【高考数学经典题型】导数中的不等式的证明(一题多解)

合集下载

利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)

利用导数证明数列不等式利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型. 1、常见类型:(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源:(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式.(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式. 3、常见恒成立不等式:(1) 对数→多项式 (2) 指数→多项式4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种:(1)倒序相加:通项公式具备第项与第项的和为常数的特点.(2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减).(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消. 注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑.5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式.6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向.7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等).ln 1x x <-1x e x >+n n k 1n k -+⨯2nn a n =⋅n a8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件的联系).【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性; (2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(xf x eg x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 2.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(1)讨论函数()f x 的单调性;(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈. (1)讨论函数()f x 的单调性;(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈.(1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<.【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 【答案】(1)单调递增区间为(0,)e ,单调递减区间为(,)e +∞;(2)[1,)+∞;(3)证明见解析.【解析】(1)当2k =时,()2ln f x x x x =-,'()1ln f x x =-,由'()0f x >,解得0x e <<;由'()0f x <,解得x e >,因此函数()f x 单调递增区间为(0,)e ,单调递减区间为(,)e +∞.(2)()ln f x kx x x =-,故'()1ln f x k x --=.当1k时,因为01x <≤,所以10ln k x -≥≥,因此'()0f x ≥恒成立,即()f x 在(]0,1上单调递增,所以()(1)f x f k ≤=恒成立.当1k <时,令'()0f x =,解得1(0,1)k x e -=∈.当1(0,)k x e -∈,'()0f x >,()f x 单调递增;当1(,1)k x e -∈,'()0f x <,()f x 单调递减; 于是1(1))(k f ef k -=>,与()f x k ≤恒成立相矛盾.综上,k 的取值范围为[1,)+∞.(3)由(2)知,当01x <≤时,ln 1x x x -≤. 令x =21n *()n N ∈,则21n +22nln 1n ≤,即22ln 1n n -≤, 因此ln 1n n +≤12n -. 所以ln1ln 2ln 011(1) (2312224)n n n n n --+++≤+++=+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈.【答案】(1)见解析;(2)[1,+∞);(3)证明见解析. 【解析】(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增; 当01a <<时,由0y '>可得x > ∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立, 当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立, 综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证.3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 【答案】(1)答案见解析(2)证明见解析.【解析】(1)因为()x xf x e ea -'=+-,且2x x e e -+≥,所以当2a ≤时,()0f x '≥,所以()f x 在R 上为增函数,当2a >时,由()0f x '>,得0x x e e a -+->,所以2()10x xe ae -+>,所以22()124x a a e ->-,所以2x ae ->或2xa e -<,所以2xa e +>2xa e -<,所以24ln2aa x 或24ln2aa x ,由()0f x '<,得0x x e e a -+-<,解得2244ln22aa aax ,所以()f x 在ln 22a a ⎛⎫⎪ ⎪⎝⎭上递减,在,ln2a ⎛--∞ ⎪⎝⎭和ln 2a ⎛⎫++∞ ⎪ ⎪⎝⎭上递增.(2)由(1)知,当2a =时,()2xxf x e e x -=--在R 上为增函数,所以1()(ln )2ln g x f x x x x==--在(0,)+∞上为增函数, 所以当*n N ∈且2n ≥时,13()(2)22ln 2ln 422g n g ≥=--=-=32ln 04e >, 即12ln 0n n n-->,所以212211ln 1(1)(1)11n n n n n n n >==---+-+, 所以211111ln 2ln 23ln 34ln 4ln ni i i n n==++++∑ 1111111121213131414111n n >-+-+-++--+-+-+-+ 111121n n =+--+2322(1)n n n n --=+, 所以22132ln 2(1)ni n n i i n n =-->+∑.4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(∈)函数()f x 可化为ln ,()ln ,0x x a x af x a x x x a --≥⎧=⎨--<<⎩,当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x'-=-=,此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(∈)由(∈)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x <-.所以 222222ln 2ln 3ln 23n n+++22211111123n <-+-+-222111123n n ⎛⎫=--+++⎪⎝⎭11112334(1)n n n ⎛⎫<--+++⎪⨯⨯+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性;(2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---. 【答案】(1)当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明见解析 【解析】(1)解:()1ln (0)f x x a x x =-->,()1af x x'∴=-.∈若0a ,则()0f x '>,()f x ∴在(0,)+∞内单调递增;∈若0a >,则()f x '在(0,)+∞内单调递增,且()0f a '=,∴当(0,)x a ∈时,()0f x '<;当(,)x a ∈+∞时,()0f x '>,()f x ∴在(0,)a 内单调递减,在(,)a +∞内单调递增.综上所述,当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明:当1a =时,()1ln =--f x x x .由(1)知()(1)0f x f =,ln 1x x ∴-,当且仅当1x =时,等号成立, 令()*,2x n n N n =∈,ln 1n n ∴<-,33ln 1111(1)1n n n n n n n n n n -∴<==---++. 从而3ln 2112223<--, 3ln 3113334<-- …3ln 111n n n n n <--+, 累加可得333ln 2ln3ln 11223321n n n n ++⋯+<----+, 111212n -<+, 333ln 2ln3ln 122332n n n ∴++⋯+<---,证毕.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(x f x e g x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 【答案】(1)证明见解析;(2) 2.【解析】(1)令()()()1xF x f x g x e x =-=--,则()1xF x e '=-∴当(),0x ∈-∞时,()0F x '<;当()0,x ∈+∞时,()0F x '>()F x ∴在(),0-∞上单调递减;在()0,∞+上单调递增()()0min 0010F x F e ∴==--=,即()()()0F x f x g x =-≥恒成立 ()()f x g x ∴≥恒成立(2)由(1)知:13113n n e +≤221111113333332111111333n n n e e e e++⋅⋅⋅+⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤⋅⋅⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又211111111133********13nn n⎛⎫⨯- ⎪⎛⎫⎝⎭++⋅⋅⋅+==⨯-<⎪⎝⎭- 11112322111111333n n e e ⎛⎫⨯- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又2111111333n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立 12m e ∴≥ m 为正整数 m ∴的最小值为:22.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 【答案】(1)()f x 单调递增区间为()3+∞,;() f x 单调递减区间为()03,;(2)43a ≥;(3)详见解析. 【解析】(1)因为()()3246x f x x ex x -=-+-,所以()()()()3332632x x f x x ex x e --=-+-='-+,令()0f x '=得3x =,当3x >时,()0f x '>,()f x 单调递增; 当03x <<时,()0f x '<,()f x 单调递减;所以函数()f x 在()0+∞,上的单调递增区间为()3+∞,,单调递减区间为()03,; (2)由(1)知()()()332x f x x e-'=-+,当3x ≥时,()0f x '≥恒成立,故()0h x ≥恒成立;当3x <时,()0f x '<,又因为()()(){}0h x max f x g x '=≥,恒成立,所以()0g x ≥在()03,上恒成立, 所以11ln 03a x x ⎛⎫---≥ ⎪⎝⎭,即11ln 3xa x+-≥在()03,上恒成立, 令()()1ln 03x F x x x +=<<,则()13max a F x -≥, 由()()221ln 1ln x xF x x x-+-'==, 令()0F x '=得1x =,易得()F x 在()01,上单调递增,在[)13,上单调递减,所以()()11max F x F ==,所以113a -≥,即43a ≥, 综上可得43a ≥.(3)证明:设()()10xm x e x x =-->,则()10xm x e '=->,所以()m x 在()0+∞,上单调递增,所以()()00m x m >=,即1x e x >+, 所以1111111111312312333112313n n n nn n n nn n n n n ee eeen n n n n++++++++++++=⋅⋅⋅⋅⋅⋅⋅>⋅⋅⋅⋅⋅⋅⋅⋅++- 123331231n n n nn n n n +++>⋅⋅⋅⋅⋅⋅⋅=++-,所以11111ln 312313n n n n n+++++>++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 【答案】(1)()f x 在区间()–1,0和()0,∞+上单调递减;(2)证明见解析. 【解析】(1)由题意得:()f x 的定义域为()()–1,00,+∞,且()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x=-++则()()21x g x x -'=+,()–1,0x ∈时,()0g x '>; ()0,x ∈+∞时,()0g x '<.即()g x 在()–1,0上单调递增,在()0,∞+上单调递减.因为()00g =,则在()–1,0和()0,∞+上()0g x <. 因为20x >,所以在()–1,0和()0,∞+上()0f x '<, 即函数()f x 在区间()–1,0和()0,∞+上单调递减. (2)由(1)可知,当02x <≤时,()()ln 322x f f =≥,即()ln 3ln 12x x +≥, 当2n ≥时,2021n <≤-,则2ln 3ln 111n n ⎛⎫+≥⎪--⎝⎭, 即()()2ln 3ln 1ln 1ln 111n n n n ⎛⎫+=+--≥ ⎪--⎝⎭, 所以()()()ln 1ln 1ln ln 2ln 4ln 2ln3ln1n n n n +--+--++-+-111ln 31122n n ⎛⎫≥++++ ⎪--⎝⎭整理得:()111ln 1ln ln 2ln1ln 31122n n n n ⎛⎫++--≥++++⎪--⎝⎭, 即2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥,不等式得证.4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈. 【答案】(1) 见详解;(2)1k;(3)证明见解析.【解析】(1)()f x 的定义域为()0 +∞,,()()()221'21p x p p f x p x x x-+=+-=,当1p >时,()'0f x >,故()f x 在()0,∞+单调递增; 当0p ≤时,()'0f x <,故()f x 在()0,∞+单调递减;当10p -<<时,令()'0f x =,解得x =则当x ⎛∈ ⎝时,()'0f x >; x ⎫∈+∞⎪⎪⎭,时,()'0f x <.故()f x 在⎛ ⎝单调递增,在 ⎫+∞⎪⎪⎭,单调递减. (2)因为0x >,所以:当1p =时,()f x kx ≤恒成立11ln ln kx xx k x+⇔+≤⇔≥, 令()1ln xh x x +=,则()max k x h ≥, 因为()2ln 'xh x x-=,由()'0h x =得x =1, 且当()0,1x ∈时,()'0h x >;当()1,x ∈+∞时,()'0h x <.所以()h x 在()0,1上递增,在()1,+∞上递减,所以()()max 11h x h ==, 故1k .(3)取,则代入由题设可得,取,并将上述各不等式两边加起来可得()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈.(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<. 【答案】(1)()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单减;(2)1,2⎛⎤-∞- ⎥⎝⎦;(3)证明见解析. 【解析】()'f x a =+.(1)当0a ≥时,()'0f x ≥,所以()f x 在()1,-+∞上单调递增; 当0a <时,由()'0f x >解得21114x a -<<-, 所以()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单调递增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(2)当0a ≥时,()()2000f x a x =+≥+=,故不合题意;当0a <时,由(∈)知()max 21104x f f a ⎛⎫=-≤ ⎪⎝⎭,211(21)(21)20141244a a f a a a a a a +-⎛⎫=-+- ⎪⎝-+=≤⎭102a a <∴≤-,综上,a 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.(3)由(2)知,取12a =-112x ≤+成立.当()1,2,3,,20482020kx k ==时,1111220204040k k =≤⨯+=⨯+,⋅⋅⋅+()11234204820484040++++++<20491024204826004040⨯=+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈. (1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)函数()f x 的定义域为:()0,∞+,()'f x = 222a a x x x x++=∈当0a ≥时,()'0f x >,所以()f x 在()0,∞+上单调递增∈当0a <时,令()'0f x =,解得x =当0x <<时,220a x +<,所以()'0f x <, 所以()f x 在⎛ ⎝上单调递减;当x >220a x +>,所以()'0f x >,所以()f x 在⎫+∞⎪⎪⎭上单调递增. 综上,当0a ≥时,函数()f x 在()0,∞+上单调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当a 1=时,()2ln f x x x =+,要证明()21f x x x ≤+-,即证ln 1x x ≤-,即证:ln 10x x -+≤. 设()g ln 1x x x =-+,则()g'x =1xx-,令()0g x '=得,1x =. 当()0,1x ∈时,()0g x '>,当()1,x ∈+∞时,()0g x '<. 所以1x =为极大值点,且()g x 在1x =处取得最大值.所以()()10g x g ≤=,即ln 10x x -+≤.故()21f x x x ≤+-.(3)证明:ln 1x x ≤-(当且仅当1x =时等号成立),即11lnx x x≤-, 则有2222ln +22222222223111111111n 132323ln lnn n n n ⎛⎫+⋯+<-+-+⋯+-=--++⋯+ ⎪⎝⎭()111n 123341n n ⎛⎫<--++⋯+ ⎪ ⎪⨯⨯+⎝⎭ ()()()12111111111n 1n 1233412121n n n n n n -+⎛⎫⎛⎫=---+-+⋯+-=---=⎪ ⎪+++⎝⎭⎝⎭, 故:2222ln +()()()22221213321n n ln lnn n n -++⋯+<+ 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 【答案】(∈)0b >;(∈)12a ≤-;(∈)证明见解析. 【解析】(∈)当0a =时,()()()ln 11f x bx x x =-+>-,()()1111bx b f x b x x --'=-=++, ∈当0b ≤时,()0f x '<,则()f x 在()1,-+∞递减,无极值; ∈当0b >时,令()1'0,11f x x b==->-, 1()0,(1,1),()f x x f x b '<∈--单调递减,1()0,(1,),()f x x f x b '>∈-+∞单调递增,所以11,()x f x b=-取得极小值.综上可知:0b >.(∈)当1b =时,()()()2ln 10f x ax x x x =+-+>,()1212011x f x ax ax x x '=+-=+≤++恒成立 121a x ⇔-≥+对一切()0,x ∈+∞恒成立, ∈11x +>,∈1011x <<+,∈21a -≥,∈12a ≤-.(∈)由(∈)知:当12a =-时,()()21ln 12f x x x x =-+-+在()0,∞+递减,∈()()00f x f ≤=,即:()2ln 12x x x -+<,令221x n =-,则()22212ln 212121n n n n +-<---, 当2n ≥时,()2222122ln 212144121n n n n n n +-<=---+- ()21114121n n n n ⎛⎫<=- ⎪--⎝⎭,∈23ln 2ln 311-=- 2511ln 13322⎛⎫-<- ⎪⎝⎭ 27111ln 55223⎛⎫-<- ⎪⎝⎭……221111ln 212121n n n n n +⎛⎫-<- ⎪---⎝⎭累加得,()11112ln 212ln 31212nk n k n =⎛⎫⋅-+<-+- ⎪-⎝⎭∑ 5153ln3ln32222n =--<-<, 当1n =时,131ln 324-<,即:1ln 32>,综上,()1113ln 212124nk n k =-+<-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 【答案】(1)答案不唯一,具体见解析;(2)[)1,+∞;(3)证明见解析. 【解析】(1)函数()()()ln 111f x x k x =---+的定义域为()1,+∞,且()11f x k x '=--. ∈当0k ≤时,()0f x '>恒成立,故函数()y f x =在()1,+∞上为增函数; ∈当0k >时,令()0f x '<,得1k x k +>时,即函数()y f x =在1,k k +⎛⎫+∞⎪⎝⎭上单调递减, 令()0f x '>,得11k x k +<<时,即函数()y f x =在11,k k +⎛⎫⎪⎝⎭上单调递增.综上:当0k ≤时,函数()y f x =在()1,+∞上为增函数; 当0k >时,函数()y f x =在11,k k +⎛⎫ ⎪⎝⎭上为增函数,在1,k k +⎛⎫+∞⎪⎝⎭上为减函数; (2)当0k ≤时,()211f k =-+≥,显然()0f x ≤不恒成立; 当0k >时,()max 11ln 0k f x f k k +⎛⎫==≤⎪⎝⎭,即1k .综上:实数k 的取值范围是[)1,+∞;(3)由(2)可知,当1k =时()0f x ≤恒成立,即()ln 12x x -<-,()ln 121x x x-∴<-, ()()22ln ln 11121212n n n n n n n --=<=+++,可得出ln 2132<,ln 3242<,,ln 112n n n -<+, ()()*1ln 2ln 3ln 121,23412224n n n n n N n n --∴+++<+++=∈≥+. 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<. 【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)∈先利用数学归纳法证明1n a <. (∈)当1n =时,1112a =<成立; (∈)假设n k =时1k a <成立,则1ln 10k k a a +=-<,11k a +∴<. 综上所述,对任意的n *∈N ,1n a <; ∈利用导数证明1x e x -≥,设()1x f x ex -=-,则()1e 1x f x -'=-,当1x <时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()0110f x f e ≥=-=,即1x e x -≥,当且仅当1x =时,等号成立.1n a <,()()10n f a f ∴>=,即1n a n e a ->,1ln 1n n a a +=-,11n a n n a e a -+∴=>,综合∈∈可知11n n a a +<<;(2)利用数学归纳法证明1n n a n ≤+. ∈当1n =时,112a =满足1n n a n ≤+;∈假设n k =时成立,即1k ka k ≤+,则由1ln 1n n a a +=-,得111111k k a k k k a eee---+++==≤,要证1112k k ek -++<+,令11,012t k ⎛⎫-=∈- ⎪+⎝⎭,则要证11012t e t t ⎛⎫<-<< ⎪-⎝⎭,21 / 21 构造()11x f x e x =+-,1,02x ⎛⎫∈- ⎪⎝⎭,()()()()22211111x x e x f x e x x --'=-=--,令()()211x h x e x =--,1,02x ⎛⎫∈- ⎪⎝⎭,则()()()()2212110x x x h x e x e x e x '=-+⋅-=-<, 所以,函数()y f x '=在1,02⎛⎫- ⎪⎝⎭上单调递减,()()00f x f ''∴>=,所以,函数()y f x =在1,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ∴<=,即11x e x <-成立,即1112k k e k -++<+,112k k a k ++∴<+, 综上1n na n ≤+,当且仅当1n =时等号成立,由于1ln 1n n a a +=-,可知0n a >, 所以,1102a <≤,2203a <<,,2019201902020a <<,1220191232019123420202020a a a ⋅⋅⋅⋅<⨯⨯⨯⋅⋅⨯=.。

导数题型五-利用导数证明不等式

导数题型五-利用导数证明不等式

导数习题题型分类精选题型五利用导数证明不等式(学生用)不等式的证明问题是中学数学教学的一个难点,传统证明不等式的方法技巧性强,多数学生不易想到,并且各类不等式的证明没有通性通法.随着新教材中引入导数,这为我们处理不等式的证明问题又提供了一条新的途径,并且在近年高考题中使用导数证明不等式也时有出现,但现行教材对这一问题没有展开研究,使得学生对这一简便方法并不了解.利用导数证明不等式思路清晰,方法简捷,操作性强,易被学生掌握。

下面介绍利用单调性、极值、最值证明不等式的基本思路,并通过构造辅助函数,证明一些简单的不等式。

通过作辅助函数并对辅助函数求导来证明不等的的方法对相当广泛的一类不等式是适用的。

用此方法证明f(x)≧g(x)(a ≦x ≦b)的一般步骤是:1.作辅助函数F(x )=f(x)-g(x),原不等式f(x)≧g(x)(a ≦x ≦b)归结为:F(x )≧0(a ≦x ≦b),这等价于F(x)在[a,b ]上的最小值大于等于0.2.对F(x )求导,确定F '(x)在所考虑的区间上的符号,从而确定F(x)的增减性、极值、最值等性质(主要是单调性),如象例3F '(x)的符号直接确定不了,这时一般需计算F''(x ),直到符号能够确定为止.注意:作辅助函数F(x)不同,确定F '(x)符号难易程度可能不同,所以作辅助函数要不拘一格,可对原题作适当变更.不同辅助函数构造一般来源对原不等式的不同同解变形. 一般来说:辅助函数构造方法主要有下面两种:(1) 由欲证形式构造“形似”函数。

例如:)1ln(22x x x +<-构造出 ())1ln(22x x x x g +--=(2) 对含两个变量的不等式,由欲证形式做恒等变形,变成初等函数四则运算的形式,再将其中一个变量改为x ,移项使等式一端为0,则另一端即为所求作的辅助函数F (x )例如:b a ba b a b a ≤++)2(两边可取对数,变为求证:2ln)(ln ln ba b a b b a a ++≥+ 令=)(x f )(2ln)(ln ln a x xa x a x x a a ≥++-+ 一.构造形似函数型1.对证明形如f(x)≧g(x)(a ≦x ≦b)的不等式构造形如F(x )=f(x)-g(x)的函数型并通过一阶求导达到证明目的的不等式。

2022年高考数学总复习专题突破一利用导数证明不等式

2022年高考数学总复习专题突破一利用导数证明不等式

第1课时 利用导数证明不等式题型一 将不等式转化为函数的最值问题[例1] [2017·全国卷Ⅲ]已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a-2.[听课记录]类题通法将不等式转化为函数最值来证明不等式,其主要思想是依据函数在固定区间的单调性,直接求得函数的最值,然后由f (x )≤f (x )max 或f (x )≥f (x )min 直接证得不等式.巩固训练1:已知函数f (x )=ax -e x (e 为自然对数的底数).(1)当a =1e时,求函数f (x )的单调区间及极值;(2)当2≤a ≤e +2时,求证:f (x )≤2x .题型二 构造函数法证明不等式[例2] 设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1. [听课记录]类题通法待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.巩固训练2:已知函数f (x )=e x -ax (e 为自然对数的底数,a 为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x .题型三 将不等式转化为两个函数的最值进行比较[例3] 已知函数f (x )=eln x -ax (a ∈R ). (1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0. [听课记录]类题通法在证明的不等式中,若对不等式的变形无法转化为一个函数的最值问题,可以借助两个函数的最值进行证明.巩固训练3:已知函数f (x )=e x 2-x ln x .求证:当x >0时,f (x )<x e x +1e.题型四 双变量不等式的证明[例4] [2020·天津卷]已知函数f (x )=x 3+k ln x (k ∈R ),f ′(x )为f (x )的导函数. (1)当k =6时:(ⅰ)求曲线y =f (x )在点(1,f (1))处的切线方程;(ⅱ)求函数g (x )=f (x )-f ′(x )+9x的单调区间和极值.(2)当k ≥-3时,求证:对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f ′(x 1)+f ′(x 2)2>f (x 1)-f (x 2)x 1-x 2.[听课记录]类题通法破解含双参不等式的证明的关键一是转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式;二是巧构造函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.巩固训练4:[2018·全国卷Ⅰ]已知函数f (x )=1x-x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.[预测] 核心素养——逻辑推理、数学运算已知函数f (x )=2x +(1-2a )ln x +ax.(1)讨论f (x )的单调性;(2)如果方程f (x )=m 有两个不相等的解x 1,x 2,且x 1<x 2,证明:f ′⎝⎛⎭⎫x 1+x 22>0.状 元 笔 记两个经典不等式的应用(1)对数形式:x ≥1+ln x(x>0),当且仅当x =1时,等号成立.(2)指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立.进一步可得到一组不等式链:e x >x +1>x >1+ln x (x >0,且x ≠1).[典例1] (1)已知函数f (x )=1ln (x +1)-x,则y =f (x )的图象大致为( )(2)已知函数f (x )=e x ,x ∈R .证明:曲线y =f (x )与曲线y =12x 2+x +1有唯一公共点.【解析】 (1)因为f (x )的定义域为⎩⎪⎨⎪⎧x +1>0,ln (x +1)-x ≠0,即{x |x >-1,且x ≠0}, 所以排除选项D ;当x >0时,由经典不等式x >1+ln x (x >0),以x +1代替x ,得x >ln(x +1)(x >-1,且x ≠0),即x >0或-1<x <0时均有f (x )<0,排除A 、C ;易知B 正确.(2)证明:令g (x )=f (x )-⎝⎛⎭⎫12x 2+x +1=e x -12x 2-x -1,x ∈R ,则g ′(x )=e x -x -1,由经典不等式e x ≥x +1恒成立可知,g ′(x )≥0恒成立, 所以g (x )在R 上为单调递增函数,且g (0)=0.所以函数g (x )有唯一零点,即两曲线有唯一公共点. [典例2] 已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)证明:对于任意正整数n ,⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n <e. 【解析】 (1)f (x )的定义域为(0,+∞),①若a ≤0,因为f ⎝⎛⎭⎫12=-12+a ln 2<0,所以不满足题意; ②若a >0,由f ′(x )=1-a x =x -ax知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0; 所以f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增, 故x =a 是f (x )在(0,+∞)的唯一最小值点. 因为f (1)=0,所以当且仅当a =1时,f (x )≥0, 故a =1.(2)证明:由(1)知当x ∈(1,+∞)时,x -1-ln x >0.令x =1+12n ,得ln ⎝⎛⎭⎫1+12n <12n . 从而ln ⎝⎛⎭⎫1+12+ln ⎝⎛⎭⎫1+122+…+ln ⎝⎛⎭⎫1+12n <12+122+…+12n =1-12n <1. 故⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n <e. [典例3] 设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)求证:当x ∈(1,+∞)时,1<x -1ln x<x .【解析】 (1)由题设知,f (x )的定义域为(0,+∞),f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )在(0,1)上单调递增; 当x >1时,f ′(x )<0,f (x )在(1,+∞)上单调递减.(2)证明:由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0. 所以当x >0且x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,x -1ln x>1.①因此ln 1x <1x -1,即ln x >x -1x ,x -1ln x<x .②故当x ∈(1,+∞)时恒有1<x -1ln x<x .第1课时 利用导数证明不等式 课堂题型讲解题型一例1 解析:(1)f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +2a +1=(x +1)(2ax +1)x .若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈⎝⎛⎭⎫0,-12a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫-12a ,+∞ 时,f ′(x )<0. 故f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞ 上单调递减. (2)证明:由(1)知,当a <0时,f (x )在x =-12a处取得最大值,最大值为f ⎝⎛⎭⎫-12a =ln ⎝⎛⎭⎫-12a -1-14a.所以f (x )≤-34a -2等价于ln ⎝⎛⎭⎫-12a -1-14a ≤-34a -2,即ln ⎝⎛⎭⎫-12a +12a +1≤0. 设g (x )=ln x -x +1,则g ′(x )=1x-1.当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0, 所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 故当x =1时,g (x )取得最大值,最大值为g (1)=0. 所以当x >0时,g (x )≤0.从而当a <0时,ln ⎝⎛⎭⎫-12a +12a +1≤0, 即f (x )≤-34a-2.巩固训练1 解析:(1)当a =1e 时,f (x )=1e x -e x ,令f ′(x )=1e-e x =0,得x =-1.当x <-1时,f ′(x )>0;当x >-1时, f ′(x )<0.∴函数f (x )的单调递增区间为(-∞,-1),单调递减区间为(-1,+∞). 当x =-1时,函数f (x )有极大值-2e;没有极小值.(2)证明:令F (x )=2x -f (x )=e x -(a -2)x , ①当a =2时,F (x )=e x >0, ∴f (x )≤2x .②当2<a ≤2+e 时,F ′(x )=e x -(a -2)=e x -e ln (a -2). 当x <ln (a -2)时,F ′(x )<0; 当x >ln (a -2)时,F ′(x )>0;∴F (x )在(-∞,ln (a -2))上单调递减,在(ln (a -2),+∞)上单调递增. ∴F (x )≥F (ln (a -2))=e ln (a-2)-(a-2)ln (a-2)=(a-2)[1-ln (a-2)],∵2<a≤2+e,∴a-2>0.1-ln (a-2)≥1-ln [(2+e)-2]=0,∴F(x)≥0,即f(x)≤2x.综上,当2≤a≤e+2时,f(x)≤2x.题型二例2解析:(1)由f(x)=e x-2x+2a,x∈R,得f′(x)=e x-2,x∈R,令f′(x)=0,得x=ln 2.于是当x变化时,f′(x),f(x)的变化情况如下表:故f(f(x)在x=ln 2处取得极小值,极小值为f(ln 2)=e ln 2-2ln 2+2a=2(1-ln 2+a),无极大值.(2)证明:设g(x)=e x-x2+2ax-1,x∈R,于是g′(x)=e x-2x+2a,x∈R.由(1)知当a>ln 2-1时,g′(x)最小值为g′(ln 2)=2(1-ln 2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R上单调递增.于是当a>ln 2-1时,对任意x∈(0,+∞),都有g(x)>g(0).又g(0)=0,从而对任意x∈(0,+∞),g(x)>0.即e x-x2+2ax-1>0,故e x>x2-2ax+1.巩固训练2解析:(1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2.令f′(x)=0,得x=ln 2,当x<ln 2时,f′(x)<0,f(x)在(-∞,ln 2)上单调递减;当x>ln 2时,f′(x)>0,f(x)在(ln 2,+∞)上单调递增.所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-2ln 2,f(x)无极大值.(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln 2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.题型三例3解析:(1)f′(x)=ex-a(x>0),①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增;②若a >0,则当0<x <ea 时,f ′(x )>0;当x >ea时,f ′(x )<0.故f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫ea ,+∞ 上单调递减. (2)证明:因为x >0, 所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 所以f (x )max =f (1)=-e , 记g (x )=e xx-2e(x >0),则g ′(x )=(x -1)e xx 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减,当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e , 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx -2e ,即xf (x )-e x +2e x ≤0.巩固训练3 证明:要证f (x )<x e x +1e ,∵x >0只需证e x -ln x <e x +1e x ,即e x -e x <ln x +1e x.令h (x )=ln x +1e x (x >0),则h ′(x )=e x -1e x2 ,易知h (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞ 上单调递增,则h (x )min =h ⎝⎛⎭⎫1e =0,所以ln x +1e x≥0.再令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减, 则φ(x )max =φ(1)=0,所以e x -e x ≤0.因为h (x )与φ(x )不同时为0,所以e x -e x <ln x +1e x ,故原不等式成立.题型四例4 解析:(1)(ⅰ)当k =6时,f (x )=x 3+6ln x ,故f ′(x )=3x 2+6x .可得f (1)=1,f ′(1)=9,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -1=9(x -1),即y =9x -8.(ⅱ)依题意,g (x )=x 3-3x 2+6ln x +3x,x ∈(0,+∞).g ′(x )=3x 2-6x +6x -3x 2 ,整理可得g ′(x )=3(x -1)3(x +1)x 2.令g ′(x )=0,解得x =1.当x 变化时,g ′(x ),g (x )的变化情况如表:所以,函数g (x )的单调递减区间为(0,1),单调递增区间为(1,+∞).g (x )的极小值为g (1)=1,无极大值.(2)证明:由f (x )=x 3+k ln x ,得f ′(x )=3x 2+kx.对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令x 1x 2 =t (t >1),则(x 1-x 2)[f ′(x 1)+f ′(x 2)]-2[f (x 1)-f (x 2)]=(x 1-x 2)⎝⎛⎭⎫3x 21 +k x 1+3x 22 +k x 2 -2(x 31 -x 32 +k ln x 1x 2 ) =x 31 -x 32 -3x 21 x 2+3x 1x 22 +k (x 1x 2 -x 2x 1 )-2k ln x 1x 2 =x 32 (t 3-3t 2+3t -1)+k ⎝⎛⎭⎫t -1t -2ln t .① 令h (x )=x -1x -2ln x ,x ∈[1,+∞).当x >1时,h ′(x )=1+1x 2 -2x =⎝⎛⎭⎫1-1x 2 >0,由此可得h (x )在[1,+∞)单调递增,所以当t >1时,h (t )>h (1),即t -1t -2ln t >0.因为x 2≥1,t 3-3t 2+3t -1=(t -1)3>0,k ≥-3,所以x 32 (t 3-3t 2+3t -1)+k ⎝⎛⎭⎫t -1t -2ln t ≥(t 3-3t 2+3t -1)-3⎝⎛⎭⎫t -1t -2ln t =t 3-3t 2+6ln t +3t-1.② 由(1)(ⅱ)可知,当t >1时,g (t )>g (1),即t 3-3t 2+6ln t +3t >1,故t 3-3t 2+6ln t +3t -1>0.③由①②③可得(x 1-x 2)[f ′(x 1)+f ′(x 2)]-2[f (x 1)-f (x 2)]>0.所以,当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f ′(x 1)+f ′(x 2)2 >f (x 1)-f (x 2)x 1-x 2.巩固训练4 解析:(1)f (x )的定义域为(0,+∞), f ′(x )=-1x 2 -1+ax =-x 2-ax +1x 2.①若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0,所以f (x )在(0,+∞)上单调递减.②若a >2,令f ′(x )=0,得x =a -a 2-42 或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42 ∪(a +a 2-42 ,+∞)时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42 时, f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42 ,⎝ ⎛⎭⎪⎫a +a 2-42,+∞ 上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42 上单调递增.(2)证明:由(1)知,f (x )存在两个极值点时,当且仅当a >2. 由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0, 所以x 1x 2=1,不妨设x 1<x 2,则x 2>1. 由于f (x 1)-f (x 2)x 1-x 2 =-1x 1x 2 -1+a ·ln x 1-ln x 2x 1-x 2 =-2+a ln x 1-ln x 2x 1-x 2=-2+a-2ln x 21x 2-x 2, 所以f (x 1)-f (x 2)x 1-x 2<a -2等价于1x 2 -x 2+2ln x 2<0.设函数g (x )=1x -x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减.又g (1)=0,从而当x ∈(1,+∞)时,g (x )<0. 所以1x 2 -x 2+2ln x 2<0,即f (x 1)-f (x 2)x 1-x 2<a -2.高考命题预测预测 解析:(1)f ′(x )=2+1-2a x -a x 2 =2x 2+(1-2a )x -a x 2=(x -a )(2x +1)x 2(x >0).①当a ≤0时,x ∈(0,+∞),f ′(x )>0,f (x )单调递增; ②当a >0时,x ∈(0,a ),f ′(x )<0,f (x )单调递减; x ∈(a ,+∞),f ′(x )>0,f (x )单调递增.综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.(2)证明:由(1)知,当a ≤0时,f (x )在(0,+∞)上单调递增,f (x )=m 至多一个解,不符合题意;当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增,则f ′(a )=0.不妨设0<x 1<a <x 2,要证f ′⎝⎛⎭⎫x 1+x 22 >0,即证x 1+x 22 >a ,即证x 1+x 2>2a ,即证x 2>2a -x 1,又f (x )在(a ,+∞)上单调递增,即证f (x 2)>f (2a -x 1),因为f (x 2)=f (x 1),所以即证f (x 1)>f (2a-x 1),即证f (a +x )<f (a -x ).令g (x )=f (a +x )-f (a -x )=⎣⎡⎦⎤2(a +x )+(1-2a )ln (a +x )+a a +x-⎣⎡⎦⎤2(a -x )+(1-2a )·ln (a -x )+a a -x=4x +(1-2a )ln (a +x )-(1-2a )ln (a -x )+a a +x -aa -x ,g ′(x )=4+1-2a a +x +1-2a a -x -a (a +x )2 -a(a -x )2=4+2a (1-2a )a 2-x 2 -2a (a 2+x 2)(a +x )2(a -x )2 =4x 2(x 2-a 2-a )(a +x )2(a -x )2 .当x ∈(0,a )时,g ′(x )<0,g (x )单调递减,又g (0)=f (a +0)-f (a -0)=0,所以x ∈(0,a )时,g (x )<g (0)=0,即f (a +x )<f (a -x ), 即f (x )>f (2a -x ).又x 1∈(0,a ),所以f (x 1)>f (2a -x 1), 所以f ′⎝⎛⎭⎫x 1+x 22 >0.。

高中数学:利用导数证明不等式的常见题型

高中数学:利用导数证明不等式的常见题型

利用导数证明不等式的常见题型题型一构造函数法把不等式的证明转化为利用导数研究函数的单调性或求最值的问题,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是利用导数证明不等式的关键.这四道题比较简单,证明过程略.概括而言,这四道题证明的过程分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论.【启示】证明分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论。

题型二通过对函数的变形,利用分析法,证明不等式【启示】解答第一问用的是分离参数法,解答第二问用的是分析法、构造函数,对函数的变形能力要求较高,大家应记住下面的变形:题型三求最值解决任意、存在性变量问题解决此类问题,关键是将问题转化为求函数的最值问题,常见的有下面四种形式:题型四分拆成两个函数研究【注意】(2)如果按题型一的方法构造函数求导,会发现做不下去,只好半途而废,所以我们在做题时需要及时调整思路,改变思考方向.【启示】掌握下列八个函数的图像和性质,对我们解决不等式的证明问题很有帮助,这八个函数分别为要求会画它们的图像,以后见到这种类型的函数,就能想到它们的性质题型五设而不求当函数的极值点(最值点)不确定时,可以先设出来,只设不解,把极值点代入,求出最值的表达式而证明.【启示】设而不求,整体代换是一种常用的方法,在解析几何中体现很多.在本例第(2)问中,只设出了零点而没有求出零点,这是一种非常好的方法,同学们一定要认真体会,灵活应用.题型六估值法题型七利用图象的特点,证明不等式题型八证明数列不等式题型九利用放缩法证明不等式【注意】在解决第(2)问时,用构造函数法证不出来,又试着分开两个函数仍然不行,正当我一筹莫展时,忽然想到与第一问题的切线联系,如果左边的函数的图像在切线的上方,右边函数的图像在切线的下方,这样问题不就得证了吗?心里非常高兴,马上付诸行动。

41 导数中不等式的证明问题(学生版)

41 导数中不等式的证明问题(学生版)

专题41导数中不等式的证明问题【高考真题】1. (2022•北京)已知函数/(x) = e*ln(l+x).(1)求曲线y = fa)在点(。

,/(0))处的切线方程;(2)设g*)=rα),讨论函数g*)在。

+8)上的单调性;(3)证明:对任意的S, £€(0, +∞),有"s+E)>f(s)+f(f).2. (2022•浙江)设函数/(X) = ± + lnx(x>0). Ix(1)求/O)的单调区间;(2)已知α"eR,曲线y =7。

)上不同的三点(国,/(8)),(巧Ja2)),(孙/(巧))处的切线都经过点3 3.证明:(i )⅛α> e ,则O<b-f(α) <g(∕-1);・・-4⅛.z% mf2 e -4 112 e —。

(11)若OVaVe, X] <A⅛<Λ⅞ ,贝∣]一 + -^-V — + 一< -- T -e oe Xy Xy ci oe(注:e = Z71828…是自然对数的底数)3. (2022・新高考∏)已知函数/(x) = XeS-e,(1)当。

=1时,讨论/*)的单调性;(2)当“>。

时,/(x)v-1,求α的取值范围;(3)设〃eN*,证明:-/= + -/^=+,,+T^=>ln(72 + 1)- √12+ 1 √22+2 y∣n2+n【方法总结】构造法证明不等式是指在证明与函数有关的不等式时,根据所要证明的不等式,构造与之相关的函数,利用函数单调性、极值、最值加以证明.常见的构造方法有:(1)直接构造法:证明不等式力r)>g(x)(∕(x) Vga))转化为证明y(x)—g(x)>o(/u)—g(X)V0),进而构造辅助函数〃(X)= 火防一g(x);(2)适当放缩构造法:X一是根据已知条件适当放缩,二是利用常见的放缩结论,如lnx≤r-l, e v≥r+l, InκVχVeYQO),币≤ln(x + l)≤x(x>-1); (3)构造“形似”函数:稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构”构造辅助函数;(4)构造双函数:若直接构造函数求导难以判断符号,导函数零点也不易求得,因此函数单调性与极值点都不易获得,则可构造函数Kr)和g(x),利用其最值求解.【题型突破】1 .己知函数y(x)="—αdnχ-l(a£R, tz≠O).(I)讨论函数AX)的单调性;(2)当x>l 时,求证:—^>⅛-1. x—1 e A2 .已知函数外)=1—3」,g(x)=χ-Inx.(1)证明:g(x)≥l;(2)证明:(x-inx)成x)>l-±∙3 . (2021 •全国乙)设函数/(x)=ln(α-x),已知X=O是函数y=M(x)的极值点.⑴求〃;(2)设函数g。

利用导数证明不等式——2021年高考文科数学一轮复习热点题型(附解析)

利用导数证明不等式——2021年高考文科数学一轮复习热点题型(附解析)
e-1
6 / 20
2021 年高考文科数学一轮复习:题型全归纳与高效训练突破
专题 3.4 高考解答题热点题型(一)利用导数证明不等式
目录 一、题型全归纳.............................................................................................................................................................1
x2
联立消参 利用方程 f(x1)=f(x2)消掉解析式中的参数 a
抓商构元

c=x1,消掉变量 x2
x1,x2,构造关于
c
的函数
h(c)
用导求解 利用导数求解函数 h(c)的最小值,从而可证得结论
【例 1】已知函数 f(x)=ln x-1ax2+x,a∈R. 2
(1)当 a=0 时,求函数 f(x)的图象在(1,f(1))处的切线方程; (2)若 a=-2,正实数 x1,x2 满足 f(x1)+f(x2)+x1x2=0,求证:x1+x2≥ 5-1.
题型一 作差法构造函数证明不等式.................................................................................................................. 1 题型二 拆分法构造函数证明不等式.................................................................................................................. 2 题型三 换元法构造函数证明不等式.................................................................................................................. 3 题型四 两个经典不等式的应用.......................................................................................................................... 3 二、高效训练突破.........................................................................................................................................................4

利用导数证明不等式的常见题型及解题技巧(附经典详解)

利用导数证明不等式的常见题型及解题技巧(附经典详解)

利用导数证明不等式的常见题型及解题技巧趣题引入已知函数x x x g ln )(= 设b a <<0, 证明:2ln )()2(2)()(0a b b a b g a g -<+-+<分析:主要考查利用导数证明不等式的能力。

分析:主要考查利用导数证明不等式的能力。

证明:1ln )(+=¢x x g ,设)2(2)()()(xa g x g a g x F +-+=2ln ln )2()(21)2(2)()(''''x a x x a g x g xa g x g x F +-=+-=´+-=¢当a x <<0时0)(<¢x F ,当a x >时 0)(>¢x F , 即)(x F 在),0(a x Î上为减函数,在),(+¥Îa x 上为增函数上为增函数 ∴0)()(min==a F x F ,又a b > ∴0)()(=>a F b F , 即0)2(2)()(>+-+ba gb g a g设2ln )()2(2)()()(a x x a g x g a g x G --+-+=)ln(ln 2ln 2ln ln )(x a x xa x x G +-=-+-=¢\当0>x 时,0)('<x G ,因此)(x G 在区间),0(+¥上为减函数;上为减函数; 因为0)(=a G ,又a b > ∴0)()(=<a G b G , 即 02ln )()2(2)()(<--+-+a x x a g x g a g故2ln )()2(2)()(a x xa g x g a g -<+-+ 综上可知,当综上可知,当b a <<0时,2ln )()2(2)()(0a b ba b g a g -<+-+< 本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。

导数解答题之证明不等式

导数解答题之证明不等式


①当 m≤0 时 f′(x)>0 恒成立,∴f(x)在(0,+∞)上是增函数,无极值, ②当 m>0 时令 f′(x)>0,∴0<x< , 令 f′(x)<0,∴x> , 所以函数 f(x)在(0, )上为增函数,在( ,+∞)为减函数, 所以当 x= 时,有极大值,极大值为﹣ (ln2m+1),无极小值,

由题意可知 a>x0+1,又 x0∈(3,4),a∈Z, ∴a 的最小值为 5.
多元不等式的证明
证明多元不等式通常的方法有两个 (1)消元:① 利用条件代入消元 ② 不等式变形后对某多元表达式进行整体换元 (2)变量分离后若结构相同,则可将相同的结构构造一个函数,进而通过函数的单调性与 自变量大小来证明不等式 (3)利用函数的单调性将自变量的不等关系转化为函数值的不等关系,再寻找方法.
证明一元不等式主要的方法
方法一:将含 x 的项或所有项均挪至不等号的一侧,将一侧的解析式构造为函数,通过分
析函数的单调性得到最值,从而进行证明,其优点在于目的明确,构造方法简单,但对于 移项后较复杂的解析式则很难分析出单调性
x 1
2e x
f (x) e ln x . f x 1 已知函数
证明:
上单 调递增 ,从
1

g(x)在(0,+∞)上的最小值为
g
e
=-1 e
设函数 h(x)=xe-x-2,则 h′(x)=e-x(1-x).所以当 x∈(0,1)时,h′(x)>0;当 x∈(1, e
+∞)时,h′(x)<0.故 h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而 h(x)在(0,+∞)
所以 h(x)max=h(x0)=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x + e2
− e2 ln x(x 2e) ,求导得 h(x) = 1 −
e2 x
=
x − e2 x
,易得 h(x) h(x)min
= h(e2 ) = 0
所以 f ( e ) ≥0,又因为 f ( 2 ) 0 ,所以 f ( e ) f ( 2 ) 0
a
a
aa
又因为函数 f (x) 在区间 (0, 2 ) 上单调递减,由根的存在性定理知 f (x) 在区间[ e , 2 ) 存在唯一的
由 f (x) = 0 得 x2 ln x = − 1 ,作出函数 y = x2 ln x 的图像知 a
0 x1 x2 1
因为
x1 ,
x2
是方程
x2
ln
x
=

1 a
的两个不等的实数根,故 −
1 a
=
x12
ln
x1
=
x22
ln
x2
又因为
x22
ln
x2

ln
x2
=
( x2 2
−1) ln
x2
0
,所以
合度较高.第一问是常规性问题,求函数的单调区间的问题,学生一般来说问题不大,关键是第二问,
难度较大,而本题第二问的关键是
把要证明的
2a ln(x2

x1
+
e)+1 0 a
结论转化为去证明
e a
x1
2 a
x2
−1
e 2a
,这样问题就转化为函数的零点问题了.从这个角度来看他的难度又小于高考
经常考到的“卡根”的问题了,因为他毕竟给我们提供了零点的上限和下极,不需要我们盲目的去
试题出处:2020 天舟文化 3 月全国高三质量检测(理科 21 题)
导数中的不等式的证明
已知函数 f (x) = 1 + a ln x(a R) . x2
(1).讨论函数 f (x) 的单调性;
(2).若 x1, x2 (x1 x2 ) 是 f (x) 的两个零点,证明:
2a ln(x2

x1
x1
+
e a
−1
e 2a
,即证明 x2

x1
−1
e 2a

e a
只需证明
e a x1
2 a
x2
−1
e 2a
(两个等号不同时成立)
下面先证明
2 a
x2
−1
e 2a
成立
因为 (
2 )2


(e
1 2a
)2
=
2
−1
−e a
e−1
−1
−e a
0 ,所以
2
−1
e 2a
a
a
a
又因为
f
−1
(e 2a )
只需证明
a e2
+ ln
e a
0
令t
=
a e
2, h(t)
=
t e
− ln t
,求导得: h(t)
=
1 e
−1 t
=
t
−e et
,容易得到 h(t)min
=
h(e)
=
0
所以 f ( e ) 0 .以下同解法一. a
解法四: (1).同解法一
(2). .因为函数有两个零点,依照题意有 f ( 2 ) 0 ,得 a 2e a
x22
ln
x2
ln
x2


1 a
ln
x2
所以
−eຫໍສະໝຸດ 1 ax2 ……①
下面证明 −x1

e a
,因为

1 a
=
x12
ln
x1
故只需证明
− x1
ex12
ln
x1
即证明
x1
ln
x1
+
1 e
0(0
x1
1)
令 g(x) = x ln x + 1 (1 x 0) ,求导得: g(x) = ln x +1 e
容易得到 g(x) 在 x = 1 取到最小值,所以 g(x) g(1) = 0
(x
0)
,求导得:
g ( x)
=
ex −1 ex2
当 0 x 1 时, g(x) 0 ;当 x 1 时 g(x) 0
e
e
所以
g ( x)min
=
g(1) e
=
0
,故
g(x)
0
即 ln
x
−1 ex
在 (0, +) 恒成立.

x
=
e a
,得 ln
e a

a e2
,所以
f
(e) a
=
a2 e2
+
x2
满足
2 a
x2
−1
e 2a
.
下面再证明
e a
x1
2. a
因为
e2 a2

2 a
=
e2 − 2a a2
e2 − 4e a2
=
e(e − a2
4)
0 ,所以
e2 a2
2 a

e a
2 a
又因为 f ( e ) = a2 + a ln e = a (a + e2 − e2 ln a)
a e2
a e2
令 h(x) =
递减,在区间 ( 2 , +) 上单调递增. a
(2).因为函数有两个零点,依照题意有 f ( 2 ) 0 ,得 a 2e a
要证明
2a ln(x2

x1
+
e) a
+1
0.
2 ,则函数 f (x) 在 (0, a
2 ) 上单调 a
只要证明
ln(x2

x1
+
e) a
ln
−1
e 2a
只需证明 x2

a ln
e a
a2 e2
+
a a (− )
e2
=
0.
以下同解法一.
解法三: 前面的解法同解法一
下面再证明
e a
x1
2 a
因为
e2 a2

2 a
=
e2 − 2a a2
e2 − 4e a2
=
e(e − 4) a2
0 ,所以
e2 a2
2 a

e a
2 a
要证明
f
(e) a
=
a2 e2
+
a ln
e a
0
合适的端点。而解法四在探索解题思路上则体现了数学结合的数学思想,对分析问题的能力有较高
要求.
e
e
3/4

x1
ln
x1
+
1 e
0(0
x1
1)
成立,故
− x1

e a
……②
由 ①+② 得: 0
x2

x1
−1
ea

e a

2a ln(x2

x1
+
e) a
+1
−1
2a ln(e a

e a
+
e) +1= a
−1
2a ln e a
+1=
−2 +1 =
−1
0
评论与赏析:
本题是一道与导数有关的不等式的证明题,同时也考察了函数的零点以及函数的极值问题,综
+
e) a
+1
0.
解法一:
(1).依题意知函数的定义域是 (0, +)
,对函数
f
(x)
求导得:
f
( x)
=
ax2 − x3
2
(x
0)
①当 a ≤0 时, f (x) ≤0,函数 f (x) 在 (0, +) 上单调递减.
②当 a 0 时,令 f (x) 0 ,得 x 2 ;令 f (x) 0 ,得 0 x a
a
aa
零点
x1
满足
e a
x1
2. a
所以
x2

x1
−1
e 2a

e a
成立,从而原命题成立.
解法二: 前面的解法同解法一
下面再证明
e a
x1
2. a
因为
e2 a2

2 a
=
e2 − 2a a2
e2 − 4e a2
=
e(e − a2
4)
0 ,所以
e2 a2
2 a

e a
2 a

g(x)
=
ln
x
+
1 ex
=
1

(e
1 2a
)2
−1
+ a ln e 2a
=
1
ea

1 2
e0

1 2
0 ,又由题意知
f
(
2)0 a
所以
f
−1
(e 2a ) f (
2 ) 0 ,又因为函数 f (x) 在区间 (
2 , +) 上单调递增,由根的存在性定理知 f (x)
相关文档
最新文档