2019-2020年高考数学一题多解含17年高考试题(III)
【全国卷Ⅲ】2019年普通高等学校全国统一考试理数试题(Word版,含答案)

状元考前提醒拿到试卷:熟悉试卷刚拿到试卷一般心情比较紧张,建议拿到卷子以后看看考卷一共几页,有多少道题,了解试卷结构,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。
答题策略答题策略一共有三点:1. 先易后难、先熟后生。
先做简单的、熟悉的题,再做综合题、难题。
2. 先小后大。
先做容易拿分的小题,再做耗时又复杂的大题。
3. 先局部后整体。
把疑难问题划分成一系列的步骤,一步一步的解决,每解决一步就能得到一步的分数。
立足中下题目,力争高水平考试时,因为时间和个别题目的难度,多数学生很难做完、做对全部题目,所以在答卷中要立足中下题目。
中下题目通常占全卷的80%以上,是试题的主要构成,学生能拿下这些题目,实际上就是有了胜利在握的心理,对攻克高档题会更放得开。
确保运算正确,立足一次性成功在答卷时,要在以快为上的前提下,稳扎稳打,步步准确,尽量一次性成功。
不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。
试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,格式是否规范。
要学会“挤”分考试试题大多分步给分,所以理科要把主要方程式和计算结果写在显要位置,文科尽量把要点写清晰,作文尤其要注意开头和结尾。
考试时,每一道题都认真思考,能做几步就做几步,对于考生来说就是能做几分是几分,这是考试中最好的策略。
检查后的涂改方式要讲究发现错误后要划掉重新写,忌原地用涂黑的方式改,这会使阅卷老师看不清。
如果对现有的题解不满意想重新写,要先写出正确的,再划去错误的。
有的同学先把原来写的题解涂抹了,写新题解的时间又不够,本来可能得的分数被自己涂掉了。
考试期间遇到这些事,莫慌乱!绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
2019年全国III卷高考数学(文科)试题(带答案)

A
因此DM.LCG.
在Rt6.DEM中 , DE=l. EM=石 ,故DM=2.
所以四边形ACGD的面积为4.
20. (12分)
已知函数/(x)=2x'-ax'+2 .
( 1 )讨论/(x)的单调性;
(2)当0<a<3时,记f(x)在区间[0,1]的最大值为M,最小值为m, 求M-m的取伯范围
解:
(I) f'(x)=6x1 -2ax=2x(3x-a).
l烦率/组距
03. 0•········-·····-·········
�::;�ti::::1· .
0.05
频率/纠距
罚i1··:······
00. 51········
芦Lt 0 2,5 3,5 4.5 5.5 6 5 7.5
甲离子残衔百分比n方图
乙离子残钳Li分比五方图
记C为水件: "乙离千残留在体内的百分比不低千55. ",根据直方图得到P(C )的估计值为0.70
(I)求乙离子残衍百分比直方图中a, b的值;
(2)分别估计甲、乙离子残衍百分比的平均值(同一组中的数据用该组区间的中点值为代表) .
一2 —
蛁:
(I)山已知得0.70=a+0.20+0.15 ,故
a=0.35 .
b=1-0.0 S-O.IS -0.70 =0.IO
(2)甲离子残留百分比的平均值的估计值为
B.
/(log,
一I4)汀(2-,' )汀
_2 (2勺
--2
- -,
l
D. /(2 1)>/(2')>/(log) 一4)
二、填空题:本题共4小题,每小题5分,共20分.
数学试卷201917年高考新课试题解析(正式版)(解析版)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,学科网然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .AB =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}AB x x x x =<<{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A.2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B【解析】设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B. 秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B. 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C. 秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D【解析】因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤成立的x 的取值范围为[1,3],选D. 6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C【解析】因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C. 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【答案】B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.8.下面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +2【答案】D【解析】由题意,因为321000n n ->,且框图中在“否”时输出,所以判定框内不能输入1000A >,故填1000A ≤,又要求n 为偶数且初始值为0,所以矩形框内填2n n =+,故选D.9.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【解析】令235(1)x y zk k ===>,则2log x k =,3log y k =,5log z k =∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A【解析】由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k-则该数列的前(1)122k k k ++++=项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=-,所以2314t k =-≥,则5t ≥,此时52329k =-=, 所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 二、填空题:本题共4小题,每小题5分,共20分。
2017年-2019年高考文科数学全国卷三真题考试卷及问题详解(新课标)

绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)文科数学注意事项:1.答题前,考生务必将自己的、号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则A⋂B中元素的个数为A.1 B.2 C.3 D.42.复平面表示复数z=i(–2+i)的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos3αα-=,则sin2α=A .79-B .29-C .29D .795.设x ,y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z =x -y 的取值围是 A .[–3,0]B .[–3,2]C .[0,2]D .[0,3]6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为A .65B .1C .35D .157.函数y =1+x +2sin xx的部分图像大致为A .B .C .D .8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π410.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为AB C D .1312.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分。
2017-2019高考文数真题分项解析-解三角形

专题10 解三角形1.【2019年高考全国Ⅰ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A −b sin B =4c sin C ,cos A =14-,则b c= A .6 B .5 C .4D .32.【2019年高考北京卷文数】如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β3.【2018年高考全国Ⅲ文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224a b c +-,则C =A .2π B .3πC .4πD .6π4.【2018年高考全国Ⅱ文数】在ABC △中,5cos25C =,1BC =,5AC =,则AB = A .2 B 30C 29D .255.【2017年高考全国Ⅰ文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C =A .π12B .π6C .π4D .π36.【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.7.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.8.【2018年高考北京卷文数】若ABC △)222a c b +-,且∠C 为钝角,则∠B =_________;ca的取值范围是_________.9.【2018年高考浙江卷】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A =60°,则sin B =___________,c =___________.10.【2018年高考全国Ⅰ文数】ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.11.【2018年高考江苏卷】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ .12.【2017年高考全国Ⅱ卷文数】ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = .13.【2017年高考全国Ⅲ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b ,c =3,则A =_________.14.【2017年高考浙江卷】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.15.【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 16.【2019年高考北京卷文数】在△ABC 中,a =3,–2b c =,cos B =12-. (1)求b ,c 的值; (2)求sin (B +C )的值.17.【2019年高考天津卷文数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26πB ⎛⎫+⎪⎝⎭的值. 18.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b =2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 19.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.20.【2018年高考天津卷文数】在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos(B –π6). (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A –B )的值.21.【2017年高考天津卷文数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,2225()ac a b c =--.(1)求cos A 的值; (2)求sin(2)B A -的值.22.【2017年高考山东卷文数】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,3ABC S △,求A 和a .23.【2017年高考江苏卷】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为107cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.1.【答案】A【解析】由已知及正弦定理可得2224a b c -=,由余弦定理推论可得2222214131cos ,,,422424b c a c c c A bc bc b +---==∴=-∴=3462b c ∴=⨯=,故选A . 【名师点睛】本题考查正弦定理及余弦定理推论的应用.先利用余弦定理推论得出a ,b ,c 关系,再结合正弦定理边角互换列出方程,解出结果. 2.【答案】B【解析】设圆心为O ,如图1,连接OA ,OB ,AB ,OP ,则22AOB APB ∠=∠=β, 所以22242OABS ⨯==扇形ββ,因为ABP AOB OAB S S S S =+-△△阴影扇形,且AOB OAB S S △扇形,都已确定, 所以当ABP S △最大时,阴影部分面积最大.观察图象可知,当P 为弧AB 的中点时(如图2),阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π−β,面积S 的最大值为ABP AOB OAB S S S S =+-△△阴影扇形=4β+S △POB + S △POA =4β+12|OP ||OB |sin (π−β)+12|OP ||OA |sin (π−β)=4β+2sin β+2sin β=4β+4 sin β,故选B. 【名师点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键是观察分析区域面积最大时的状态,并将面积用边角等表示. 3.【答案】C【解析】由题可知2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=,由余弦定理2222cos a b c ab C +-=,得sin cos C C =,因为()0,πC ∈,所以π4C =, 故选C.【名师点睛】本题主要考查余弦定理与三角形的面积公式在解三角形中的应用,考查考生的运算求解能力,考查的核心素养是数学运算.解三角形的题型一般有两类:一是边角关系的转化,考生需对所给的边角关系进行恒等变形;二是有几何背景的题型,难点在于涉及两个或两个以上的三角形,解决此类问题可利用正、余弦定理进行求解,同时要重视三角函数的知识在解三角形中的运用. 4.【答案】A【解析】因为cos25C =,所以cos C =22cos 2C −1=2×25−1=35-.于是,在△ABC 中,由余弦定理得AB 2=AC 2+BC 2−2AC × BC ×cos C =52+12−2×5×1×(35-)=32,所以AB =故选A.【名师点睛】本题主要考查二倍角公式、余弦定理,考查考生的运算求解力,考查的数学核心素养是数学运算.解三角形是近几年高考中的高频者点,将解三角形与其他知识巧妙地融合在一起,既体现了试题设计的亮点,又体现了对所学知识的交汇考查. 5.【答案】B【解析】由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,即πsin (sin cos )sin()04C A A C A +=+=,所以3π4A =.由正弦定理sin sin a c A C =得23πsin sin 4C =,即1sin 2C =, 因为c <a ,所以C<A , 所以π6C =,故选B . 【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.6.【答案】3π4【解析】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠∴sin cos 0B B +=,即tan 1B =-,3.4B π∴=【名师点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.本题容易忽视三角形内角的范围致误,三角形内角均在(0,π)范围内,化边为角,结合三角函数的恒等变化求角. 7.【答案】1225,7210【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,225AC =AB +BC =,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以1225BD =. ππ72cos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征. 8.【答案】60︒,()2,+∞【解析】)22231sin 2ABC S a c b ac B =+-=△, 22223a c b ac +-∴=,即cos 3B =,sin π3,cos 3B B B ∴=∠=,则2π1sin cos sin sin 1132sin sin sin tan 2A A Ac C a A A A A ⎛⎫⎛⎫---⋅ ⎪ ⎪⎝⎭⎝⎭====+, C ∠为钝角,ππ,036B A ∠=∴<∠<,)1tan 0,,3tan A A ⎛⎫∴∈∈+∞ ⎪ ⎪⎝⎭,故()2,ca∈+∞.故答案为60︒,()2,+∞.【名师点睛】此题考查解三角形的综合应用,能够根据题干给出的信息选用合适的余弦定理公式是解题的第一个关键;根据三角形内角πA B C ++=的隐含条件,结合诱导公式及正弦定理,将问题转化为求解含A ∠的表达式的最值问题是解题的第二个关键. 9.【答案】7,3 【解析】由正弦定理得sin sin a A b B =,所以πsin sin ,37B == 由余弦定理得22222cos ,742,3a b c bc A c c c =+-∴=+-∴=(负值舍去).【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.解答本题时,根据正弦定理得sin B ,根据余弦定理解出c . 10.【解析】根据题意,由sin sin 4sin sin b C c B a B C +=,结合正弦定理可得sin sin sin sin B C C B +4sin sin sin A B C =,即1sin 2A =, 由2228b c a +-=,结合余弦定理可得2cos 8bc A =,所以A为锐角,且cos A =,从而求得3bc =,所以ABC △的面积为111sin 22323S bc A ==⨯=,.【名师点睛】本题主要考查正、余弦定理的应用与三角形的面积公式,考查考生的化归与转化能力、运算求解能力,考查的数学核心素养是数学运算.解答本题时,利用正弦定理,通过sin sin b C c B +=4sin sin a B C ,可以求出1sin 2A =,再利用余弦定理求出bc =,然后利用三角形的面积公式求解即可. 11.【答案】9【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线的性质和三角形的面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得ac a c =+,即111a c+=,因此1144(4)()559c a a c a c a c a c +=++=++≥+=,当且仅当23c a ==时取等号,则4a c +的最小值为9.【名师点睛】本题主要考查三角形的面积公式、基本不等式,考查分析问题、解决问题的能力,考查的核心素养是数学运算.应用基本不等式求解最值时,要注意对条件“一正、二定、三相等”进行检验,尤其是等号成立的条件. 12.【答案】π3【解析】由正弦定理可得1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=. 故答案为π3. 【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 13.【答案】75°【解析】由正弦定理sin sin b c B C=,得sin 2sin 32b C Bc ===,结合b c <可得45B =,则18075A B C =--=.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.14.【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 44DBC DBC ∠=-∠==,∴1sin 2△BCD S BD BC DBC =⨯⨯⨯∠=. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos BDC ∠=或cos BDC ∠=(舍去).综上可得,△BCD 的面积为2,cos 4BDC ∠=. 【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.15.【答案】(1)B =60°;(2). 【解析】(1)由题设及正弦定理得sin sin sin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sin cos 22A C B +=,故cos 2sin cos 222B B B=.因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积ABC S =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△. 因此,△ABC面积的取值范围是82⎛ ⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 16.【答案】(1)7b =,5c =;(2. 【解析】(1)由余弦定理2222cos b a c ac B =+-,得2221323()2b c c =+-⨯⨯⨯-.因为2b c =+,所以2221(2)323()2c c c +=+-⨯⨯⨯-. 解得5c =. 所以7b =. (2)由1cos 2B =-得sin B =.由正弦定理得sin sin a A B b ==在ABC △中,B C A +=π-.所以sin()sin B C A +==【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力. 17.【答案】(1)14-;(2)-【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅. (2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故717sin 2sin 2cos cos 2sin 666828216B B B πππ⎛⎫+=+=--⨯=-⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力. 18.【答案】(1)3c =(2)5. 【解析】(1)因为23,3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c+-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =. 因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭. 【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.19.【答案】(1)15(百米);(2)见解析;(3)17+321(百米).【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-,直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力. 20.【答案】(1)π3;(2)b;sin(2A –B【解析】(1)在△ABC 中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =又因为(0π)B ∈,,可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有2222cos 7b a c ac B =+-=,故b.由πsin cos()6b A a B =-,可得sin A =因为a <c,故cos A =.因此sin 22sin cos 7A A A ==,21cos 22cos 17A A =-=. 所以,sin(2)sin 2cos cos 2sin A B A B A B -=-=1127-= 【名师点睛】本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围. 21.【答案】(1)2). 【解析】(1)由sin 4sin a A b B =及sin sin a bA B=,得2a b =.由222)ac a b c =--及余弦定理,得2225cos 2acb c aA bcac -+-=== (2)由(1)可得sin A =,代入sin 4sin a A b B =,得sin sin 4a A B b ==.由(1)知A 为钝角,所以cos B ==. 于是4sin 22sin cos 5B B B ==,23cos 212sin 5B B =-=,故43sin(2)sin 2cos cos 2sin (55555B A B A B A -=-=⨯--⨯=-. 【名师点睛】利用正弦定理进行“边转角”可寻求角的关系,利用“角转边”可寻求边的关系,利用余弦定理借助三边关系可求角,利用两角和差的三角公式及二倍角公式可求三角函数值.利用正、余弦定理解三角形是高考的高频考点,常与三角形内角和定理、三角形面积公式等相结合,利用正、余弦定理进行解题.解答本题时,(1)首先根据正弦定理sin sin a bA B=得到2a b =,再根据余弦定理即可求得cos A 的值;(2)根据(1)的结论和条件,由cos A 求得sin A ,然后根据sin 4sin a A b B =求得sin B ,再求cos B ,然后由二倍角公式求sin 2,cos 2B B ,最后代入sin(2)B A -的展开式即可.22.【答案】3=π,4A a 【解析】因为6AB AC ⋅=-,所以cos 6bc A =-, 又3ABC S =△,所以sin 6bc A =, 因此tan 1A =-,又0πA <<, 所以3π4A =,又3b =,所以c =由余弦定理2222cos a b c bc A =+-,得29823(2a =+-⨯⨯-,所以a =【名师点睛】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想. 23.【答案】(1)16 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm);(2)20 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm).【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥. 记玻璃棒的另一端落在1CC 上点M 处. 因为107,40AC AM ==,所以2240(107)30MC =-=,从而3sin 4MAC =∠, 记AM 与水面的交点为1P ,过1P 作P 1Q 1⊥AC ,Q 1为垂足, 则P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=1116sin P MACQ =∠.答:玻璃棒l 没入水中部分的长度为16cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而222211 243240GG KG GK =+=+=. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠.因为2απ<<π,所以3cos 5α=-.在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是42473sin sin()sin()sin co 3s cos sin ()5252555NEG αβαβαβαβ=π--=+=+=⨯+-⨯=∠.记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH , 故P 2Q 2=12,从而EP 2=2220sin P NEGQ ∠.答:玻璃棒l 没入水中部分的长度为20cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)【名师点睛】解答本题时,(1)转化为直角三角形ACM 中,利用相似性质求解AP 1;(2)转化到三角形EGN 中,先利用直角梯形性质求角1EGG ∠,再利用正弦定理求角ENG ∠,最后根据直角三角形求高,即为l 没入水中部分的长度.解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向; 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化; 第三步:求结果.。
2019年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

绝密★启用前2019 年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12 小题,每小题5 分,共60 分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合A = {-1, 0,1, 2},B = {x x2≤1} ,则AA.{-1,0,1} B.{0,1} C.{-1,1} D.{0,1, 2}2.若z(1+ i) = 2i ,则z=A.-1- iB.-1+iC.1- iD.1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100 学生,其中阅读过《西游记》或《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.84.(1+2x2)(1+x)4的展开式中x3的系数为A.12 B.16 C.20 D.245.已知各项均为正数的等比数列{a n}的前4 项为和为15,且a5=3a3+4a1,则a3=A.16 B.8 C.4 D.26.已知曲线y =a e x+x ln x 在点(1,a e)处的切线方程为y=2x+b,则A. a = e,b =-1 b =-1B.a=e,b=1 C.a = e-1,b = 1 D .a = e-1,B =7.函数y =2x32x + 2-x在[-6, 6]的图象大致为A.B.C.D.8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD⊥平面ABCD,M是线段ED 的中点,则A.BM=EN,且直线BM、EN 是相交直线B.BM≠EN,且直线BM,EN 是相交直线C.BM=EN,且直线BM、EN 是异面直线D.BM≠EN,且直线BM,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于yA. 2 - 124B. 2 - 125C. 2 - 126D. 2 - 12710. 双曲线 C :x2- =1 的右焦点为 F ,点 P 在 C 的一条渐进线上,O 为坐标原点,若 4 2PO = PF ,则△PFO 的面积为A. 3 24B. 3 22C. 2D. 311. 设 f( x ) 是定义域为 R 的偶函数,且在(0, ∞) 单调递减,则A. f (log1 )> f (- 3)>f ( - 2 )B. f (log 34 1)> f ( 2 2- 2)> f ( 2 3- 3 )3 4 2 3 2 2C. f ( - 3)> f ( -2)> f (log1)2 22 334D. f ( - 2)> f ( -3)> f (log1 )2 32 23412. 设函数 f( x ) =sin (ω x + π)( ω >0),已知 f (x ) 在[0, 2π]有且仅有 5 个零点,下述 5四个结论:① f (x ) 在( 0, 2π )有且仅有 3 个极大值点 2 22, xy ② f (x ) 在( 0, 2π )有且仅有 2 个极小值点③ f (x ) 在( 0, π)单调递增10④ ω 的取值范围是[12 29) 5 10其中所有正确结论的编号是A . ①④B . ②③C . ①②③D . ①③④二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
数学试卷201917年高考天津解析(正式版)(解析版)

绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A ,B 互斥,那么·如果事件A ,B 相互独立,那么 P (A ∪B )=P (A )+P (B ).P (AB )=P (A )P (B ).·棱柱的体积公式V=Sh .·球的体积公式343V R =π. 其中S 表示棱柱的底面面积,其中R 表示球的半径.h 表示棱柱的高.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()AB C =(A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R【答案】B 【解析】(){1,2,4,6}[1,5]{1,2,4}AB C =-=,故选B .(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23(B )1 (C )32(D )3【答案】D(3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0 (B )1 (C )2 (D )3【答案】C【解析】初始:24N =,进入循环后N 的值依次为8,7,6,2N N N N ====,输出2N =,故选C . (4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件【答案】A【解析】πππ||012126θθ-<⇔<<1sin 2θ⇒<,但0θ=时1sin 02θ=<,不满足ππ||1212θ-<,所以“ππ||1212θ-<”是“1sin 2θ<”的充分而不必要条件,故选A .(5)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F .若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -=(B )22188x y -=(C )22148x y -=(D )22184x y -=【答案】B【解析】由题意得2240,14,10()88x y a b c a b c -==⇒===⇒-=--,故选B . (6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c <<(B )c b a <<(C )b a c <<(D )b c a <<【答案】C(7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=-(C )13ω=,24ϕ11π=- (D )13ω=,24ϕ7π= 【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕ<π得12ϕπ=,故选A . (8)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 (A )47[,2]16-(B )4739[,]1616-(C)[- (D)39[]16- 【答案】A当1x >时,(*)式为222x x a x x x --≤+≤+,32222x x a x x--≤≤+.又3232()22x x x x --=-+≤-3x =,222x x +≥=(当2x =时取等号),所以2a -≤≤. 综上,47216a -≤≤.故选A . 第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2019年高考真题理科数学(全国卷Ⅲ) Word版含解析

2019年普通高等学校招生全国统一考试(全国 III 卷)理科数学一.选择题1、已知集合}1|{},2,1,0,1{2≤=-=x x B A ,则=⋂B A ( ) A. }1,0,1{- B. B.{0,1} C. C.}1,1{- D. D.}2,1,0{ 答案: A 解答:}11|{}1|{2≤≤-=≤=x x x x B ,所以}1,0,1{-=⋂B A .2.若i i z 2)1(=+,则=z ( ) A.i --1 B.i +-1 C.i -1 D.i +1 答案: D解答:i i z 2)1(=+,i i i i i i i i i z +=-=-+-=+=1)1()1)(1()1(212. 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A.5.0 B.6.0 C.7.0 D.8.0 答案: C解答:7.0100608090=+-4.42)1)(21(x x ++的展开式中3x 的系数为( )A.12B.16C.20D.24 答案: A 解答:由题意可知含3x 的项为33142334121211x x C x x C =⋅⋅⋅+⋅⋅⋅,所以系数为12.5.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =() A. 16 B. 8 C. 4 D. 2 答案: C解答:设该等比数列的首项1a ,公比q ,由已知得,4211134a q a q a =+, 因为10a >且0q >,则可解得2q =,又因为231(1)15a q q q +++=,即可解得11a =,则2314a a q ==.6. 已知曲线x x ae y xln +=在点)1(ae ,处的切线方程为b x y +=2,则( ) A.e a =,1-=b B.e a =,1=b C.1-=e a ,1=b D.1-=e a ,1-=b 答案: D解析:令x x ae x f x ln )(+=,则1ln )(++='x ae x f x,21)1(=+='ae f ,得11-==e ea .b ae f +==2)1(,可得1-=b .故选D.7.函数3222x xxy-=+在[6,6]-的图像大致为()A.B.C.D.答案:B解析:∵32()22x xxy f x-==+,∴332()2()()2222x x x xx xf x f x----==-=-++,∴()f x为奇函数,排除选项C.又∵334442424(4)8222f-⨯⨯=≈=+,根据图像进行判断,可知选项B符合题意.8.如图,点为正方形的中心,为正三角形,平面平面,是线段的中点,则()A.,且直线,是相交直线B.,且直线,是相交直线C.,且直线,是异面直线D.,且直线,是异面直线答案:B解析:因为直线,都是平面内的直线,且不平行,即直线,是相交直线,设正方形的边长为,则由题意可得:,根据余弦定理可得:,,所以,故选B.9.执行右边的程序框图,如果输出为,则输出的值等于()A.B.C.D.答案:C解析:第一次循环:;第二次循环:;第三次循环:;第四次循环:;…第七次循环:,此时循环结束,可得.故选C.10.双曲线C:22142x y-=的右焦点为F,点P为C的一条渐近线的点,O为坐标原点.若||||PO PF=则PFO∆的面积为()A:C:D:答案: A解析:由双曲线的方程2242x y-=可得一条渐近线方程为2y x=;在PFO∆中||||PO PF=过点P做PH垂直OF因为t a n P O F=2∠得到2PO=;所以1224S P F O∆=⨯=;故选A;11.若()f x是定义域为R的偶函数,且在(0,)+∞单调递减,则()A.233231(log)(2)(2) 4f f f-->>B. 233231(log )(2)(2)4f f f -->>C. 233231(2)(2)(log )4f f f -->> D.233231(2)(2)(log )4f f f -->>答案: C 解析:依据题意函数为偶函数且函数在(0,)+∞单调递减,则函数在(,0)-∞上单调递增;因为3331(log )(log 4)(log 4)4f f f =-=;又因为233230221l o g 4--<<<<;所以233231(2)(2)(l o g )4f ff-->>;故选C.12.设函数()()sin 05f x x πωω⎛⎫=+> ⎪⎝⎭,已知()f x 在[]02π,有且仅有5个零点,下述四个结论:○1()f x 在()0,2π有且仅有3个极大值点 ○2()f x 在()0,2π有且仅有2个极小值点 ○3()f x 在0,10π⎛⎫⎪⎝⎭单调递增 ○4ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭其中所有正确结论的编号是A. ○1○4B.○2○3C.○1○2○3D.○1○3○4 答案: D解析:根据题意,画出草图,由图可知[)122,x x π∈,由题意可得,125565x x πωππωπ⎧+=⎪⎪⎨⎪+=⎪⎩,解得12245295x x πωπω⎧=⎪⎪⎨⎪=⎪⎩,所以2429255πππωω≤<,解得1229510ω≤<,故○4对; 令52x ππω+=得3010x πω=>,∴图像中y 轴右侧第一个最值点为最大值点,故○1对; ∵[)122,x x π∈,∴()f x 在()0,2π有2个或3个极小值点,故○2错; ∵1229510ω≤<,∴1149251051002πππππω≤⋅+<<,故○3对. 二.填空题13.已知a ,b 为单位向量,且0a b ⋅=,若25c a b =-,则cos ,a c = . 答案:23解析:∵()22222545459c a ba b a b =-=+-⋅=,∴3c =,∵()225252a c a a b a a b ⋅=⋅-=-⋅=,∴22cos ,133a c a c a c⋅===⨯⋅. 14.记n S 为等差数列{}n a 的前n 项和,若10a ≠,213a a =,则105S S = . 答案:4解析:设该等差数列的公差为d ,∵213a a =,∴113a d a +=,故()1120,0d a a d =≠≠,∴()()()1101101551102292102452452a a a d S d a a S a d d ++⨯====++.15.设1F 、2F 为椭圆1203622=+y x C :的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则M 的坐标为________. 答案:)15,3(解析:已知椭圆1203622=+y x C :可知,6=a ,4=c ,由M 为C 上一点且在第一象限,故等腰三角形21F MF ∆中8211==F F MF ,4212=-=MF a MF ,415828sin 2221=-=∠M F F ,15sin 212=∠=M F F MF y M ,代入1203622=+y x C :可得3=M x .故M 的坐标为)15,3(. 16.学生到工厂劳动实践,利用3D 打印技术制作模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学一题多解含17年高考试题(III)
1、【2017年高考数学全国I 理第5题】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是
A .[2,2]-
B .[1,1]-
C .[0,4]
D .[1,3]
【答案】D
【知识点】函数的奇偶性;单调性;抽象函数;解不等式。
【试题分析】本题主要考察了抽象函数的奇偶性,单调性以及简单的解不等式,属于简单题。
【解析】
解析二:(特殊函数法)由题意,不妨设()f x x =-,因为21()1x f --≤≤,所以121x -≤-≤,化简得13x ≤≤,故选D 。
解析三:(特殊值法)假设可取=0x ,则有21()1f --≤≤,又因为1(12)()f f ->=-,所以与21()1f --≤≤矛盾,故=0x 不是不等式的解,于是排除A 、B 、C ,故选D 。
2、【2017年高考数学全国I 理第11题】设xyz 为正数,且235x y z ==,则
A .235x y z <<
B .523z x y <<
C .352y z x <<
D .325y x z <<
【答案】D
【知识点】比较大小;对数的运算;对数函数的单调性;
【试题分析】本题主要考察了对数的比较大小,其中运用到了对数的运算公式,对数的单调性等。
属于中档题。
【解析】
解析一:令()2350x y z t t ===>,则2log x t =,3log y t =,5log z t =, 2lg 22log 1lg 22t x t ==,3lg 33log 1lg33t y t ==,5lg 5log 1lg55
t z t ==, 要比较2x 与3y ,只需比较1lg 22,1lg 33,即比较3lg 2与2lg3,即比较lg 8,lg 9,易知lg8lg9<,故23x y >.
要比较2x 与5z ,只需比较
1lg 22,1lg 55
,即比较5lg 2与2lg 5,即比较lg32,lg 25,易知lg 25lg32<,故52z x >.
所以325y x z <<. 解析二:令()2350x y z t t ===>,则2log x t =,3log y t =,5log z t =,
2lg 22log 1lg 22t x t ==,3lg 33log 1lg33t y t ==,5lg 5log 1lg55
t z t ==, ()()1111lg 2lg33lg 22lg3lg8lg902366-=-=-<,所以11lg 2lg 323
<即23x y >. ()()1111lg5lg 22lg55lg 2lg32lg 250521010-=-=->,所以11lg 5lg 252
<即52z x >. 所以325y x z <<
.
3、【2017年高考数学全国I 理第18题】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=
.
(1)证明:平面PAB ⊥平面PAD ;
(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.
【答案】见解析
【知识点】线面垂直的判定;面面垂直的判定;求二面角。
【试题分析】本题第一问主要考察了面面垂直的判定,其中还需要用到线面垂直的判定第。
第二问是考察二面角的求法,属于中档题。
【解析】
(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD .
由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面PAD .
又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .
(2)方法一:(综合法)不妨设PA =PD =AB =DC =1,
则易得PB PB BC ===取PB 中点O ,连接,AO CO ,则,AO PB CO PB ⊥⊥,
所以AOC ∠即为所求二面角的平面角。
在三角形AOC 中,
=2AO
,=2
CO
,AC =
222cos 2AO CO AC AOC AO CO +-∴∠==⋅所以二面角A PB C --
的余弦值为
由(1
)及已知可得2A
,(0,0,2P
,2B
,(,1,0)2
C -.
所以(22PC =--,(2,0,0)CB =,2()22
PA =-,(0,1,0)AB =. 设(,,)x y z =n 是平面PCB 的法向量,则
A C
00PC CB ⎧⋅=⎪⎨⋅=⎪⎩n n
,即0220
x y z ⎧
-+-=⎪⎨=,
可取(0,1,=-n .
设(,,)x y z =m 是平面PAB 的法向量,则 00PA AB ⎧⋅=⎪⎨⋅=⎪⎩m m
,即0
x z y =⎪=⎩,
可取(1,0,1)=n .
则cos ,||||⋅==<>n m
n m n m ,
所以二面角A PB C --
的余弦值为方法三:(等体积转化法)不妨设PA =PD =AB =DC =1,
则易得PB PB BC ===取PB 中点O ,连接AO ,则AO PB ⊥。
设A 在平面PBC 内投影为H ,连,AH OH , 则AOH ∠的补角即为所求二面角的平面角。
由A PBC P ABC V V --=得
1133AH =
AH ∴=
sin 3
AOH ∴∠=
cos 3AOH ∴∠=
A C
所以二面角A PB C --的余弦值为3-.。