在⎛ ⎝上单调递减;当x >220a x +>,所以()'0f x >,所以()f x 在⎫+∞⎪⎪⎭上单调递增. 综上,当0a ≥时,函数()f x 在()0,∞+上单调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当a 1=时,()2ln f x x x =+,要证明()21f x x x ≤+-,即证ln 1x x ≤-,即证:ln 10x x -+≤. 设()g ln 1x x x =-+,则()g'x =1xx-,令()0g x '=得,1x =. 当()0,1x ∈时,()0g x '>,当()1,x ∈+∞时,()0g x '<. 所以1x =为极大值点,且()g x 在1x =处取得最大值.所以()()10g x g ≤=,即ln 10x x -+≤.故()21f x x x ≤+-.(3)证明:ln 1x x ≤-(当且仅当1x =时等号成立),即11lnx x x≤-, 则有2222ln +22222222223111111111n 132323ln lnn n n n ⎛⎫+⋯+<-+-+⋯+-=--++⋯+ ⎪⎝⎭()111n 123341n n ⎛⎫<--++⋯+ ⎪ ⎪⨯⨯+⎝⎭ ()()()12111111111n 1n 1233412121n n n n n n -+⎛⎫⎛⎫=---+-+⋯+-=---=⎪ ⎪+++⎝⎭⎝⎭, 故:2222ln +()()()22221213321n n ln lnn n n -++⋯+<+ 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 【答案】(∈)0b >;(∈)12a ≤-;(∈)证明见解析. 【解析】(∈)当0a =时,()()()ln 11f x bx x x =-+>-,()()1111bx b f x b x x --'=-=++, ∈当0b ≤时,()0f x '<,则()f x 在()1,-+∞递减,无极值; ∈当0b >时,令()1'0,11f x x b==->-, 1()0,(1,1),()f x x f x b '<∈--单调递减,1()0,(1,),()f x x f x b '>∈-+∞单调递增,所以11,()x f x b=-取得极小值.综上可知:0b >.(∈)当1b =时,()()()2ln 10f x ax x x x =+-+>,()1212011x f x ax ax x x '=+-=+≤++恒成立 121a x ⇔-≥+对一切()0,x ∈+∞恒成立, ∈11x +>,∈1011x <<+,∈21a -≥,∈12a ≤-.(∈)由(∈)知:当12a =-时,()()21ln 12f x x x x =-+-+在()0,∞+递减,∈()()00f x f ≤=,即:()2ln 12x x x -+<,令221x n =-,则()22212ln 212121n n n n +-<---, 当2n ≥时,()2222122ln 212144121n n n n n n +-<=---+- ()21114121n n n n ⎛⎫<=- ⎪--⎝⎭,∈23ln 2ln 311-=- 2511ln 13322⎛⎫-<- ⎪⎝⎭ 27111ln 55223⎛⎫-<- ⎪⎝⎭……221111ln 212121n n n n n +⎛⎫-<- ⎪---⎝⎭累加得,()11112ln 212ln 31212nk n k n =⎛⎫⋅-+<-+- ⎪-⎝⎭∑ 5153ln3ln32222n =--<-<, 当1n =时,131ln 324-<,即:1ln 32>,综上,()1113ln 212124nk n k =-+<-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 【答案】(1)答案不唯一,具体见解析;(2)[)1,+∞;(3)证明见解析. 【解析】(1)函数()()()ln 111f x x k x =---+的定义域为()1,+∞,且()11f x k x '=--. ∈当0k ≤时,()0f x '>恒成立,故函数()y f x =在()1,+∞上为增函数; ∈当0k >时,令()0f x '<,得1k x k +>时,即函数()y f x =在1,k k +⎛⎫+∞⎪⎝⎭上单调递减, 令()0f x '>,得11k x k +<<时,即函数()y f x =在11,k k +⎛⎫⎪⎝⎭上单调递增.综上:当0k ≤时,函数()y f x =在()1,+∞上为增函数; 当0k >时,函数()y f x =在11,k k +⎛⎫ ⎪⎝⎭上为增函数,在1,k k +⎛⎫+∞⎪⎝⎭上为减函数; (2)当0k ≤时,()211f k =-+≥,显然()0f x ≤不恒成立; 当0k >时,()max 11ln 0k f x f k k +⎛⎫==≤⎪⎝⎭,即1k .综上:实数k 的取值范围是[)1,+∞;(3)由(2)可知,当1k =时()0f x ≤恒成立,即()ln 12x x -<-,()ln 121x x x-∴<-, ()()22ln ln 11121212n n n n n n n --=<=+++,可得出ln 2132<,ln 3242<,,ln 112n n n -<+, ()()*1ln 2ln 3ln 121,23412224n n n n n N n n --∴+++<+++=∈≥+. 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<. 【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)∈先利用数学归纳法证明1n a <. (∈)当1n =时,1112a =<成立; (∈)假设n k =时1k a <成立,则1ln 10k k a a +=-<,11k a +∴<. 综上所述,对任意的n *∈N ,1n a <; ∈利用导数证明1x e x -≥,设()1x f x ex -=-,则()1e 1x f x -'=-,当1x <时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()0110f x f e ≥=-=,即1x e x -≥,当且仅当1x =时,等号成立.1n a <,()()10n f a f ∴>=,即1n a n e a ->,1ln 1n n a a +=-,11n a n n a e a -+∴=>,综合∈∈可知11n n a a +<<;(2)利用数学归纳法证明1n n a n ≤+. ∈当1n =时,112a =满足1n n a n ≤+;∈假设n k =时成立,即1k ka k ≤+,则由1ln 1n n a a +=-,得111111k k a k k k a eee---+++==≤,要证1112k k ek -++<+,令11,012t k ⎛⎫-=∈- ⎪+⎝⎭,则要证11012t e t t ⎛⎫<-<< ⎪-⎝⎭,21 / 21 构造()11x f x e x =+-,1,02x ⎛⎫∈- ⎪⎝⎭,()()()()22211111x x e x f x e x x --'=-=--,令()()211x h x e x =--,1,02x ⎛⎫∈- ⎪⎝⎭,则()()()()2212110x x x h x e x e x e x '=-+⋅-=-<, 所以,函数()y f x '=在1,02⎛⎫- ⎪⎝⎭上单调递减,()()00f x f ''∴>=,所以,函数()y f x =在1,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ∴<=,即11x e x <-成立,即1112k k e k -++<+,112k k a k ++∴<+, 综上1n na n ≤+,当且仅当1n =时等号成立,由于1ln 1n n a a +=-,可知0n a >, 所以,1102a <≤,2203a <<,,2019201902020a <<,1220191232019123420202020a a a ⋅⋅⋅⋅<⨯⨯⨯⋅⋅⨯=.。
利用导数证明或解决不等式问题

利用导数证明或解决不等式问题
导数在解决不等式问题中起着非常重要的作用,利用导数可以轻松地证明和解决各种
不等式问题。
本文将通过一些具体的例子,来展示导数在不等式问题中的应用。
我们来看一个简单的例子:证明当x>0时,e^x\geq1+x。
我们可以利用导数来证明这
个不等式。
我们计算e^x和1+x的导数,分别为e^x和1。
然后我们发现e^x-1\geq x,这意味着在x>0时,e^x\geq1+x。
这样就利用导数证明了这个不等式。
除了证明不等式,我们还可以利用导数来解决不等式问题。
我们要求解不等式
x^2-5x+6>0。
我们可以通过求解x^2-5x+6的导数来判断x^2-5x+6的增减性。
首先求导得
到2x-5,然后令2x-5=0,解得x=\frac{5}{2}。
这说明在x<\frac{5}{2}时,x^2-5x+6<0,而在x>\frac{5}{2}时,x^2-5x+6>0。
不等式x^2-5x+6>0的解集是x<\frac{5}{2}或
x>\frac{3}{2}。
2022年高考数学总复习专题突破一利用导数证明不等式

第1课时 利用导数证明不等式题型一 将不等式转化为函数的最值问题[例1] [2017·全国卷Ⅲ]已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a-2.[听课记录]类题通法将不等式转化为函数最值来证明不等式,其主要思想是依据函数在固定区间的单调性,直接求得函数的最值,然后由f (x )≤f (x )max 或f (x )≥f (x )min 直接证得不等式.巩固训练1:已知函数f (x )=ax -e x (e 为自然对数的底数).(1)当a =1e时,求函数f (x )的单调区间及极值;(2)当2≤a ≤e +2时,求证:f (x )≤2x .题型二 构造函数法证明不等式[例2] 设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1. [听课记录]类题通法待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.巩固训练2:已知函数f (x )=e x -ax (e 为自然对数的底数,a 为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x .题型三 将不等式转化为两个函数的最值进行比较[例3] 已知函数f (x )=eln x -ax (a ∈R ). (1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0. [听课记录]类题通法在证明的不等式中,若对不等式的变形无法转化为一个函数的最值问题,可以借助两个函数的最值进行证明.巩固训练3:已知函数f (x )=e x 2-x ln x .求证:当x >0时,f (x )<x e x +1e.题型四 双变量不等式的证明[例4] [2020·天津卷]已知函数f (x )=x 3+k ln x (k ∈R ),f ′(x )为f (x )的导函数. (1)当k =6时:(ⅰ)求曲线y =f (x )在点(1,f (1))处的切线方程;(ⅱ)求函数g (x )=f (x )-f ′(x )+9x的单调区间和极值.(2)当k ≥-3时,求证:对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f ′(x 1)+f ′(x 2)2>f (x 1)-f (x 2)x 1-x 2.[听课记录]类题通法破解含双参不等式的证明的关键一是转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式;二是巧构造函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.巩固训练4:[2018·全国卷Ⅰ]已知函数f (x )=1x-x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.[预测] 核心素养——逻辑推理、数学运算已知函数f (x )=2x +(1-2a )ln x +ax.(1)讨论f (x )的单调性;(2)如果方程f (x )=m 有两个不相等的解x 1,x 2,且x 1<x 2,证明:f ′⎝⎛⎭⎫x 1+x 22>0.状 元 笔 记两个经典不等式的应用(1)对数形式:x ≥1+ln x(x>0),当且仅当x =1时,等号成立.(2)指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立.进一步可得到一组不等式链:e x >x +1>x >1+ln x (x >0,且x ≠1).[典例1] (1)已知函数f (x )=1ln (x +1)-x,则y =f (x )的图象大致为( )(2)已知函数f (x )=e x ,x ∈R .证明:曲线y =f (x )与曲线y =12x 2+x +1有唯一公共点.【解析】 (1)因为f (x )的定义域为⎩⎪⎨⎪⎧x +1>0,ln (x +1)-x ≠0,即{x |x >-1,且x ≠0}, 所以排除选项D ;当x >0时,由经典不等式x >1+ln x (x >0),以x +1代替x ,得x >ln(x +1)(x >-1,且x ≠0),即x >0或-1<x <0时均有f (x )<0,排除A 、C ;易知B 正确.(2)证明:令g (x )=f (x )-⎝⎛⎭⎫12x 2+x +1=e x -12x 2-x -1,x ∈R ,则g ′(x )=e x -x -1,由经典不等式e x ≥x +1恒成立可知,g ′(x )≥0恒成立, 所以g (x )在R 上为单调递增函数,且g (0)=0.所以函数g (x )有唯一零点,即两曲线有唯一公共点. [典例2] 已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)证明:对于任意正整数n ,⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n <e. 【解析】 (1)f (x )的定义域为(0,+∞),①若a ≤0,因为f ⎝⎛⎭⎫12=-12+a ln 2<0,所以不满足题意; ②若a >0,由f ′(x )=1-a x =x -ax知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0; 所以f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增, 故x =a 是f (x )在(0,+∞)的唯一最小值点. 因为f (1)=0,所以当且仅当a =1时,f (x )≥0, 故a =1.(2)证明:由(1)知当x ∈(1,+∞)时,x -1-ln x >0.令x =1+12n ,得ln ⎝⎛⎭⎫1+12n <12n . 从而ln ⎝⎛⎭⎫1+12+ln ⎝⎛⎭⎫1+122+…+ln ⎝⎛⎭⎫1+12n <12+122+…+12n =1-12n <1. 故⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n <e. [典例3] 设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)求证:当x ∈(1,+∞)时,1<x -1ln x<x .【解析】 (1)由题设知,f (x )的定义域为(0,+∞),f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )在(0,1)上单调递增; 当x >1时,f ′(x )<0,f (x )在(1,+∞)上单调递减.(2)证明:由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0. 所以当x >0且x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,x -1ln x>1.①因此ln 1x <1x -1,即ln x >x -1x ,x -1ln x<x .②故当x ∈(1,+∞)时恒有1<x -1ln x<x .第1课时 利用导数证明不等式 课堂题型讲解题型一例1 解析:(1)f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +2a +1=(x +1)(2ax +1)x .若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈⎝⎛⎭⎫0,-12a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫-12a ,+∞ 时,f ′(x )<0. 故f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞ 上单调递减. (2)证明:由(1)知,当a <0时,f (x )在x =-12a处取得最大值,最大值为f ⎝⎛⎭⎫-12a =ln ⎝⎛⎭⎫-12a -1-14a.所以f (x )≤-34a -2等价于ln ⎝⎛⎭⎫-12a -1-14a ≤-34a -2,即ln ⎝⎛⎭⎫-12a +12a +1≤0. 设g (x )=ln x -x +1,则g ′(x )=1x-1.当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0, 所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 故当x =1时,g (x )取得最大值,最大值为g (1)=0. 所以当x >0时,g (x )≤0.从而当a <0时,ln ⎝⎛⎭⎫-12a +12a +1≤0, 即f (x )≤-34a-2.巩固训练1 解析:(1)当a =1e 时,f (x )=1e x -e x ,令f ′(x )=1e-e x =0,得x =-1.当x <-1时,f ′(x )>0;当x >-1时, f ′(x )<0.∴函数f (x )的单调递增区间为(-∞,-1),单调递减区间为(-1,+∞). 当x =-1时,函数f (x )有极大值-2e;没有极小值.(2)证明:令F (x )=2x -f (x )=e x -(a -2)x , ①当a =2时,F (x )=e x >0, ∴f (x )≤2x .②当2<a ≤2+e 时,F ′(x )=e x -(a -2)=e x -e ln (a -2). 当x <ln (a -2)时,F ′(x )<0; 当x >ln (a -2)时,F ′(x )>0;∴F (x )在(-∞,ln (a -2))上单调递减,在(ln (a -2),+∞)上单调递增. ∴F (x )≥F (ln (a -2))=e ln (a-2)-(a-2)ln (a-2)=(a-2)[1-ln (a-2)],∵2<a≤2+e,∴a-2>0.1-ln (a-2)≥1-ln [(2+e)-2]=0,∴F(x)≥0,即f(x)≤2x.综上,当2≤a≤e+2时,f(x)≤2x.题型二例2解析:(1)由f(x)=e x-2x+2a,x∈R,得f′(x)=e x-2,x∈R,令f′(x)=0,得x=ln 2.于是当x变化时,f′(x),f(x)的变化情况如下表:故f(f(x)在x=ln 2处取得极小值,极小值为f(ln 2)=e ln 2-2ln 2+2a=2(1-ln 2+a),无极大值.(2)证明:设g(x)=e x-x2+2ax-1,x∈R,于是g′(x)=e x-2x+2a,x∈R.由(1)知当a>ln 2-1时,g′(x)最小值为g′(ln 2)=2(1-ln 2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R上单调递增.于是当a>ln 2-1时,对任意x∈(0,+∞),都有g(x)>g(0).又g(0)=0,从而对任意x∈(0,+∞),g(x)>0.即e x-x2+2ax-1>0,故e x>x2-2ax+1.巩固训练2解析:(1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2.令f′(x)=0,得x=ln 2,当x<ln 2时,f′(x)<0,f(x)在(-∞,ln 2)上单调递减;当x>ln 2时,f′(x)>0,f(x)在(ln 2,+∞)上单调递增.所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-2ln 2,f(x)无极大值.(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln 2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.题型三例3解析:(1)f′(x)=ex-a(x>0),①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增;②若a >0,则当0<x <ea 时,f ′(x )>0;当x >ea时,f ′(x )<0.故f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫ea ,+∞ 上单调递减. (2)证明:因为x >0, 所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 所以f (x )max =f (1)=-e , 记g (x )=e xx-2e(x >0),则g ′(x )=(x -1)e xx 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减,当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e , 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx -2e ,即xf (x )-e x +2e x ≤0.巩固训练3 证明:要证f (x )<x e x +1e ,∵x >0只需证e x -ln x <e x +1e x ,即e x -e x <ln x +1e x.令h (x )=ln x +1e x (x >0),则h ′(x )=e x -1e x2 ,易知h (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞ 上单调递增,则h (x )min =h ⎝⎛⎭⎫1e =0,所以ln x +1e x≥0.再令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减, 则φ(x )max =φ(1)=0,所以e x -e x ≤0.因为h (x )与φ(x )不同时为0,所以e x -e x <ln x +1e x ,故原不等式成立.题型四例4 解析:(1)(ⅰ)当k =6时,f (x )=x 3+6ln x ,故f ′(x )=3x 2+6x .可得f (1)=1,f ′(1)=9,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -1=9(x -1),即y =9x -8.(ⅱ)依题意,g (x )=x 3-3x 2+6ln x +3x,x ∈(0,+∞).g ′(x )=3x 2-6x +6x -3x 2 ,整理可得g ′(x )=3(x -1)3(x +1)x 2.令g ′(x )=0,解得x =1.当x 变化时,g ′(x ),g (x )的变化情况如表:所以,函数g (x )的单调递减区间为(0,1),单调递增区间为(1,+∞).g (x )的极小值为g (1)=1,无极大值.(2)证明:由f (x )=x 3+k ln x ,得f ′(x )=3x 2+kx.对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令x 1x 2 =t (t >1),则(x 1-x 2)[f ′(x 1)+f ′(x 2)]-2[f (x 1)-f (x 2)]=(x 1-x 2)⎝⎛⎭⎫3x 21 +k x 1+3x 22 +k x 2 -2(x 31 -x 32 +k ln x 1x 2 ) =x 31 -x 32 -3x 21 x 2+3x 1x 22 +k (x 1x 2 -x 2x 1 )-2k ln x 1x 2 =x 32 (t 3-3t 2+3t -1)+k ⎝⎛⎭⎫t -1t -2ln t .① 令h (x )=x -1x -2ln x ,x ∈[1,+∞).当x >1时,h ′(x )=1+1x 2 -2x =⎝⎛⎭⎫1-1x 2 >0,由此可得h (x )在[1,+∞)单调递增,所以当t >1时,h (t )>h (1),即t -1t -2ln t >0.因为x 2≥1,t 3-3t 2+3t -1=(t -1)3>0,k ≥-3,所以x 32 (t 3-3t 2+3t -1)+k ⎝⎛⎭⎫t -1t -2ln t ≥(t 3-3t 2+3t -1)-3⎝⎛⎭⎫t -1t -2ln t =t 3-3t 2+6ln t +3t-1.② 由(1)(ⅱ)可知,当t >1时,g (t )>g (1),即t 3-3t 2+6ln t +3t >1,故t 3-3t 2+6ln t +3t -1>0.③由①②③可得(x 1-x 2)[f ′(x 1)+f ′(x 2)]-2[f (x 1)-f (x 2)]>0.所以,当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f ′(x 1)+f ′(x 2)2 >f (x 1)-f (x 2)x 1-x 2.巩固训练4 解析:(1)f (x )的定义域为(0,+∞), f ′(x )=-1x 2 -1+ax =-x 2-ax +1x 2.①若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0,所以f (x )在(0,+∞)上单调递减.②若a >2,令f ′(x )=0,得x =a -a 2-42 或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42 ∪(a +a 2-42 ,+∞)时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42 时, f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42 ,⎝ ⎛⎭⎪⎫a +a 2-42,+∞ 上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42 上单调递增.(2)证明:由(1)知,f (x )存在两个极值点时,当且仅当a >2. 由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0, 所以x 1x 2=1,不妨设x 1<x 2,则x 2>1. 由于f (x 1)-f (x 2)x 1-x 2 =-1x 1x 2 -1+a ·ln x 1-ln x 2x 1-x 2 =-2+a ln x 1-ln x 2x 1-x 2=-2+a-2ln x 21x 2-x 2, 所以f (x 1)-f (x 2)x 1-x 2<a -2等价于1x 2 -x 2+2ln x 2<0.设函数g (x )=1x -x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减.又g (1)=0,从而当x ∈(1,+∞)时,g (x )<0. 所以1x 2 -x 2+2ln x 2<0,即f (x 1)-f (x 2)x 1-x 2<a -2.高考命题预测预测 解析:(1)f ′(x )=2+1-2a x -a x 2 =2x 2+(1-2a )x -a x 2=(x -a )(2x +1)x 2(x >0).①当a ≤0时,x ∈(0,+∞),f ′(x )>0,f (x )单调递增; ②当a >0时,x ∈(0,a ),f ′(x )<0,f (x )单调递减; x ∈(a ,+∞),f ′(x )>0,f (x )单调递增.综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.(2)证明:由(1)知,当a ≤0时,f (x )在(0,+∞)上单调递增,f (x )=m 至多一个解,不符合题意;当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增,则f ′(a )=0.不妨设0<x 1<a <x 2,要证f ′⎝⎛⎭⎫x 1+x 22 >0,即证x 1+x 22 >a ,即证x 1+x 2>2a ,即证x 2>2a -x 1,又f (x )在(a ,+∞)上单调递增,即证f (x 2)>f (2a -x 1),因为f (x 2)=f (x 1),所以即证f (x 1)>f (2a-x 1),即证f (a +x )<f (a -x ).令g (x )=f (a +x )-f (a -x )=⎣⎡⎦⎤2(a +x )+(1-2a )ln (a +x )+a a +x-⎣⎡⎦⎤2(a -x )+(1-2a )·ln (a -x )+a a -x=4x +(1-2a )ln (a +x )-(1-2a )ln (a -x )+a a +x -aa -x ,g ′(x )=4+1-2a a +x +1-2a a -x -a (a +x )2 -a(a -x )2=4+2a (1-2a )a 2-x 2 -2a (a 2+x 2)(a +x )2(a -x )2 =4x 2(x 2-a 2-a )(a +x )2(a -x )2 .当x ∈(0,a )时,g ′(x )<0,g (x )单调递减,又g (0)=f (a +0)-f (a -0)=0,所以x ∈(0,a )时,g (x )<g (0)=0,即f (a +x )<f (a -x ), 即f (x )>f (2a -x ).又x 1∈(0,a ),所以f (x 1)>f (2a -x 1), 所以f ′⎝⎛⎭⎫x 1+x 22 >0.。
导数处理对数不等式的证明问题

导数处理对数不等式的证明问题不等式的证明问题是高中数学一个难点,近几年高考中经常出现. 而利用导数证明不等式是一种重要方法,主要思路是利用构造辅助函数,将不等式的证明问题转化为研究函数的单调性、最值问题,体现了导数的工具性作用。
而含有对数lnx 的函数,又是在不等式证明中的难点。
在这篇文章里,我们主要来探讨一下关于含有对数lnx 的不等式证明的一个重要思路。
下面先给出一些例子,同学们可以只留意第三问,关于对数不等式的证明。
例1 已知函数1)1()1ln()(+---=x k x x f .(1)求函数)(x f 的单调区间; (2)若0)(≤x f 恒成立,求实数k 的取值范围; (3)证明: 2)1(ln 3ln 2ln -<++n n n *),1(N n n ∈>.例2 设函数,其中为常数.(1)当 时,判断函数在定义域上的单调性;(2)若函数有极值,求的取值范围及的极值点;(3)求证对任意正整数 ,不等式 都成立.例3 设函数(1) 若关于的不等式在有实数解,求的取值范围;(2) 设,若关于的方程至少有一个解,求 的最小值. (3) 证明不等式:这里我们主要研究第三问,不等式证明这一块。
关于对数的不等式证明问题,难点在于:1.对数与整式、对数与分式的比较,也就是说不等号两边一边含有对数,另外一边不含有对数,他们之间的转化与比较是相当的困难的;2.放缩法的使用,关于不等式的证明,同学们都知道要使用放缩法,但是从何放缩又取决于不等式两边的式子结构,并且可能需要同学们多次的尝试,而在时间如此紧迫的高考当中,同学们可能根本不会有这么充分的思考空间。
于是,我们可以通过以下的中转式,实现对数与整式、分式的转化。
我们先来对这式子进行证明:证明:设在上单调递减.而.,即例1 (3)证明:2)1(ln3ln2ln-<++nnn*),1(Nnn∈>.证明:式子左边:即于是我们可以发现,利用上面的中转式是很容易的到证明的结果的,此时我们需要在证明之前把①当中的过程先重复一遍。
利用导数证明或解决不等式问题

利用导数证明或解决不等式问题导数是微积分中的重要概念,在解决不等式问题中,导数可以发挥很大的作用。
下面我们将以一些具体的例子来说明如何利用导数证明或解决不等式问题。
例子1:证明不等式x^2≥0在实数域中恒成立。
解析:对于任意实数x,在实数域中,不管x取何值,其平方x^2都大于等于0。
我们可以通过导数来证明这个不等式。
对x^2进行求导,得到导函数2x。
我们知道,导数表示函数的变化率,对于x^2来说,导函数2x表示了函数的斜率,也就是说,无论x取何值,函数x^2的斜率总为正数或者0。
因为函数的斜率总是非负的,所以x^2≥0在实数域中恒成立。
例子2:求函数f(x)=x^3-3x^2+2x的极值点。
解析:要求函数f(x)的极值点,我们可以先求出函数的导数f'(x),然后将f'(x)=0进行求解。
导数为0的点即为极值点。
将f'(x)=3x^2-6x+2=0进行求解,可以得到x=1或者x=2。
接下来,我们可以求出函数在x=1和x=2处的函数值,并比较求出极值点。
f(1)=1^3-3*1^2+2*1=0f(2)=2^3-3*2^2+2*2=0对f(x)进行求导,得到导函数f'(x)=3x^2-6。
接下来,我们可以将x轴上的一些点带入函数f'(x)进行判断。
当x<−√2时,f'(x)>0;当−√2<x<√2时,f'(x)<0;当x>√2时,f'(x)>0。
由此可见,函数f(x)=x^3-6x在区间(−∞,−√2),(−√2,√2),(√2,+∞)上是单调的。
2024年高考数学一轮复习大题专练07导数构造函数证明不等式1

一轮大题专练7—导数(构造函数证明不等式1)1.已知函数()f x alnx x =+. (1)讨论()f x 的单调性;(2)当1a =时,证明:()x xf x e <. 解:(1)()f x alnx x =+,(0,)x ∈+∞. ()1af x x'=+, 0a 时,()0f x '>,函数()f x 在(0,)x ∈+∞上单调递增.0a <时,令()0f x '=,解得0x a =->,函数()f x 在(0,)x a ∈-上单调递减,在(,)a -+∞上单调递增.(2)证明:当1a =时,要证明:()xxf x e <,即证明21xlnx e x x+<, 令()1lnxg x x=+,21()lnx g x x -'=, 令()0g x '>,解得0x e <<;令()0g x '<,解得e x <. ∴函数()g x 在(0,)e 上单调递增,在(,)e +∞上单调递减.x e ∴=时,函数()g x 取得极大值即最大值,g (e )11e=+. 令2()xe h x x =,3(2)()xx e h x x -'=,令()0h x '<,解得02x <<;令()0h x '>,解得2x <. ∴函数()h x 在(0,)e 上单调递减,在(2,)+∞上单调递增.x e ∴=时,函数()h x 取得极小值即最小值,h (2)24e =.221251(1)1044 2.5e e ⋅-+>-->. ()()max min g x h x ∴<,即21xlnx e x x+<,也即()x xf x e <. 2.已知函数()f x x alnx =-.(Ⅰ)求曲线()y f x =在点(1,f (1))处的切线方程; (Ⅱ)求()f x 的单调区间;(Ⅲ)若关于x 的方程0x alnx -=有两个不相等的实数根,记较小的实数根为0x ,求证:0(1)a x a ->.(Ⅰ)解:由()f x x alnx =-,可得()1a f x x'=-, 则f '(1)1a =-,又f (1)1=,所以曲线()y f x =在点(1,f (1))处的切线方程为1(1)(1)y a x -=--, 即(1)y a x a =-+.(Ⅱ)解:()f x x alnx =-的定义域为(0,)+∞,()1a x af x x x-'=-=, 当0a 时,()0f x '>,()f x 在(0,)+∞上单调递增;当0a >时,令()0f x '>,可得x a >,令()0f x '<,可得0x a <<, 所以()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增.(Ⅲ)证明:由(Ⅱ)可知,当0a >时,()0f x x alnx =-=才有两个不相等的实根,且00x >, 则要证0(1)a x a ->,即证011a a x ->,即证0111a x ->, 而000x alnx -=,则000(1x a x lnx =≠,否则方程不成立), 所以即证00011lnx x x ->,化简得0010x lnx -->, 令000()1g x x lnx =--,则000011()1x g x x x -'=-=, 当001x <<时,0()0g x '<,0()g x 单调递减, 当01x >时,0()0g x '>,0()g x 单调递增, 所以0()g x g (1)0=,而01x ≠, 所以0()0g x >,所以0(1)a x a ->,得证.3.已知函数()f x alnx x =+,函数2()x g x e bx =+,(1)记2()()h x f x x =+,试讨论函数()h x 的单调性,并求出函数()h x 的极值点;(2)若已知曲线()y f x =和曲线()y g x =在1x =处的切线都过点(0,1).求证:当0x >时,()()(1)1xf x g x e x +--.解:(1)2()h x alnx x x =++,22()(0)x x ah x x x++'=>, 记2()2(0)x x x a x ϕ=++>,当0a 时,()0h x '>,()h x 在(0,)+∞单调递增,无极值点,当0a <时,△180a =->,()x ϕ有异号的两根10)x =<,20)x =>,x ∴∈,()0x ϕ<,()0h x '<,()h x 在单调递减,x ∈,)+∞,()0x ϕ>,()0h x '>,()h x 在,)+∞单调递减,()h x ∴有极小值点x =; (2)证明:()(0)x af x x x+'=>,()2x g x e bx '=+,f ∴'(1)1a =+,()f x 在1x =处的切线方程为1(1)(1)y a x -=+-,过点(0,1)得:1a =-,g '(1)2e b =+,()g x 在1x =处的切线方程为(2)(1)y e b e b x --=+-,过点(0,1)得:1b =-, ()f x lnx x ∴=-+,2()x g x e x =-,要证:()()(1)1xf x g x e x +--,即证:(1)10x e xlnx e x ----, 即证:1(1)0x e lnx e x x---,构造函数1()(1)x e K x lnx e x x =---,则2(1)(1)()x x e K x x --'=,0x >时,10x e ->,(0,1)x ∴∈时,()0K x '<,()K x 在(0,1)单调递减, (1,)x ∴∈+∞时,()0K x '>,()K x 在(1,)+∞单调递增,()K x K ∴(1)0=,故原不等式成立.4.已知函数()()f x ax lnx a R =+∈在1x =处取得极值.(Ⅰ)若对(0,)x ∀∈+∞,()1f x bx -恒成立,求实数b 的取值范围; (Ⅱ)设()()(2)x g x f x x e =+-,记函数()y g x =在1[4,1]上的最大值为m ,证明:(4)(3)0m m ++<.(Ⅰ)解:()()f x ax lnx a R =+∈,则1()f x a x'=+, 又()f x 在1x =处取得极值,则有f '(1)10a =+=,解得1a =-, 此时1()1f x x'=-,当01x <<时,()0f x '>,则()f x 单调递增, 当1x >时,()0f x '<,则()f x 单调递减, 所以()f x 确实在1x =处取得极值, 故1a =-,设()(1)1h x lnx b x =+--,则()1f x bx -在(0,)+∞上恒成立,即()0h x 在(0,)+∞上恒成立, 因为1()1h x b x'=+-, 当10b -,即1b 时,()0h x >在(0,)+∞上恒成立,不符合题意; 当1b <时,令()0h x '=,解得11x b=-, 当101x b<<-时,()0h x '>,则()h x 单调递增, 当11x b>-时,()0h x '<,则()h x 单调递减, 所以当11x b =-时,()h x 取得最大值111()1(1)2111b h ln ln b b b b-=+-=------, 要使得()0h x 在(0,)+∞上恒成立, 则有(1)20ln b ---,解得21b e --,综上所述,实数b 的取值范围为(-∞,21]e --;(Ⅱ)证明:要证(4)(3)0m m ++<,即证明43m -<<-即可, 因为()()(2)(2)x x g x f x x e lnx x x e =+-=-+-, 则111()1(2)(1)()(1)x x x x x g x e x e e x e x x x x-'=-++-=+-=--, 因为1[4x ∈,1]时,10x -恒成立,设1()x M x e x=-,1[4x ∈,1],则()M x 为单调递增函数,又113205112035()0,()0201153M e M e =-<=->,则存在0113(,)205x ∈,使得0()0M x =,即001x e x =,则当01[,)4x x ∈时,()0M x <,(1)0x -<,则()0g x '>,故()g x 单调递增,当0[x x ∈,1]时,()0M x ,(1)0x -且不同时为0,则()0g x ',故()g x 单调递减,所以()g x 在1[4,1]上的最大值为0000000000()(2)2x x x m g x lnx x x e lnx x x e e ==-+-=-+-,又001x e x =,则00021m lnx x x =-+-,0113(,)205x ∈,设2()1k x lnx x x =-+-,113(,)205x ∈, 则212()10k x x x'=-+>对于113(,)205x ∈恒成立, 故()k x 在113(,)205x ∈上单调递增 故1111114011940()()1420202011202011k x k ln ln >=-+-=+->-, 333103()()1 2.933355535k x k ln ln <=-+-≈-<-,于是43m -<<-, 故(4)(3)0m m ++<.5.已知函数()x f x e x a =--,对于x R ∀∈,()0f x 恒成立. (1)求实数a 的取值范围;(2)证明:当[0,]4x π∈时,cos tan x x x e +.解:(1)由0x e x a --恒成立,得x a e x -对x R ∀∈恒成立, 令()x g x e x =-,()1x g x e '=-, 当0x >,()0g x '>,()g x 单调递增,当0x <,()0g x '<,()g x 单调减,()(0)1min g x g ==, 故所求实数a 的取值范围为(-∞,1]; (2)证明:由(1)得1x e x +.欲证cos tan x x x e +,只需证cos tan 1x x x ++即可, 令()cos tan 1h x x x x =+--,222221sin (sin cos )sin (sin sin 1)()sin 1cos cos cos x x x x x x h x x x x x-+-'=-+-==,令2()sin sin 1F x x x =+-,则易知()F x 在[0,]4π单调递增,且(0)0F <,()04F π>,故存在0(0,)4x π∈,使得0()0F x =;当[0x ∈,0)x 时,()0F x <,()0h x ',()h x 单调递减,当0(,]4x x π∈时,()0F x >,()0h x '>,()h x 单调递增,又(0)0h =,()044h ππ<,()(0)0max h x h ==,故当[0,]4x π∈时,cos tan x x x e +.6.已知函数()x f x e =,()1g x ax =+. (Ⅰ)已知()()f x g x 恒成立,求a 的值;(Ⅱ)若(0,1)x ∈211x x+-<. 解:(1)已知()()f x g x 恒成立,即()()0f x g x -恒成立, 令()()()1x h x f x g x e ax =-=--,则有()x h x e a '=-,当0a 时,则恒有()0h x '>,此时函数()h x 单调递增,并且当x →-∞时,()h x →-∞,不满足题意;0a ∴>,此时令()0h x x lna '=⇒=;()0h x x lna '∴>⇒>;()0h x x lna '<⇒<,即函数()h x 在(,)lna -∞上单调递减,在(,)lna +∞上单调递增,()()1min h x h lna a alna ∴==--,若要满足题意,则需使10a alna --,恒成立, 令F (a )1(0)a alna a =-->,则有F '(a )lna =,由此可得,当01a <<时,F '(a )0<;当1a >时,F '(a )0>.F ∴(a )min F =(1)0=,即得F (a )0, 1a ∴=.(2)令()1((0,1))x G x e x x =--∈,则有()10x G x e '=->恒成立,故可得()G x 在(0,1)上单调递增,即有()(0)0G x G >=恒成立,故有101x x e x e x -->⇔>+在(0,1)上恒成立; 根据题意,要证2111()lnx x f x x-+-<,即证明1111lnx x x x -+-<+,即证2111x lnx x x x x+-++-<+, 即证2110lnx x x-++>, 令21()H x lnx x x x =-++,则有22111()2(1)2H x x x x x x x'=--=--,(0,1)x ∈,10x ∴-<,20x -<,()0H x '∴<在(0,1)上恒成立,即得函数()H x 在(0,1)上单调递减, ()H x H ∴>(1)10=>,由此得证当(0,1)x ∈时,原不等式成立.7.已知函数()(1)f x x lnx =-,()f x '的反函数为()h x (其中()f x '为()f x 的导函数,20.69)ln ≈. (1)判断函数2()()32g x f x x x '=+-+在(0,)+∞上零点的个数;(2)当(0,1)x ∈31x x >--. 解:(1)由题意得22()()3232g x f x x x lnx x x ='+-+=+-+, 则(21)(1)()x x g x x--'=,由()0g x '=得12x =或1x =, 由()0g x '>,得102x <<或1x >, 由()0g x '<,得112x <<, 当x 在(0,)+∞上变化时,()g x ',()g x 变化情况如下表:根据上表知13()2024g x g ln ⎛⎫==-> ⎪⎝⎭极大值,()g x g =极小值(1)0=,121()220416g ln =-<, 根据零点的存在性定理,函数()g x 在1(0,)2上存在唯一零点,又因为g (1)0=,所以根据()g x 的单调性可知,函数2()()32g x f x x x ='+-+在(0,)+∞上零点的个数为2. (2)证明:因为()f x lnx '=,其反函数为()x h x e =, 所以不等式为33(1)1(1)(1)x xx lnx x x x lnx x x e e->--⇔->--, 当(0,1)x ∈时,()0f x '<, 所以()f x 在(0,1)上单调递减,所以()f x f >(1)1=-, 设函数3()(1)x G x x x e =--, 则32()(32)x G x x x x e '=+--,设函数32()32p x x x x =+--,则2()361p x x x '=+-, 所以()p x '在(0,1)上单调递增, 因为(0)p p '⋅'(1)80=-<, 所以存在0(0,1)x ∈,使得0()0p x '=,所以函数()p x 在0(0,)x 上单调递减,在0(x ,1)上单调递增, 当0(0,)x x ∈时,0()(0)2p x p <=-, 当0(x x ∈,1)时,0()0p x <,p (1)0>, 所以存在1(0,1)x ∈,使得1()0G x '=, 所以当1(0,)x x ∈时,()0G x '<, 当1(x x ∈,1)时,()0G x '>,所以函数()G x 在1(0,)x 上单调递减,在1(x ,1)上单调递增, 因为(0)1G =-,G (1)e =-, 所以当(0,1)x ∈时,()(0)1G x G <=-, 所以3(1)(1)x x lnx x x e ->--, 所以3()1()f x x xg x >--.。
导数解答题之证明不等式

,
①当 m≤0 时 f′(x)>0 恒成立,∴f(x)在(0,+∞)上是增函数,无极值, ②当 m>0 时令 f′(x)>0,∴0<x< , 令 f′(x)<0,∴x> , 所以函数 f(x)在(0, )上为增函数,在( ,+∞)为减函数, 所以当 x= 时,有极大值,极大值为﹣ (ln2m+1),无极小值,
∴
由题意可知 a>x0+1,又 x0∈(3,4),a∈Z, ∴a 的最小值为 5.
多元不等式的证明
证明多元不等式通常的方法有两个 (1)消元:① 利用条件代入消元 ② 不等式变形后对某多元表达式进行整体换元 (2)变量分离后若结构相同,则可将相同的结构构造一个函数,进而通过函数的单调性与 自变量大小来证明不等式 (3)利用函数的单调性将自变量的不等关系转化为函数值的不等关系,再寻找方法.
证明一元不等式主要的方法
方法一:将含 x 的项或所有项均挪至不等号的一侧,将一侧的解析式构造为函数,通过分
析函数的单调性得到最值,从而进行证明,其优点在于目的明确,构造方法简单,但对于 移项后较复杂的解析式则很难分析出单调性
x 1
2e x
f (x) e ln x . f x 1 已知函数
证明:
上单 调递增 ,从
1
而
g(x)在(0,+∞)上的最小值为
g
e
=-1 e
设函数 h(x)=xe-x-2,则 h′(x)=e-x(1-x).所以当 x∈(0,1)时,h′(x)>0;当 x∈(1, e
+∞)时,h′(x)<0.故 h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而 h(x)在(0,+∞)
所以 h(x)max=h(x0)=